Begin model inclusion
This commit is contained in:
@@ -9,6 +9,7 @@
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include <folding.hpp>
|
||||
#include <bayesnet/utils/BayesMetrics.h>
|
||||
#include <bayesnet/classifiers/SPODE.h>
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "config_platform.h"
|
||||
@@ -160,82 +161,119 @@ int main(int argc, char** argv)
|
||||
states[feature] = std::vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = std::vector<int>(maxes[className]);
|
||||
auto clf = platform::Models::instance()->create(model_name);
|
||||
// Output the states
|
||||
std::cout << std::string(80, '-') << std::endl;
|
||||
std::cout << "States" << std::endl;
|
||||
for (auto feature : features) {
|
||||
std::cout << feature << ": " << states[feature].size() << std::endl;
|
||||
}
|
||||
std::cout << std::string(80, '-') << std::endl;
|
||||
//auto clf = platform::Models::instance()->create("SPODE");
|
||||
auto clf = bayesnet::SPODE(2);
|
||||
|
||||
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::ORIGINAL;
|
||||
clf->fit(Xd, y, features, className, states, smoothing);
|
||||
clf.fit(Xd, y, features, className, states, smoothing);
|
||||
if (dump_cpt) {
|
||||
std::cout << "--- CPT Tables ---" << std::endl;
|
||||
clf->dump_cpt();
|
||||
std::cout << clf.dump_cpt();
|
||||
}
|
||||
auto lines = clf->show();
|
||||
std::cout << "--- Datos predicción ---" << std::endl;
|
||||
std::cout << "Orden de variables: " << std::endl;
|
||||
for (auto feature : features) {
|
||||
std::cout << feature << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "X[0]: ";
|
||||
for (int i = 0; i < Xd.size(); ++i) {
|
||||
std::cout << Xd[i][0] << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << std::string(80, '-') << std::endl;
|
||||
|
||||
auto lines = clf.show();
|
||||
for (auto line : lines) {
|
||||
std::cout << line << std::endl;
|
||||
}
|
||||
std::cout << "--- Topological Order ---" << std::endl;
|
||||
auto order = clf->topological_order();
|
||||
auto order = clf.topological_order();
|
||||
for (auto name : order) {
|
||||
std::cout << name << ", ";
|
||||
}
|
||||
std::cout << "end." << std::endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
std::cout << "Score: " << score << std::endl;
|
||||
auto graph = clf->graph();
|
||||
auto dot_file = model_name + "_" + file_name;
|
||||
ofstream file(dot_file + ".dot");
|
||||
file << graph;
|
||||
file.close();
|
||||
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||
std::string stratified_string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||
std::cout << "==========================================" << std::endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
}
|
||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
folding::Fold* fold;
|
||||
double nodes = 0.0;
|
||||
if (stratified)
|
||||
fold = new folding::StratifiedKFold(nFolds, y, seed);
|
||||
else
|
||||
fold = new folding::KFold(nFolds, y.size(), seed);
|
||||
for (auto i = 0; i < nFolds; ++i) {
|
||||
auto [train, test] = fold->getFold(i);
|
||||
std::cout << "Fold: " << i + 1 << std::endl;
|
||||
if (tensors) {
|
||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
auto ttest = torch::tensor(test, torch::kInt64);
|
||||
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
torch::Tensor ytraint = yt.index({ ttrain });
|
||||
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
torch::Tensor ytestt = yt.index({ ttest });
|
||||
clf->fit(Xtraint, ytraint, features, className, states, smoothing);
|
||||
auto temp = clf->predict(Xtraint);
|
||||
score_train = clf->score(Xtraint, ytraint);
|
||||
score_test = clf->score(Xtestt, ytestt);
|
||||
} else {
|
||||
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
clf->fit(Xtrain, ytrain, features, className, states, smoothing);
|
||||
std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
|
||||
nodes += clf->getNumberOfNodes();
|
||||
score_train = clf->score(Xtrain, ytrain);
|
||||
score_test = clf->score(Xtest, ytest);
|
||||
auto predict_proba = clf.predict_proba(Xd);
|
||||
std::cout << "Instances predict_proba: ";
|
||||
for (int i = 0; i < predict_proba.size(); i++) {
|
||||
std::cout << "Instance " << i << ": ";
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
std::cout << Xd[j][i] << ", ";
|
||||
}
|
||||
if (dump_cpt) {
|
||||
std::cout << "--- CPT Tables ---" << std::endl;
|
||||
std::cout << clf->dump_cpt();
|
||||
std::cout << ": ";
|
||||
for (auto score : predict_proba[i]) {
|
||||
std::cout << score << ", ";
|
||||
}
|
||||
total_score_train += score_train;
|
||||
total_score += score_test;
|
||||
std::cout << "Score Train: " << score_train << std::endl;
|
||||
std::cout << "Score Test : " << score_test << std::endl;
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << "Nodes: " << nodes / nFolds << std::endl;
|
||||
std::cout << "**********************************************************************************" << std::endl;
|
||||
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
|
||||
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
|
||||
// std::cout << std::endl;
|
||||
// std::cout << "end." << std::endl;
|
||||
// auto score = clf->score(Xd, y);
|
||||
// std::cout << "Score: " << score << std::endl;
|
||||
