Begin model inclusion

This commit is contained in:
2025-02-18 10:48:46 +01:00
parent 17728212c1
commit bd5ba14f04
14 changed files with 967 additions and 71 deletions

View File

@@ -9,6 +9,7 @@
#include <fimdlp/CPPFImdlp.h>
#include <folding.hpp>
#include <bayesnet/utils/BayesMetrics.h>
#include <bayesnet/classifiers/SPODE.h>
#include "Models.h"
#include "modelRegister.h"
#include "config_platform.h"
@@ -160,82 +161,119 @@ int main(int argc, char** argv)
states[feature] = std::vector<int>(maxes[feature]);
}
states[className] = std::vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
// Output the states
std::cout << std::string(80, '-') << std::endl;
std::cout << "States" << std::endl;
for (auto feature : features) {
std::cout << feature << ": " << states[feature].size() << std::endl;
}
std::cout << std::string(80, '-') << std::endl;
//auto clf = platform::Models::instance()->create("SPODE");
auto clf = bayesnet::SPODE(2);
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::ORIGINAL;
clf->fit(Xd, y, features, className, states, smoothing);
clf.fit(Xd, y, features, className, states, smoothing);
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
std::cout << clf.dump_cpt();
}
auto lines = clf->show();
std::cout << "--- Datos predicción ---" << std::endl;
std::cout << "Orden de variables: " << std::endl;
for (auto feature : features) {
std::cout << feature << ", ";
}
std::cout << std::endl;
std::cout << "X[0]: ";
for (int i = 0; i < Xd.size(); ++i) {
std::cout << Xd[i][0] << ", ";
}
std::cout << std::endl;
std::cout << std::string(80, '-') << std::endl;
auto lines = clf.show();
for (auto line : lines) {
std::cout << line << std::endl;
}
std::cout << "--- Topological Order ---" << std::endl;
auto order = clf->topological_order();
auto order = clf.topological_order();
for (auto name : order) {
std::cout << name << ", ";
}
std::cout << "end." << std::endl;
auto score = clf->score(Xd, y);
std::cout << "Score: " << score << std::endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
folding::Fold* fold;
double nodes = 0.0;
if (stratified)
fold = new folding::StratifiedKFold(nFolds, y, seed);
else
fold = new folding::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
std::cout << "Fold: " << i + 1 << std::endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states, smoothing);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states, smoothing);
std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
nodes += clf->getNumberOfNodes();
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
auto predict_proba = clf.predict_proba(Xd);
std::cout << "Instances predict_proba: ";
for (int i = 0; i < predict_proba.size(); i++) {
std::cout << "Instance " << i << ": ";
for (int j = 0; j < 4; ++j) {
std::cout << Xd[j][i] << ", ";
}
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
std::cout << clf->dump_cpt();
std::cout << ": ";
for (auto score : predict_proba[i]) {
std::cout << score << ", ";
}
total_score_train += score_train;
total_score += score_test;
std::cout << "Score Train: " << score_train << std::endl;
std::cout << "Score Test : " << score_test << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
std::cout << std::endl;
}
std::cout << "Nodes: " << nodes / nFolds << std::endl;
std::cout << "**********************************************************************************" << std::endl;
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
// std::cout << std::endl;
// std::cout << "end." << std::endl;
// auto score = clf->score(Xd, y);
// std::cout << "Score: " << score << std::endl;
// auto graph = clf->graph();
// auto dot_file = model_name + "_" + file_name;
// ofstream file(dot_file + ".dot");
// file << graph;
// file.close();
// std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
// std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
// std::string stratified_string = stratified ? " Stratified" : "";
// std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
// std::cout << "==========================================" << std::endl;
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
// for (int i = 0; i < features.size(); ++i) {
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
// }
// float total_score = 0, total_score_train = 0, score_train, score_test;
// folding::Fold* fold;
// double nodes = 0.0;
// if (stratified)
// fold = new folding::StratifiedKFold(nFolds, y, seed);
// else
// fold = new folding::KFold(nFolds, y.size(), seed);
// for (auto i = 0; i < nFolds; ++i) {
// auto [train, test] = fold->getFold(i);
// std::cout << "Fold: " << i + 1 << std::endl;
// if (tensors) {
// auto ttrain = torch::tensor(train, torch::kInt64);
// auto ttest = torch::tensor(test, torch::kInt64);
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
// torch::Tensor ytraint = yt.index({ ttrain });
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
// torch::Tensor ytestt = yt.index({ ttest });
// clf->fit(Xtraint, ytraint, features, className, states, smoothing);
// auto temp = clf->predict(Xtraint);
// score_train = clf->score(Xtraint, ytraint);
// score_test = clf->score(Xtestt, ytestt);
// } else {
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
// clf->fit(Xtrain, ytrain, features, className, states, smoothing);
// std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
// nodes += clf->getNumberOfNodes();
// score_train = clf->score(Xtrain, ytrain);
// score_test = clf->score(Xtest, ytest);
// }
// // if (dump_cpt) {
// // std::cout << "--- CPT Tables ---" << std::endl;
// // std::cout << clf->dump_cpt();
// // }
// total_score_train += score_train;
// total_score += score_test;
// std::cout << "Score Train: " << score_train << std::endl;
// std::cout << "Score Test : " << score_test << std::endl;
// std::cout << "-------------------------------------------------------------------------------" << std::endl;
// }
// std::cout << "Nodes: " << nodes / nFolds << std::endl;
// std::cout << "**********************************************************************************" << std::endl;
// std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
// std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
}

