Begin model inclusion

This commit is contained in:
2025-02-18 10:48:46 +01:00
parent 17728212c1
commit bd5ba14f04
14 changed files with 967 additions and 71 deletions

View File

@@ -0,0 +1,74 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef XA1DE_H
#define XA1DE_H
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <limits>
#include "bayesnet/BaseClassifier.h"
#include "common/Timer.hpp"
#include "CountingSemaphore.hpp"
#include "Xaode.hpp"
namespace platform {
class XA1DE : public bayesnet::BaseClassifier {
public:
XA1DE();
virtual ~XA1DE() = default;
void setDebug(bool debug) { this->debug = debug; }
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
int getNumberOfNodes() const override { return 0; };
int getNumberOfEdges() const override { return 0; };
int getNumberOfStates() const override { return 0; };
int getClassNumStates() const override { return 0; };
torch::Tensor predict(torch::Tensor& X) override { return torch::zeros(0); };
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros(0); };
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
bayesnet::status_t getStatus() const override { return status; }
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
float score(torch::Tensor& X, torch::Tensor& y) override { return 0; };
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
std::vector<std::string> show() const override { return {}; }
std::vector<std::string> topological_order() override { return {}; }
std::vector<std::string> getNotes() const override { return notes; }
std::string dump_cpt() const override { return ""; }
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
private:
inline void normalize_weights(int num_instances)
{
double sum = std::accumulate(weights_.begin(), weights_.end(), 0.0);
if (sum == 0) {
throw std::runtime_error("Weights sum zero.");
}
for (double& w : weights_) {
w = w * num_instances / sum;
}
}
// The instances of the dataset
Xaode aode_;
std::vector<double> weights_;
CountingSemaphore& semaphore_;
bool debug = false;
bayesnet::status_t status = bayesnet::NORMAL;
std::vector<std::string> notes;
bool use_threads = false;
};
}
#endif // XA1DE_H