// auto graph = clf->graph();
|
||||
// auto dot_file = model_name + "_" + file_name;
|
||||
// ofstream file(dot_file + ".dot");
|
||||
// file << graph;
|
||||
// file.close();
|
||||
// std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||
// std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||
// std::string stratified_string = stratified ? " Stratified" : "";
|
||||
// std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||
// std::cout << "==========================================" << std::endl;
|
||||
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
// for (int i = 0; i < features.size(); ++i) {
|
||||
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
// }
|
||||
// float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
// folding::Fold* fold;
|
||||
// double nodes = 0.0;
|
||||
// if (stratified)
|
||||
// fold = new folding::StratifiedKFold(nFolds, y, seed);
|
||||
// else
|
||||
// fold = new folding::KFold(nFolds, y.size(), seed);
|
||||
// for (auto i = 0; i < nFolds; ++i) {
|
||||
// auto [train, test] = fold->getFold(i);
|
||||
// std::cout << "Fold: " << i + 1 << std::endl;
|
||||
// if (tensors) {
|
||||
// auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
// auto ttest = torch::tensor(test, torch::kInt64);
|
||||
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
// torch::Tensor ytraint = yt.index({ ttrain });
|
||||
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
// torch::Tensor ytestt = yt.index({ ttest });
|
||||
// clf->fit(Xtraint, ytraint, features, className, states, smoothing);
|
||||
// auto temp = clf->predict(Xtraint);
|
||||
// score_train = clf->score(Xtraint, ytraint);
|
||||
// score_test = clf->score(Xtestt, ytestt);
|
||||
// } else {
|
||||
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
// clf->fit(Xtrain, ytrain, features, className, states, smoothing);
|
||||
// std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
|
||||
// nodes += clf->getNumberOfNodes();
|
||||
// score_train = clf->score(Xtrain, ytrain);
|
||||
// score_test = clf->score(Xtest, ytest);
|
||||
// }
|
||||
// // if (dump_cpt) {
|
||||
// // std::cout << "--- CPT Tables ---" << std::endl;
|
||||
// // std::cout << clf->dump_cpt();
|
||||
// // }
|
||||
// total_score_train += score_train;
|
||||
// total_score += score_test;
|
||||
// std::cout << "Score Train: " << score_train << std::endl;
|
||||
// std::cout << "Score Test : " << score_test << std::endl;
|
||||
// std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
// }
|
||||
|
||||
// std::cout << "Nodes: " << nodes / nFolds << std::endl;
|
||||
// std::cout << "**********************************************************************************" << std::endl;
|
||||
// std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
|
||||
// std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
|
||||
}
|
@@ -55,6 +55,7 @@ add_executable(b_main commands/b_main.cpp ${main_sources}
|
||||
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
|
||||
reports/ReportConsole.cpp reports/ReportBase.cpp
|
||||
results/Result.cpp
|
||||
experimental_clfs/XA1DE.cpp
|
||||
)
|
||||
target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
|
||||
|
||||
|
@@ -8,7 +8,7 @@
|
||||
#include "main/modelRegister.h"
|
||||
#include "main/ArgumentsExperiment.h"
|
||||
#include "common/Paths.h"
|
||||
#include "common/Timer.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "common/Colors.h"
|
||||
#include "common/DotEnv.h"
|
||||
#include "grid/GridSearch.h"
|
||||
|
53
src/experimental_clfs/CountingSemaphore.hpp
Normal file
53
src/experimental_clfs/CountingSemaphore.hpp
Normal file
@@ -0,0 +1,53 @@
|
||||
#ifndef COUNTING_SEMAPHORE_H
|
||||
#define COUNTING_SEMAPHORE_H
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <algorithm>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
|
||||
class CountingSemaphore {
|
||||
public:
|
||||
static CountingSemaphore& getInstance()
|
||||
{
|
||||
static CountingSemaphore instance;
|
||||
return instance;
|
||||
}
|
||||
// Delete copy constructor and assignment operator
|
||||
CountingSemaphore(const CountingSemaphore&) = delete;
|
||||
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
|
||||
void acquire()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx_);
|
||||
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||
--count_;
|
||||
}
|
||||
void release()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx_);
|
||||
++count_;
|
||||
if (count_ <= max_count_) {
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
uint getCount() const
|
||||
{
|
||||
return count_;
|
||||
}
|
||||
uint getMaxCount() const
|
||||
{
|
||||
return max_count_;
|
||||
}
|
||||
private:
|
||||
CountingSemaphore()
|
||||
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||
count_(max_count_)
|
||||
{
|
||||
}
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cv_;
|
||||
const uint max_count_;
|
||||
uint count_;
|
||||
};
|
||||
#endif
|
150
src/experimental_clfs/XA1DE.cpp
Normal file
150
src/experimental_clfs/XA1DE.cpp
Normal file
@@ -0,0 +1,150 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "XA1DE.h"
|
||||
|
||||
namespace platform {
|
||||
XA1DE::XA1DE() : semaphore_{ CountingSemaphore::getInstance() }
|
||||
{
|
||||