View File

@@ -55,6 +55,7 @@ add_executable(b_main commands/b_main.cpp ${main_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
reports/ReportConsole.cpp reports/ReportBase.cpp
results/Result.cpp
experimental_clfs/XA1DE.cpp
)
target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)

View File

@@ -8,7 +8,7 @@
#include "main/modelRegister.h"
#include "main/ArgumentsExperiment.h"
#include "common/Paths.h"
#include "common/Timer.h"
#include "common/Timer.hpp"
#include "common/Colors.h"
#include "common/DotEnv.h"
#include "grid/GridSearch.h"

View File

@@ -0,0 +1,53 @@
#ifndef COUNTING_SEMAPHORE_H
#define COUNTING_SEMAPHORE_H
#include <mutex>
#include <condition_variable>
#include <algorithm>
#include <thread>
#include <mutex>
#include <condition_variable>
class CountingSemaphore {
public:
static CountingSemaphore& getInstance()
{
static CountingSemaphore instance;
return instance;
}
// Delete copy constructor and assignment operator
CountingSemaphore(const CountingSemaphore&) = delete;
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
void acquire()
{
std::unique_lock<std::mutex> lock(mtx_);
cv_.wait(lock, [this]() { return count_ > 0; });
--count_;
}
void release()
{
std::lock_guard<std::mutex> lock(mtx_);
++count_;
if (count_ <= max_count_) {
cv_.notify_one();
}
}
uint getCount() const
{
return count_;
}
uint getMaxCount() const
{
return max_count_;
}
private:
CountingSemaphore()
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
count_(max_count_)
{
}
std::mutex mtx_;
std::condition_variable cv_;
const uint max_count_;
uint count_;
};
#endif