validHyperparameters = { "use_threads" };
|
||||
}
|
||||
void XA1DE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("use_threads")) {
|
||||
use_threads = hyperparameters["use_threads"].get<bool>();
|
||||
hyperparameters.erase("use_threads");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
void XA1DE::fit(std::vector<std::vector<int>> X, std::vector<int> y, std::vector<double> weights)
|
||||
{
|
||||
Timer timer, timert;
|
||||
timer.start();
|
||||
timert.start();
|
||||
weights_ = weights;
|
||||
std::vector<std::vector<int>> instances = X;
|
||||
instances.push_back(y);
|
||||
int num_instances = instances[0].size();
|
||||
int num_attributes = instances.size();
|
||||
normalize_weights(num_instances);
|
||||
std::vector<int> states;
|
||||
for (int i = 0; i < num_attributes; i++) {
|
||||
states.push_back(*max_element(instances[i].begin(), instances[i].end()) + 1);
|
||||
}
|
||||
aode_.init(states);
|
||||
aode_.duration_first += timer.getDuration(); timer.start();
|
||||
std::vector<int> instance;
|
||||
for (int n_instance = 0; n_instance < num_instances; n_instance++) {
|
||||
instance.clear();
|
||||
for (int feature = 0; feature < num_attributes; feature++) {
|
||||
instance.push_back(instances[feature][n_instance]);
|
||||
}
|
||||
aode_.addSample(instance, weights_[n_instance]);
|
||||
}
|
||||
aode_.duration_second += timer.getDuration(); timer.start();
|
||||
// if (debug) aode_.show();
|
||||
aode_.computeProbabilities();
|
||||
aode_.duration_third += timer.getDuration();
|
||||
if (debug) {
|
||||
// std::cout << "* Checking coherence... ";
|
||||
// aode_.checkCoherenceApprox(1e-6);
|
||||
// std::cout << "Ok!" << std::endl;
|
||||
// aode_.show();
|
||||
// std::cout << "* Accumulated first time: " << aode_.duration_first << std::endl;
|
||||
// std::cout << "* Accumulated second time: " << aode_.duration_second << std::endl;
|
||||
// std::cout << "* Accumulated third time: " << aode_.duration_third << std::endl;
|
||||
std::cout << "* Time to build the model: " << timert.getDuration() << " seconds" << std::endl;
|
||||
// exit(1);
|
||||
}
|
||||
}
|
||||
std::vector<std::vector<double>> XA1DE::predict_proba(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
int test_size = test_data[0].size();
|
||||
std::vector<std::vector<double>> probabilities;
|
||||
|
||||
std::vector<int> instance;
|
||||
for (int i = 0; i < test_size; i++) {
|
||||
instance.clear();
|
||||
for (int j = 0; j < (int)test_data.size(); j++) {
|
||||
instance.push_back(test_data[j][i]);
|
||||
}
|
||||
probabilities.push_back(aode_.predict_proba(instance));
|
||||
}
|
||||
return probabilities;
|
||||
}
|
||||
std::vector<std::vector<double>> XA1DE::predict_proba_threads(const std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
int test_size = test_data[0].size();
|
||||
int sample_size = test_data.size();
|
||||
auto probabilities = std::vector<std::vector<double>>(test_size, std::vector<double>(aode_.statesClass()));
|
||||
|
||||
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
|
||||
std::vector<std::thread> threads;
|
||||
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin, int chunk, int sample_size, std::vector<std::vector<double>>& predictions) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
|
||||
std::vector<int> instance(sample_size);
|
||||
for (int sample = begin; sample < begin + chunk; ++sample) {
|
||||
for (int feature = 0; feature < sample_size; ++feature) {
|
||||
instance[feature] = samples[feature][sample];
|
||||
}
|
||||
predictions[sample] = aode_.predict_proba(instance);
|
||||
}
|
||||
semaphore_.release();
|
||||
};
|
||||
for (int begin = 0; begin < test_size; begin += chunk_size) {
|
||||
int chunk = std::min(chunk_size, test_size - begin);
|
||||
semaphore_.acquire();
|
||||
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return probabilities;
|
||||
}
|
||||
std::vector<int> XA1DE::predict(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
auto probabilities = predict_proba(test_data);
|
||||
std::vector<int> predictions(probabilities.size(), 0);
|
||||
|
||||
for (size_t i = 0; i < probabilities.size(); i++) {
|
||||
predictions[i] = std::distance(probabilities[i].begin(), std::max_element(probabilities[i].begin(), probabilities[i].end()));
|
||||
}
|
||||
|
||||
return predictions;
|
||||
}
|
||||
float XA1DE::score(std::vector<std::vector<int>>& test_data, std::vector<int>& labels)
|
||||
{
|
||||
aode_.duration_first = 0.0;
|
||||
aode_.duration_second = 0.0;
|
||||
aode_.duration_third = 0.0;
|
||||
Timer timer;
|
||||
timer.start();
|
||||
std::vector<int> predictions = predict(test_data);
|
||||
int correct = 0;
|
||||
|
||||
for (size_t i = 0; i < predictions.size(); i++) {
|
||||
if (predictions[i] == labels[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
if (debug) {
|
||||
std::cout << "* Time to predict: " << timer.getDurationString() << std::endl;
|
||||
std::cout << "* Accumulated first time: " << aode_.duration_first << std::endl;
|
||||
std::cout << "* Accumulated second time: " << aode_.duration_second << std::endl;
|
||||
std::cout << "* Accumulated third time: " << aode_.duration_third << std::endl;
|
||||
}
|
||||
return static_cast<float>(correct) / predictions.size();
|
||||
}
|
||||
}
|
74
src/experimental_clfs/XA1DE.h
Normal file
74
src/experimental_clfs/XA1DE.h
Normal file
@@ -0,0 +1,74 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XA1DE_H
|
||||
#define XA1DE_H
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include "bayesnet/BaseClassifier.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "CountingSemaphore.hpp"
|
||||
#include "Xaode.hpp"
|
||||
|
||||
namespace platform {
|
||||
class XA1DE : public bayesnet::BaseClassifier {
|
||||
public:
|
||||
XA1DE();
|
||||
virtual ~XA1DE() = default;
|
||||
void setDebug(bool debug) { this->debug = debug; }
|
||||
std::vector<std::vector<double>> predict_proba_threads(const std::vector<std::vector<int>>& test_data);
|
||||
|
||||
XA1DE& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||
XA1DE& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing) override;
|
||||
XA1DE& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
int getNumberOfNodes() const override { return 0; };
|
||||
int getNumberOfEdges() const override { return 0; };
|
||||
int getNumberOfStates() const override { return 0; };
|
||||
int getClassNumStates() const override { return 0; };
|
||||
torch::Tensor predict(torch::Tensor& X) override { return torch::zeros(0); };
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros(0); };
|
||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||
bayesnet::status_t getStatus() const override { return status; }
|
||||
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override { return 0; };
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
std::vector<std::string> show() const override { return {}; }
|
||||
std::vector<std::string> topological_order() override { return {}; }
|
||||
std::vector<std::string> getNotes() const override { return notes; }
|
||||
std::string dump_cpt() const override { return ""; }
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
|
||||
private:
|
||||
inline void normalize_weights(int num_instances)
|
||||
{
|
||||
double sum = std::accumulate(weights_.begin(), weights_.end(), 0.0);
|
||||
if (sum == 0) {
|
||||
throw std::runtime_error("Weights sum zero.");
|
||||
}
|
||||
for (double& w : weights_) {
|
||||
w = w * num_instances / sum;
|
||||
}
|
||||
}
|
||||
// The instances of the dataset
|
||||
Xaode aode_;
|
||||
std::vector<double> weights_;
|
||||
CountingSemaphore& semaphore_;
|
||||
bool debug = false;
|
||||
bayesnet::status_t status = bayesnet::NORMAL;
|
||||
std::vector<std::string> notes;
|
||||
bool use_threads = false;
|
||||
};
|
||||
}
|
||||
#endif // XA1DE_H
|
579
src/experimental_clfs/Xaode.hpp
Normal file
579
src/experimental_clfs/Xaode.hpp
Normal file
@@ -0,0 +1,579 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
// Based on the Geoff. I. Webb A1DE java algorithm
|
||||
// https://weka.sourceforge.io/packageMetaData/AnDE/Latest.html
|
||||
|
||||
#ifndef XAODE_H
|
||||
#define XAODE_H
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
namespace platform {
|
||||
class Xaode {
|
||||
public:
|
||||
// -------------------------------------------------------
|
||||
// The Xaode can be EMPTY (just created), in COUNTS mode (accumulating raw counts)
|
||||
// or PROBS mode (storing conditional probabilities).
|
||||
enum class MatrixState {
|
||||
EMPTY,
|
||||
COUNTS,
|
||||
PROBS
|
||||
};
|
||||
double duration_first = 0.0;
|
||||
double duration_second = 0.0;
|
||||
double duration_third = 0.0;
|
||||
Xaode() : nFeatures_{ 0 }, statesClass_{ 0 }, totalSize_{ 0 }, matrixState_{ MatrixState::EMPTY } {}
|
||||
// -------------------------------------------------------
|
||||
// init
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// states.size() = nFeatures + 1,
|
||||
// where states.back() = number of class states.
|
||||
//
|
||||
// We'll store:
|
||||
// 1) p(c) in classPriors_
|
||||
// 2) p(x_i=si | c) in classFeatureProbs_
|
||||
// 3) p(x_j=sj | c, x_i=si) in data_, with i<j => i is "superparent," j is "child."
|
||||
//
|
||||
// Internally, in COUNTS mode, data_ accumulates raw counts, then
|
||||
// computeProbabilities(...) normalizes them into conditionals.
|
||||
//
|
||||
void init(const std::vector<int>& states)
|
||||
{
|
||||
if (matrixState_ != MatrixState::EMPTY) {
|
||||
throw std::logic_error("Xaode: already initialized.");
|
||||
}
|
||||
states_ = states;
|
||||
nFeatures_ = static_cast<int>(states_.size()) - 1;
|
||||
if (nFeatures_ < 1) {
|
||||
throw std::invalid_argument("Xaode: need at least 1 feature plus class states.");
|
||||
}
|
||||
statesClass_ = states_.back();
|
||||
if (statesClass_ <= 0) {
|
||||
throw std::invalid_argument("Xaode: class states must be > 0.");
|
||||
}
|
||||
int totalStates = std::accumulate(states.begin(), states.end(), 0) - statesClass_;
|
||||
|
||||
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
|
||||
// We'll need the offsets for each feature i in featureClassOffset_.
|
||||
featureClassOffset_.resize(nFeatures_);
|
||||
// We'll store p(x_child=sj | c, x_sp=si) for each pair (i<j).
|
||||
// So data_(i, si, j, sj, c) indexes into a big 1D array with an offset.
|
||||
// For p(x_i=si | c), we store them in a 1D array classFeatureProbs_ after we compute.
|
||||
// We'll need the offsets for each feature i in featureClassOffset_.