View File

@@ -0,0 +1,150 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "XA1DE.h"
namespace platform {
XA1DE::XA1DE() : semaphore_{ CountingSemaphore::getInstance() }
{
validHyperparameters = { "use_threads" };
}
void XA1DE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("use_threads")) {
use_threads = hyperparameters["use_threads"].get<bool>();
hyperparameters.erase("use_threads");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
void XA1DE::fit(std::vector<std::vector<int>> X, std::vector<int> y, std::vector<double> weights)
{
Timer timer, timert;
timer.start();
timert.start();
weights_ = weights;
std::vector<std::vector<int>> instances = X;
instances.push_back(y);
int num_instances = instances[0].size();
int num_attributes = instances.size();
normalize_weights(num_instances);
std::vector<int> states;
for (int i = 0; i < num_attributes; i++) {
states.push_back(*max_element(instances[i].begin(), instances[i].end()) + 1);
}
aode_.init(states);
aode_.duration_first += timer.getDuration(); timer.start();
std::vector<int> instance;
for (int n_instance = 0; n_instance < num_instances; n_instance++) {
instance.clear();
for (int feature = 0; feature < num_attributes; feature++) {
instance.push_back(instances[feature][n_instance]);
}
aode_.addSample(instance, weights_[n_instance]);
}
aode_.duration_second += timer.getDuration(); timer.start();
// if (debug) aode_.show();
aode_.computeProbabilities();
aode_.duration_third += timer.getDuration();
if (debug) {
// std::cout << "* Checking coherence... ";
// aode_.checkCoherenceApprox(1e-6);
// std::cout << "Ok!" << std::endl;
// aode_.show();
// std::cout << "* Accumulated first time: " << aode_.duration_first << std::endl;
// std::cout << "* Accumulated second time: " << aode_.duration_second << std::endl;
// std::cout << "* Accumulated third time: " << aode_.duration_third << std::endl;
std::cout << "* Time to build the model: " << timert.getDuration() << " seconds" << std::endl;
// exit(1);
}
}
std::vector<std::vector<double>> XA1DE::predict_proba(std::vector<std::vector<int>>& test_data)
{
int test_size = test_data[0].size();
std::vector<std::vector<double>> probabilities;
std::vector<int> instance;
for (int i = 0; i < test_size; i++) {
instance.clear();
for (int j = 0; j < (int)test_data.size(); j++) {
instance.push_back(test_data[j][i]);
}
probabilities.push_back(aode_.predict_proba(instance));
}
return probabilities;
}
std::vector<std::vector<double>> XA1DE::predict_proba_threads(const std::vector<std::vector<int>>& test_data)
{
int test_size = test_data[0].size();
int sample_size = test_data.size();
auto probabilities = std::vector<std::vector<double>>(test_size, std::vector<double>(aode_.statesClass()));
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin, int chunk, int sample_size, std::vector<std::vector<double>>& predictions) {
std::string threadName = "(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = aode_.predict_proba(instance);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
}
for (auto& thread : threads) {
thread.join();
}
return probabilities;
}
std::vector<int> XA1DE::predict(std::vector<std::vector<int>>& test_data)
{
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
for (size_t i = 0; i < probabilities.size(); i++) {
predictions[i] = std::distance(probabilities[i].begin(), std::max_element(probabilities[i].begin(), probabilities[i].end()));
}
return predictions;
}
float XA1DE::score(std::vector<std::vector<int>>& test_data, std::vector<int>& labels)
{
aode_.duration_first = 0.0;
aode_.duration_second = 0.0;
aode_.duration_third = 0.0;
Timer timer;
timer.start();
std::vector<int> predictions = predict(test_data);
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == labels[i]) {
correct++;
}
}
if (debug) {
std::cout << "* Time to predict: " << timer.getDurationString() << std::endl;
std::cout << "* Accumulated first time: " << aode_.duration_first << std::endl;
std::cout << "* Accumulated second time: " << aode_.duration_second << std::endl;
std::cout << "* Accumulated third time: " << aode_.duration_third << std::endl;
}
return static_cast<float>(correct) / predictions.size();
}
}

View File

@@ -0,0 +1,74 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef XA1DE_H
#define XA1DE_H
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <limits>
#include "bayesnet/BaseClassifier.h"
#include "common/Timer.hpp"
#include "CountingSemaphore.hpp"
#include "Xaode.hpp"
namespace platform {
class XA1DE : public bayesnet::BaseClassifier {
public:
XA1DE();
virtual ~XA1DE() = default;
void setDebug(bool debug) { this->debug = debug; }
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
int getNumberOfNodes() const override { return 0; };
int getNumberOfEdges() const override { return 0; };
int getNumberOfStates() const override { return 0; };
int getClassNumStates() const override { return 0; };
torch::Tensor predict(torch::Tensor& X) override { return torch::zeros(0); };
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros(0); };
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
bayesnet::status_t getStatus() const override { return status; }
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
float score(torch::Tensor& X, torch::Tensor& y) override { return 0; };
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
std::vector<std::string> show() const override { return {}; }
std::vector<std::string> topological_order() override { return {}; }
std::vector<std::string> getNotes() const override { return notes; }
std::string dump_cpt() const override { return ""; }
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
private:
inline void normalize_weights(int num_instances)
{
double sum = std::accumulate(weights_.begin(), weights_.end(), 0.0);
if (sum == 0) {
throw std::runtime_error("Weights sum zero.");
}
for (double& w : weights_) {
w = w * num_instances / sum;
}
}
// The instances of the dataset
Xaode aode_;
std::vector<double> weights_;
CountingSemaphore& semaphore_;
bool debug = false;
bayesnet::status_t status = bayesnet::NORMAL;
std::vector<std::string> notes;
bool use_threads = false;
};
}
#endif // XA1DE_H