|
||||
featureClassOffset_.resize(nFeatures_);
|
||||
pairOffset_.resize(totalStates);
|
||||
int feature_offset = 0;
|
||||
int runningOffset = 0;
|
||||
int feature = 0, index = 0;
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
featureClassOffset_[i] = feature_offset;
|
||||
feature_offset += states_[i];
|
||||
for (int j = 0; j < states_[i]; ++j) {
|
||||
pairOffset_[feature++] = index;
|
||||
index += runningOffset;
|
||||
}
|
||||
runningOffset += states_[i];
|
||||
}
|
||||
totalSize_ = index * statesClass_;
|
||||
data_.resize(totalSize_);
|
||||
dataOpp_.resize(totalSize_);
|
||||
|
||||
classFeatureCounts_.resize(feature_offset * statesClass_);
|
||||
classFeatureProbs_.resize(feature_offset * statesClass_);
|
||||
|
||||
// classCounts_[c] & p(c) in classPriors_
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
|
||||
matrixState_ = MatrixState::COUNTS;
|
||||
}
|
||||
|
||||
// Returns the dimension of data_ (just for info).
|
||||
int size() const
|
||||
{
|
||||
return totalSize_;
|
||||
}
|
||||
|
||||
// Returns current mode: INIT, COUNTS or PROBS
|
||||
MatrixState state() const
|
||||
{
|
||||
return matrixState_;
|
||||
}
|
||||
|
||||
// Optional: print a quick summary
|
||||
void show() const
|
||||
{
|
||||
std::cout << "-------- Xaode.show() --------" << std::endl
|
||||
<< "- nFeatures = " << nFeatures_ << std::endl
|
||||
<< "- statesClass = " << statesClass_ << std::endl
|
||||
<< "- totalSize_ = " << totalSize_ << std::endl
|
||||
<< "- matrixState = " << (matrixState_ == MatrixState::COUNTS ? "COUNTS" : "PROBS") << std::endl;
|
||||
std::cout << "- states: size: " << states_.size() << std::endl;
|
||||
for (int s : states_) std::cout << s << " "; std::cout << std::endl;
|
||||
std::cout << "- classCounts: size: " << classCounts_.size() << std::endl;
|
||||
for (double cc : classCounts_) std::cout << cc << " "; std::cout << std::endl;
|
||||
std::cout << "- classPriors: size: " << classPriors_.size() << std::endl;
|
||||
for (double cp : classPriors_) std::cout << cp << " "; std::cout << std::endl;
|
||||
std::cout << "- classFeatureCounts: size: " << classFeatureCounts_.size() << std::endl;
|
||||
for (double cfc : classFeatureCounts_) std::cout << cfc << " "; std::cout << std::endl;
|
||||
std::cout << "- classFeatureProbs: size: " << classFeatureProbs_.size() << std::endl;
|
||||
for (double cfp : classFeatureProbs_) std::cout << cfp << " "; std::cout << std::endl;
|
||||
std::cout << "- featureClassOffset: size: " << featureClassOffset_.size() << std::endl;
|
||||
for (int f : featureClassOffset_) std::cout << f << " "; std::cout << std::endl;
|
||||
std::cout << "- pairOffset_: size: " << pairOffset_.size() << std::endl;
|
||||
for (int p : pairOffset_) std::cout << p << " "; std::cout << std::endl;
|
||||
std::cout << "- data: size: " << data_.size() << std::endl;
|
||||
for (double d : data_) std::cout << d << " "; std::cout << std::endl;
|
||||
std::cout << "--------------------------------" << std::endl;
|
||||
}
|
||||
|
||||
// -------------------------------------------------------
|
||||
// addSample (only in COUNTS mode)
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// instance should have the class at the end.
|
||||
//
|
||||
void addSample(const std::vector<int>& instance, double weight)
|
||||
{
|
||||
//
|
||||
// (A) increment classCounts_
|
||||
// (B) increment feature–class counts => for p(x_i|c)
|
||||
// (C) increment pair (superparent= i, child= j) counts => data_
|
||||
//
|
||||
|
||||
// if (matrixState_ != MatrixState::COUNTS) {
|
||||
// throw std::logic_error("addSample: not in COUNTS mode.");
|
||||
// }
|
||||
// if (static_cast<int>(instance.size()) != nFeatures_ + 1) {
|
||||
// throw std::invalid_argument("addSample: instance.size() must be nFeatures_ + 1.");
|
||||
// }
|
||||
|
||||
int c = instance.back();
|
||||
// if (c < 0 || c >= statesClass_) {
|
||||
// throw std::out_of_range("addSample: class index out of range.");
|
||||
// }
|
||||
if (weight <= 0.0) {
|
||||
return;
|
||||
}
|
||||
// (A) increment classCounts_
|
||||
classCounts_[c] += weight;
|
||||
|
||||
// (B,C)
|
||||
// We'll store raw counts now and turn them into p(child| c, superparent) later.
|
||||
int idx, fcIndex, si, sj, i_offset;
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
si = instance[i];
|
||||
// (B) increment feature–class counts => for p(x_i|c)
|
||||
fcIndex = (featureClassOffset_[i] + si) * statesClass_ + c;
|
||||
classFeatureCounts_[fcIndex] += weight;
|
||||
// (C) increment pair (superparent= i, child= j) counts => data_
|
||||
i_offset = pairOffset_[featureClassOffset_[i] + si];
|
||||
for (int j = 0; j < i; ++j) {
|
||||
sj = instance[j];
|
||||
idx = (i_offset + featureClassOffset_[j] + sj) * statesClass_ + c;
|
||||
data_[idx] += weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -------------------------------------------------------
|
||||
// computeProbabilities
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Once all samples are added in COUNTS mode, call this to:
|
||||
// 1) compute class priors p(c)
|
||||
// 2) compute p(x_i=si | c) => classFeatureProbs_
|
||||
// 3) compute p(x_j=sj | c, x_i=si) => data_ (for i<j) dataOpp_ (for i>j)
|
||||
//
|
||||
void computeProbabilities()
|
||||
{
|
||||
if (matrixState_ != MatrixState::COUNTS) {
|
||||
throw std::logic_error("computeProbabilities: must be in COUNTS mode.");
|
||||
}
|
||||
// (1) p(c)
|
||||
double totalCount = std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
classPriors_[c] = classCounts_[c] / totalCount;
|
||||
}
|
||||
}
|
||||
// (2) p(x_i=si | c) => classFeatureProbs_
|
||||
int idx, sf;
|
||||
double denom, countVal, p;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
sf = states_[feature];
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
denom = classCounts_[c] * sf;
|
||||
if (denom <= 0.0) {
|
||||
// fallback => uniform
|
||||
for (int sf_value = 0; sf_value < sf; ++sf_value) {
|
||||
idx = (featureClassOffset_[feature] + sf_value) * statesClass_ + c;
|
||||
classFeatureProbs_[idx] = 1.0 / sf;
|
||||
}
|
||||
} else {
|
||||
for (int sf_value = 0; sf_value < sf; ++sf_value) {
|
||||
idx = (featureClassOffset_[feature] + sf_value) * statesClass_ + c;
|
||||
countVal = classFeatureCounts_[idx];
|
||||
p = ((countVal + SMOOTHING / (statesClass_ * states_[feature])) / (totalCount + SMOOTHING));
|
||||
classFeatureProbs_[idx] = p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// getCountFromTable(int classVal, int pIndex, int childIndex)
|
||||
// (3) p(x_j=sj | c, x_i=si) => data_(i,si,j,sj,c)
|
||||
// (3) p(x_i=si | c, x_j=sj) => dataOpp_(j,sj,i,si,c)
|
||||
double pccCount, pcCount, ccCount;
|
||||
double conditionalProb, oppositeCondProb;
|
||||
int part1, part2, p1, part2_class, p1_class;
|
||||
for (int parent = nFeatures_ - 1; parent >= 0; --parent) {
|
||||
// for (int parent = 3; parent >= 3; --parent) {
|
||||
for (int sp = 0; sp < states_[parent]; ++sp) {
|
||||
p1 = featureClassOffset_[parent] + sp;
|
||||
part1 = pairOffset_[p1];
|
||||
p1_class = p1 * statesClass_;
|
||||
for (int child = parent - 1; child >= 0; --child) {
|
||||
// for (int child = 2; child >= 2; --child) {
|
||||
for (int sc = 0; sc < states_[child]; ++sc) {
|
||||
part2 = featureClassOffset_[child] + sc;
|
||||
part2_class = part2 * statesClass_;
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
//idx = compute_index(parent, sp, child, sc, classval);
|
||||
idx = (part1 + part2) * statesClass_ + c;
|
||||
// Parent, Child, Class Count
|
||||
pccCount = data_[idx];
|
||||
// Parent, Class count
|
||||
pcCount = classFeatureCounts_[p1_class + c];
|
||||
// Child, Class count
|
||||
ccCount = classFeatureCounts_[part2_class + c];
|
||||
conditionalProb = (pccCount + SMOOTHING / states_[parent]) / (ccCount + SMOOTHING);
|
||||
data_[idx] = conditionalProb;
|
||||
oppositeCondProb = (pccCount + SMOOTHING / states_[child]) / (pcCount + SMOOTHING);
|
||||
dataOpp_[idx] = oppositeCondProb;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
matrixState_ = MatrixState::PROBS;
|
||||
}
|
||||
|
||||
// -------------------------------------------------------
|
||||
// predict_proba_spode
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Single-superparent approach:
|
||||
// P(c | x) ∝ p(c) * p(x_sp| c) * ∏_{i≠sp} p(x_i | c, x_sp)
|
||||
//
|
||||
// 'instance' should have size == nFeatures_ (no class).
|
||||
// sp in [0..nFeatures_).
|
||||
// We multiply p(c) * p(x_sp| c) * p(x_i| c, x_sp).
|
||||
// Then normalize the distribution.