View File

@@ -0,0 +1,579 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
// Based on the Geoff. I. Webb A1DE java algorithm
// https://weka.sourceforge.io/packageMetaData/AnDE/Latest.html
#ifndef XAODE_H
#define XAODE_H
#include <vector>
#include <stdexcept>
#include <algorithm>
#include <numeric>
#include <iostream>
#include <string>
#include <cmath>
#include <limits>
namespace platform {
class Xaode {
public:
// -------------------------------------------------------
// The Xaode can be EMPTY (just created), in COUNTS mode (accumulating raw counts)
// or PROBS mode (storing conditional probabilities).
enum class MatrixState {
EMPTY,
COUNTS,
PROBS
};
double duration_first = 0.0;
double duration_second = 0.0;
double duration_third = 0.0;
Xaode() : nFeatures_{ 0 }, statesClass_{ 0 }, totalSize_{ 0 }, matrixState_{ MatrixState::EMPTY } {}
// -------------------------------------------------------
// init
// -------------------------------------------------------
//
// states.size() = nFeatures + 1,
// where states.back() = number of class states.
//
// We'll store:
// 1) p(c) in classPriors_
// 2) p(x_i=si | c) in classFeatureProbs_
// 3) p(x_j=sj | c, x_i=si) in data_, with i<j => i is "superparent," j is "child."
//
// Internally, in COUNTS mode, data_ accumulates raw counts, then
// computeProbabilities(...) normalizes them into conditionals.
//
void init(const std::vector<int>& states)
{
if (matrixState_ != MatrixState::EMPTY) {
throw std::logic_error("Xaode: already initialized.");
}
states_ = states;
nFeatures_ = static_cast<int>(states_.size()) - 1;
if (nFeatures_ < 1) {
throw std::invalid_argument("Xaode: need at least 1 feature plus class states.");
}
statesClass_ = states_.back();
if (statesClass_ <= 0) {
throw std::invalid_argument("Xaode: class states must be > 0.");
}
int totalStates = std::accumulate(states.begin(), states.end(), 0) - statesClass_;
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
// We'll need the offsets for each feature i in featureClassOffset_.
featureClassOffset_.resize(nFeatures_);
// We'll store p(x_child=sj | c, x_sp=si) for each pair (i<j).
// So data_(i, si, j, sj, c) indexes into a big 1D array with an offset.
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
// We'll need the offsets for each feature i in featureClassOffset_.
featureClassOffset_.resize(nFeatures_);
pairOffset_.resize(totalStates);
int feature_offset = 0;
int runningOffset = 0;
int feature = 0, index = 0;
for (int i = 0; i < nFeatures_; ++i) {
featureClassOffset_[i] = feature_offset;
feature_offset += states_[i];
for (int j = 0; j < states_[i]; ++j) {
pairOffset_[feature++] = index;
index += runningOffset;
}
runningOffset += states_[i];
}
totalSize_ = index * statesClass_;
data_.resize(totalSize_);
dataOpp_.resize(totalSize_);
classFeatureCounts_.resize(feature_offset * statesClass_);
classFeatureProbs_.resize(feature_offset * statesClass_);
// classCounts_[c] & p(c) in classPriors_
classCounts_.resize(statesClass_, 0.0);
classPriors_.resize(statesClass_, 0.0);
matrixState_ = MatrixState::COUNTS;
}
// Returns the dimension of data_ (just for info).
int size() const
{
return totalSize_;
}
// Returns current mode: INIT, COUNTS or PROBS
MatrixState state() const
{
return matrixState_;
}
// Optional: print a quick summary
void show() const
{
std::cout << "-------- Xaode.show() --------" << std::endl
<< "- nFeatures = " << nFeatures_ << std::endl
<< "- statesClass = " << statesClass_ << std::endl
<< "- totalSize_ = " << totalSize_ << std::endl
<< "- matrixState = " << (matrixState_ == MatrixState::COUNTS ? "COUNTS" : "PROBS") << std::endl;
std::cout << "- states: size: " << states_.size() << std::endl;
for (int s : states_) std::cout << s << " "; std::cout << std::endl;
std::cout << "- classCounts: size: " << classCounts_.size() << std::endl;
for (double cc : classCounts_) std::cout << cc << " "; std::cout << std::endl;
std::cout << "- classPriors: size: " << classPriors_.size() << std::endl;
for (double cp : classPriors_) std::cout << cp << " "; std::cout << std::endl;
std::cout << "- classFeatureCounts: size: " << classFeatureCounts_.size() << std::endl;
for (double cfc : classFeatureCounts_) std::cout << cfc << " "; std::cout << std::endl;
std::cout << "- classFeatureProbs: size: " << classFeatureProbs_.size() << std::endl;
for (double cfp : classFeatureProbs_) std::cout << cfp << " "; std::cout << std::endl;
std::cout << "- featureClassOffset: size: " << featureClassOffset_.size() << std::endl;
for (int f : featureClassOffset_) std::cout << f << " "; std::cout << std::endl;
std::cout << "- pairOffset_: size: " << pairOffset_.size() << std::endl;
for (int p : pairOffset_) std::cout << p << " "; std::cout << std::endl;
std::cout << "- data: size: " << data_.size() << std::endl;
for (double d : data_) std::cout << d << " "; std::cout << std::endl;