|
||||
//
|
||||
std::vector<double> predict_proba_spode(const std::vector<int>& instance, int parent) const
|
||||
{
|
||||
if (matrixState_ != MatrixState::PROBS) {
|
||||
throw std::logic_error("predict_proba_spode: Xaode not in PROBS state.");
|
||||
}
|
||||
if ((int)instance.size() != nFeatures_) {
|
||||
throw std::invalid_argument("predict_proba_spode: instance.size() != nFeatures_.");
|
||||
}
|
||||
if (parent < 0 || parent >= nFeatures_) {
|
||||
throw std::out_of_range("predict_proba_spode: invalid superparent index.");
|
||||
}
|
||||
|
||||
std::vector<double> scores(statesClass_, 0.0);
|
||||
int sp = instance[parent];
|
||||
int idx;
|
||||
double pSpGivenC, pChildGivenSp, product;
|
||||
double base;
|
||||
double offset = (featureClassOffset_[parent] + sp) * statesClass_;
|
||||
double parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
|
||||
// For each class c
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
// Start with p(c) * p(x_sp=spState| c)
|
||||
pSpGivenC = classFeatureProbs_[offset + c];
|
||||
product = pSpGivenC;
|
||||
bool zeroProb = false;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
if (feature == parent) continue;
|
||||
int sf = instance[feature];
|
||||
// Retrieve p(x_i= state_i | c, x_sp= spState)
|
||||
base = (parent_offset + featureClassOffset_[feature] + sf) * statesClass_;
|
||||
idx = base + c;
|
||||
pChildGivenSp = data_[idx] * dataOpp_[idx];
|
||||
if (pChildGivenSp <= 0.0) {
|
||||
zeroProb = true;
|
||||
break;
|
||||
}
|
||||
product *= pChildGivenSp;
|
||||
}
|
||||
scores[c] = zeroProb ? 0.0 : product;
|
||||
}
|
||||
normalize(scores);
|
||||
return scores;
|
||||
}
|
||||
std::vector<double> predict_proba(std::vector<int>& instance)
|
||||
{
|
||||
Timer timer;
|
||||
timer.start();
|
||||
if (matrixState_ != MatrixState::PROBS) {
|
||||
throw std::logic_error("predict_proba: Xaode not in PROBS state.");
|
||||
}
|
||||
if ((int)instance.size() != nFeatures_) {
|
||||
throw std::invalid_argument("predict_proba: instance.size() != nFeatures_.");
|
||||
}
|
||||
// accumulates posterior probabilities for each class
|
||||
auto probs = std::vector<double>(statesClass_);
|
||||
auto spodeProbs = std::vector<std::vector<double>>(nFeatures_, std::vector<double>(statesClass_));
|
||||
// Initialize the probabilities with the feature|class probabilities
|
||||
int localOffset;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
localOffset = (featureClassOffset_[feature] + instance[feature]) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
spodeProbs[feature][c] = classFeatureProbs_[localOffset + c];
|
||||
}
|
||||
}
|
||||
duration_first += timer.getDuration(); timer.start();
|
||||
int idx, base, sp, sc, parent_offset;
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
sp = instance[parent];
|
||||
parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
sc = instance[child];
|
||||
base = (parent_offset + featureClassOffset_[child] + sc) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
/*
|
||||
* The probability P(xc|xp,c) is stored in dataOpp_, and
|
||||
* the probability P(xp|xc,c) is stored in data_
|
||||
*/
|
||||
/*
|
||||
int base = pairOffset_[i * nFeatures_ + j];
|
||||
int blockSize = states_[i] * states_[j];
|
||||
return base + c * blockSize + (si * states_[j] + sj);
|
||||
*/
|
||||
// index = compute_index(parent, instance[parent], child, instance[child], classVal);
|
||||
idx = base + c;
|
||||
spodeProbs[child][c] *= data_[idx];
|
||||
// spodeProbs[child][c] *= data_.at(index);
|
||||
spodeProbs[parent][c] *= dataOpp_[idx];
|
||||
// spodeProbs[parent][c] *= dataOpp_.at(index);
|
||||
}
|
||||
}
|
||||
}
|
||||
duration_second += timer.getDuration(); timer.start();
|
||||
/* add all the probabilities for each class */
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
probs[c] += spodeProbs[i][c];
|
||||
}
|
||||
}
|
||||
// Normalize the probabilities
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
void normalize(std::vector<double>& probs) const
|
||||
{
|
||||
double sum = 0;
|
||||
for (double d : probs) {
|
||||
sum += d;
|
||||
}
|
||||
if (std::isnan(sum)) {
|
||||
throw std::runtime_error("Can't normalize array. Sum is NaN.");
|
||||
}
|
||||
if (sum == 0) {
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < (int)probs.size(); i++) {
|
||||
probs[i] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
// -------------------------------------------------------
|
||||
// checkCoherence
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Check that the class priors, feature–class distributions and pairwise conditionals
|
||||
// are coherent. They have to sum to 1.0 within a threshold.
|
||||
//
|
||||
void checkCoherenceApprox(double threshold) const
|
||||
{
|
||||
if (matrixState_ != MatrixState::PROBS) {
|
||||
throw std::logic_error("checkCoherenceApprox: must be in PROBS state.");
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 1) Check that sum of class priors ~ 1
|
||||
// ------------------------------------------------------------------
|
||||
double sumPriors = 0.0;
|
||||
for (double pc : classPriors_) {
|
||||
sumPriors += pc;
|
||||
}
|
||||
if (std::fabs(sumPriors - 1.0) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum of classPriors = " << sumPriors
|
||||
<< ", differs from 1.0 by more than " << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 2) For each feature i and class c, the sum over all states si of
|
||||
// classFeatureProbs_ should match the prior p(c) ~ classPriors_[c].
|
||||
//
|
||||
// (Because if you're storing p(x_i=si, c)/total or a scaled version,
|
||||
// summing over si is effectively p(c).)
|
||||
// ------------------------------------------------------------------
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
double sumFeature = 0.0;
|
||||
for (int si = 0; si < states_[i]; ++si) {
|
||||
int idx = (featureClassOffset_[i] + si) * statesClass_ + c;
|
||||
sumFeature += classFeatureProbs_[idx];
|
||||
}
|
||||
double expected = classPriors_[c];
|
||||
if (std::fabs(sumFeature - expected) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum_{si} classFeatureProbs_ "
|
||||
<< "for (feature=" << i << ", class=" << c << ") = " << sumFeature
|
||||
<< ", expected ~ " << expected
|
||||
<< ", difference is " << std::fabs(sumFeature - expected)
|
||||
<< " > threshold=" << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 3) For data_: sum_{child states} data_ should match the "parent" row
|
||||
// in classFeatureProbs_, i.e. p(x_i=si, c).