std::cout << "--------------------------------" << std::endl;
}
// -------------------------------------------------------
// addSample (only in COUNTS mode)
// -------------------------------------------------------
//
// instance should have the class at the end.
//
void addSample(const std::vector<int>& instance, double weight)
{
//
// (A) increment classCounts_
// (B) increment featureclass counts => for p(x_i|c)
// (C) increment pair (superparent= i, child= j) counts => data_
//
// if (matrixState_ != MatrixState::COUNTS) {
// throw std::logic_error("addSample: not in COUNTS mode.");
// }
// if (static_cast<int>(instance.size()) != nFeatures_ + 1) {
// throw std::invalid_argument("addSample: instance.size() must be nFeatures_ + 1.");
// }
int c = instance.back();
// if (c < 0 || c >= statesClass_) {
// throw std::out_of_range("addSample: class index out of range.");
// }
if (weight <= 0.0) {
return;
}
// (A) increment classCounts_
classCounts_[c] += weight;
// (B,C)
// We'll store raw counts now and turn them into p(child| c, superparent) later.
int idx, fcIndex, si, sj, i_offset;
for (int i = 0; i < nFeatures_; ++i) {
si = instance[i];
// (B) increment featureclass counts => for p(x_i|c)
fcIndex = (featureClassOffset_[i] + si) * statesClass_ + c;
classFeatureCounts_[fcIndex] += weight;
// (C) increment pair (superparent= i, child= j) counts => data_
i_offset = pairOffset_[featureClassOffset_[i] + si];
for (int j = 0; j < i; ++j) {
sj = instance[j];
idx = (i_offset + featureClassOffset_[j] + sj) * statesClass_ + c;
data_[idx] += weight;
}
}
}
// -------------------------------------------------------
// computeProbabilities
// -------------------------------------------------------
//
// Once all samples are added in COUNTS mode, call this to:
// 1) compute class priors p(c)
// 2) compute p(x_i=si | c) => classFeatureProbs_
// 3) compute p(x_j=sj | c, x_i=si) => data_ (for i<j) dataOpp_ (for i>j)
//
void computeProbabilities()
{
if (matrixState_ != MatrixState::COUNTS) {
throw std::logic_error("computeProbabilities: must be in COUNTS mode.");
}
// (1) p(c)
double totalCount = std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
if (totalCount <= 0.0) {
// fallback => uniform
double unif = 1.0 / statesClass_;
for (int c = 0; c < statesClass_; ++c) {
classPriors_[c] = unif;
}
} else {
for (int c = 0; c < statesClass_; ++c) {
classPriors_[c] = classCounts_[c] / totalCount;
}
}
// (2) p(x_i=si | c) => classFeatureProbs_
int idx, sf;
double denom, countVal, p;
for (int feature = 0; feature < nFeatures_; ++feature) {
sf = states_[feature];
for (int c = 0; c < statesClass_; ++c) {
denom = classCounts_[c] * sf;
if (denom <= 0.0) {
// fallback => uniform
for (int sf_value = 0; sf_value < sf; ++sf_value) {
idx = (featureClassOffset_[feature] + sf_value) * statesClass_ + c;
classFeatureProbs_[idx] = 1.0 / sf;
}
} else {
for (int sf_value = 0; sf_value < sf; ++sf_value) {
idx = (featureClassOffset_[feature] + sf_value) * statesClass_ + c;
countVal = classFeatureCounts_[idx];
p = ((countVal + SMOOTHING / (statesClass_ * states_[feature])) / (totalCount + SMOOTHING));
classFeatureProbs_[idx] = p;
}
}
}
}
// getCountFromTable(int classVal, int pIndex, int childIndex)
// (3) p(x_j=sj | c, x_i=si) => data_(i,si,j,sj,c)
// (3) p(x_i=si | c, x_j=sj) => dataOpp_(j,sj,i,si,c)
double pccCount, pcCount, ccCount;
double conditionalProb, oppositeCondProb;
int part1, part2, p1, part2_class, p1_class;
for (int parent = nFeatures_ - 1; parent >= 0; --parent) {
// for (int parent = 3; parent >= 3; --parent) {
for (int sp = 0; sp < states_[parent]; ++sp) {
p1 = featureClassOffset_[parent] + sp;
part1 = pairOffset_[p1];
p1_class = p1 * statesClass_;
for (int child = parent - 1; child >= 0; --child) {
// for (int child = 2; child >= 2; --child) {
for (int sc = 0; sc < states_[child]; ++sc) {
part2 = featureClassOffset_[child] + sc;
part2_class = part2 * statesClass_;
for (int c = 0; c < statesClass_; c++) {
//idx = compute_index(parent, sp, child, sc, classval);
idx = (part1 + part2) * statesClass_ + c;
// Parent, Child, Class Count
pccCount = data_[idx];
// Parent, Class count
pcCount = classFeatureCounts_[p1_class + c];
// Child, Class count
ccCount = classFeatureCounts_[part2_class + c];
conditionalProb = (pccCount + SMOOTHING / states_[parent]) / (ccCount + SMOOTHING);
data_[idx] = conditionalProb;
oppositeCondProb = (pccCount + SMOOTHING / states_[child]) / (pcCount + SMOOTHING);
dataOpp_[idx] = oppositeCondProb;
}
}
}
}
}
matrixState_ = MatrixState::PROBS;
}
// -------------------------------------------------------
// predict_proba_spode
// -------------------------------------------------------
//
// Single-superparent approach:
// P(c | x) ∝ p(c) * p(x_sp| c) * ∏_{i≠sp} p(x_i | c, x_sp)
//
// 'instance' should have size == nFeatures_ (no class).
// sp in [0..nFeatures_).
// We multiply p(c) * p(x_sp| c) * p(x_i| c, x_sp).
// Then normalize the distribution.
//
std::vector<double> predict_proba_spode(const std::vector<int>& instance, int parent) const
{
if (matrixState_ != MatrixState::PROBS) {
throw std::logic_error("predict_proba_spode: Xaode not in PROBS state.");
}
if ((int)instance.size() != nFeatures_) {
throw std::invalid_argument("predict_proba_spode: instance.size() != nFeatures_.");
}
if (parent < 0 || parent >= nFeatures_) {
throw std::out_of_range("predict_proba_spode: invalid superparent index.");
}
std::vector<double> scores(statesClass_, 0.0);
int sp = instance[parent];
int idx;
double pSpGivenC, pChildGivenSp, product;
double base;
double offset = (featureClassOffset_[parent] + sp) * statesClass_;
double parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
// For each class c
for (int c = 0; c < statesClass_; ++c) {
// Start with p(c) * p(x_sp=spState| c)
pSpGivenC = classFeatureProbs_[offset + c];
product = pSpGivenC;
bool zeroProb = false;
for (int feature = 0; feature < nFeatures_; ++feature) {
if (feature == parent) continue;
int sf = instance[feature];
// Retrieve p(x_i= state_i | c, x_sp= spState)
base = (parent_offset + featureClassOffset_[feature] + sf) * statesClass_;
idx = base + c;
pChildGivenSp = data_[idx] * dataOpp_[idx];
if (pChildGivenSp <= 0.0) {
zeroProb = true;
break;
}
product *= pChildGivenSp;
}
scores[c] = zeroProb ? 0.0 : product;
}
normalize(scores);
return scores;
}
std::vector<double> predict_proba(std::vector<int>& instance)
{
Timer timer;
timer.start();
if (matrixState_ != MatrixState::PROBS) {
throw std::logic_error("predict_proba: Xaode not in PROBS state.");
}
if ((int)instance.size() != nFeatures_) {
throw std::invalid_argument("predict_proba: instance.size() != nFeatures_.");
}
// accumulates posterior probabilities for each class
auto probs = std::vector<double>(statesClass_);
auto spodeProbs = std::vector<std::vector<double>>(nFeatures_, std::vector<double>(statesClass_));
// Initialize the probabilities with the feature|class probabilities
int localOffset;
for (int feature = 0; feature < nFeatures_; ++feature) {
localOffset = (featureClassOffset_[feature] + instance[feature]) * statesClass_;
for (int c = 0; c < statesClass_; ++c) {
spodeProbs[feature][c] = classFeatureProbs_[localOffset + c];
}
}
duration_first += timer.getDuration(); timer.start();
int idx, base, sp, sc, parent_offset;
for (int parent = 1; parent < nFeatures_; ++parent) {
sp = instance[parent];
parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
for (int child = 0; child < parent; ++child) {
sc = instance[child];
base = (parent_offset + featureClassOffset_[child] + sc) * statesClass_;
for (int c = 0; c < statesClass_; ++c) {
/*
* The probability P(xc|xp,c) is stored in dataOpp_, and
* the probability P(xp|xc,c) is stored in data_
*/
/*
int base = pairOffset_[i * nFeatures_ + j];
int blockSize = states_[i] * states_[j];
return base + c * blockSize + (si * states_[j] + sj);
*/
// index = compute_index(parent, instance[parent], child, instance[child], classVal);
idx = base + c;
spodeProbs[child][c] *= data_[idx];
// spodeProbs[child][c] *= data_.at(index);
spodeProbs[parent][c] *= dataOpp_[idx];
// spodeProbs[parent][c] *= dataOpp_.at(index);
}
}
}
duration_second += timer.getDuration(); timer.start();
/* add all the probabilities for each class */
for (int c = 0; c < statesClass_; ++c) {
for (int i = 0; i < nFeatures_; ++i) {
probs[c] += spodeProbs[i][c];
}
}
// Normalize the probabilities
normalize(probs);
return probs;
}
void normalize(std::vector<double>& probs) const
{
double sum = 0;
for (double d : probs) {
sum += d;
}
if (std::isnan(sum)) {
throw std::runtime_error("Can't normalize array. Sum is NaN.");
}
if (sum == 0) {
return;
}
for (int i = 0; i < (int)probs.size(); i++) {
probs[i] /= sum;
}
}
// -------------------------------------------------------
// checkCoherence
// -------------------------------------------------------
//
// Check that the class priors, featureclass distributions and pairwise conditionals
// are coherent. They have to sum to 1.0 within a threshold.
//
void checkCoherenceApprox(double threshold) const
{
if (matrixState_ != MatrixState::PROBS) {
throw std::logic_error("checkCoherenceApprox: must be in PROBS state.");
}
// ------------------------------------------------------------------
// 1) Check that sum of class priors ~ 1
// ------------------------------------------------------------------
double sumPriors = 0.0;
for (double pc : classPriors_) {
sumPriors += pc;
}
if (std::fabs(sumPriors - 1.0) > threshold) {
std::ostringstream oss;
oss << "Xaode::checkCoherenceApprox - sum of classPriors = " << sumPriors
<< ", differs from 1.0 by more than " << threshold;
throw std::runtime_error(oss.str());
}
// ------------------------------------------------------------------
// 2) For each feature i and class c, the sum over all states si of
// classFeatureProbs_ should match the prior p(c) ~ classPriors_[c].
//
// (Because if you're storing p(x_i=si, c)/total or a scaled version,
// summing over si is effectively p(c).)
// ------------------------------------------------------------------
for (int c = 0; c < statesClass_; ++c) {
for (int i = 0; i < nFeatures_; ++i) {
double sumFeature = 0.0;
for (int si = 0; si < states_[i]; ++si) {
int idx = (featureClassOffset_[i] + si) * statesClass_ + c;
sumFeature += classFeatureProbs_[idx];
}
double expected = classPriors_[c];
if (std::fabs(sumFeature - expected) > threshold) {
std::ostringstream oss;
oss << "Xaode::checkCoherenceApprox - sum_{si} classFeatureProbs_ "
<< "for (feature=" << i << ", class=" << c << ") = " << sumFeature
<< ", expected ~ " << expected
<< ", difference is " << std::fabs(sumFeature - expected)
<< " > threshold=" << threshold;
throw std::runtime_error(oss.str());
}
}
}
// ------------------------------------------------------------------
// 3) For data_: sum_{child states} data_ should match the "parent" row
// in classFeatureProbs_, i.e. p(x_i=si, c).
//
// Because if data_[... i, si, j, sj, c] holds something like
// p(x_i=si, x_j=sj, c) (or a scaled fraction),
// then sum_{ sj } data_ = p(x_i=si, c).
// ------------------------------------------------------------------
for (int parent = 1; parent < nFeatures_; ++parent) {
for (int child = 0; child < parent; ++child) {
for (int c = 0; c < statesClass_; ++c) {
for (int spVal = 0; spVal < states_[parent]; ++spVal) {
double sumChildProb = 0.0;
// pairOffset_ gives the offset for (parent featureVal),
// then we add the child's offset and multiply by statesClass_.
int part1 = pairOffset_[featureClassOffset_[parent] + spVal];
for (int scVal = 0; scVal < states_[child]; ++scVal) {
int part2 = featureClassOffset_[child] + scVal;
int idx = (part1 + part2) * statesClass_ + c;
sumChildProb += data_[idx];
}
// Compare with classFeatureProbs_[parent, spVal, c]
double expected = classFeatureProbs_[
(featureClassOffset_[parent] + spVal) * statesClass_ + c
];
if (std::fabs(sumChildProb - expected) > threshold) {
std::ostringstream oss;
oss << "Xaode::checkCoherenceApprox - sum_{sj} data_ "
<< "for (parentFeature=" << parent
<< ", parentVal=" << spVal
<< ", childFeature=" << child
<< ", class=" << c << ") = " << sumChildProb
<< ", expected ~ " << expected
<< ", diff " << std::fabs(sumChildProb - expected)
<< " > threshold=" << threshold;
throw std::runtime_error(oss.str());
}
}
}
}
}
// ------------------------------------------------------------------
// 4) For dataOpp_: sum_{parent states} dataOpp_ should match the "child"
// row in classFeatureProbs_, i.e. p(x_j=sj, c).
// ------------------------------------------------------------------
for (int parent = 1; parent < nFeatures_; ++parent) {
for (int child = 0; child < parent; ++child) {
for (int c = 0; c < statesClass_; ++c) {
for (int scVal = 0; scVal < states_[child]; ++scVal) {
double sumParentProb = 0.0;
int part2 = featureClassOffset_[child] + scVal;
for (int spVal = 0; spVal < states_[parent]; ++spVal) {
int part1 = pairOffset_[featureClassOffset_[parent] + spVal];
int idx = (part1 + part2) * statesClass_ + c;
sumParentProb += dataOpp_[idx];
}
// Compare with classFeatureProbs_[child, scVal, c]
double expected = classFeatureProbs_[
(featureClassOffset_[child] + scVal) * statesClass_ + c
];
if (std::fabs(sumParentProb - expected) > threshold) {
std::ostringstream oss;
oss << "Xaode::checkCoherenceApprox - sum_{spVal} dataOpp_ "
<< "for (childFeature=" << child
<< ", childVal=" << scVal
<< ", parentFeature=" << parent
<< ", class=" << c << ") = " << sumParentProb
<< ", expected ~ " << expected
<< ", diff " << std::fabs(sumParentProb - expected)
<< " > threshold=" << threshold;
throw std::runtime_error(oss.str());
}
}
}
}
}
// If we get here, all sums are coherent under this "joint distribution" interpretation
}
int statesClass() const
{
return statesClass_;
}
private:
// -----------
// MEMBER DATA
// -----------
std::vector<int> states_; // [states_feat0, ..., states_feat(n-1), statesClass_]
int nFeatures_;
int statesClass_;
// data_ means p(child=sj | c, superparent= si) after normalization.
// But in COUNTS mode, it accumulates raw counts.
std::vector<int> pairOffset_;
int totalSize_;
// data_ stores p(child=sj | c, superparent=si) for each pair (i<j).
std::vector<double> data_;
// dataOpp_ stores p(superparent=si | c, child=sj) for each pair (i<j).
std::vector<double> dataOpp_;
// classCounts_[c]
std::vector<double> classCounts_;
// For p(x_i=si| c), we store counts in classFeatureCounts_ => offset by featureClassOffset_[i]
std::vector<int> featureClassOffset_;
std::vector<double> classFeatureCounts_;
std::vector<double> classFeatureProbs_; // => p(x_i=si | c) after normalization
std::vector<double> classPriors_; // => p(c)
MatrixState matrixState_;
double SMOOTHING = 1.0;
};
}
#endif // XAODE_H

View File

@@ -5,7 +5,7 @@
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "common/Datasets.h"
#include "common/Timer.h"
#include "common/Timer.hpp"
#include "common/Colors.h"
#include "main/HyperParameters.h"
#include "GridData.h"

View File

@@ -5,7 +5,7 @@
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "common/Datasets.h"
#include "common/Timer.h"
#include "common/Timer.hpp"
#include "main/HyperParameters.h"
#include "GridData.h"
#include "GridConfig.h"

View File

@@ -6,7 +6,7 @@
#include <nlohmann/json.hpp>
#include <folding.hpp>
#include "common/Datasets.h"
#include "common/Timer.h"
#include "common/Timer.hpp"
#include "main/HyperParameters.h"
#include "GridData.h"
#include "GridBase.h"

View File

@@ -20,6 +20,7 @@
#include <pyclassifiers/SVC.h>
#include <pyclassifiers/XGBoost.h>
#include <pyclassifiers/RandomForest.h>
#include "../experimental_clfs/XA1DE.h"
namespace platform {
class Models {
public:

View File

@@ -2,7 +2,7 @@
#include <locale>
#include "best/BestScore.h"
#include "common/CLocale.h"
#include "common/Timer.h"
#include "common/Timer.hpp"
#include "ReportConsole.h"
#include "main/Scores.h"
@@ -251,7 +251,7 @@ namespace platform {
if (train_data) {
oss << color_line << std::left << std::setw(maxLine) << output_train[i]
<< suffix << Colors::BLUE() << " | " << color_line << std::left << std::setw(maxLine)
<< output_test[i] << std::endl;
<< output_test[i] << std::endl;
} else {
oss << color_line << output_test[i] << std::endl;
}

View File

@@ -4,7 +4,7 @@
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
#include "common/Timer.h"
#include "common/Timer.hpp"
#include "main/HyperParameters.h"
#include "main/PartialResult.h"