|
||||
//
|
||||
// Because if data_[... i, si, j, sj, c] holds something like
|
||||
// p(x_i=si, x_j=sj, c) (or a scaled fraction),
|
||||
// then sum_{ sj } data_ = p(x_i=si, c).
|
||||
// ------------------------------------------------------------------
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int spVal = 0; spVal < states_[parent]; ++spVal) {
|
||||
double sumChildProb = 0.0;
|
||||
// pairOffset_ gives the offset for (parent featureVal),
|
||||
// then we add the child's offset and multiply by statesClass_.
|
||||
int part1 = pairOffset_[featureClassOffset_[parent] + spVal];
|
||||
for (int scVal = 0; scVal < states_[child]; ++scVal) {
|
||||
int part2 = featureClassOffset_[child] + scVal;
|
||||
int idx = (part1 + part2) * statesClass_ + c;
|
||||
sumChildProb += data_[idx];
|
||||
}
|
||||
// Compare with classFeatureProbs_[parent, spVal, c]
|
||||
double expected = classFeatureProbs_[
|
||||
(featureClassOffset_[parent] + spVal) * statesClass_ + c
|
||||
];
|
||||
if (std::fabs(sumChildProb - expected) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum_{sj} data_ "
|
||||
<< "for (parentFeature=" << parent
|
||||
<< ", parentVal=" << spVal
|
||||
<< ", childFeature=" << child
|
||||
<< ", class=" << c << ") = " << sumChildProb
|
||||
<< ", expected ~ " << expected
|
||||
<< ", diff " << std::fabs(sumChildProb - expected)
|
||||
<< " > threshold=" << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 4) For dataOpp_: sum_{parent states} dataOpp_ should match the "child"
|
||||
// row in classFeatureProbs_, i.e. p(x_j=sj, c).
|
||||
// ------------------------------------------------------------------
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int scVal = 0; scVal < states_[child]; ++scVal) {
|
||||
double sumParentProb = 0.0;
|
||||
int part2 = featureClassOffset_[child] + scVal;
|
||||
for (int spVal = 0; spVal < states_[parent]; ++spVal) {
|
||||
int part1 = pairOffset_[featureClassOffset_[parent] + spVal];
|
||||
int idx = (part1 + part2) * statesClass_ + c;
|
||||
sumParentProb += dataOpp_[idx];
|
||||
}
|
||||
// Compare with classFeatureProbs_[child, scVal, c]
|
||||
double expected = classFeatureProbs_[
|
||||
(featureClassOffset_[child] + scVal) * statesClass_ + c
|
||||
];
|
||||
if (std::fabs(sumParentProb - expected) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum_{spVal} dataOpp_ "
|
||||
<< "for (childFeature=" << child
|
||||
<< ", childVal=" << scVal
|
||||
<< ", parentFeature=" << parent
|
||||
<< ", class=" << c << ") = " << sumParentProb
|
||||
<< ", expected ~ " << expected
|
||||
<< ", diff " << std::fabs(sumParentProb - expected)
|
||||
<< " > threshold=" << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we get here, all sums are coherent under this "joint distribution" interpretation
|
||||
}
|
||||
int statesClass() const
|
||||
{
|
||||
return statesClass_;
|
||||
}
|
||||
|
||||
private:
|
||||
// -----------
|
||||
// MEMBER DATA
|
||||
// -----------
|
||||
std::vector<int> states_; // [states_feat0, ..., states_feat(n-1), statesClass_]
|
||||
int nFeatures_;
|
||||
int statesClass_;
|
||||
|
||||
// data_ means p(child=sj | c, superparent= si) after normalization.
|
||||
// But in COUNTS mode, it accumulates raw counts.
|
||||
std::vector<int> pairOffset_;
|
||||
int totalSize_;
|
||||
// data_ stores p(child=sj | c, superparent=si) for each pair (i<j).
|
||||
std::vector<double> data_;
|
||||
// dataOpp_ stores p(superparent=si | c, child=sj) for each pair (i<j).
|
||||
std::vector<double> dataOpp_;
|
||||
|
||||
// classCounts_[c]
|
||||
std::vector<double> classCounts_;
|
||||
|
||||
// For p(x_i=si| c), we store counts in classFeatureCounts_ => offset by featureClassOffset_[i]
|
||||
std::vector<int> featureClassOffset_;
|
||||
std::vector<double> classFeatureCounts_;
|
||||
std::vector<double> classFeatureProbs_; // => p(x_i=si | c) after normalization
|
||||
|
||||
std::vector<double> classPriors_; // => p(c)
|
||||
|
||||
MatrixState matrixState_;
|
||||
|
||||
double SMOOTHING = 1.0;
|
||||
};
|
||||
}
|
||||
#endif // XAODE_H
|
@@ -5,7 +5,7 @@
|
||||
#include <mpi.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "common/Datasets.h"
|
||||
#include "common/Timer.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "common/Colors.h"
|
||||
#include "main/HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
|
@@ -5,7 +5,7 @@
|
||||
#include <mpi.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "common/Datasets.h"
|
||||
#include "common/Timer.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "main/HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "GridConfig.h"
|
||||
|
@@ -6,7 +6,7 @@
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <folding.hpp>
|
||||
#include "common/Datasets.h"
|
||||
#include "common/Timer.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "main/HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "GridBase.h"
|
||||
|
@@ -20,6 +20,7 @@
|
||||
#include <pyclassifiers/SVC.h>
|
||||
#include <pyclassifiers/XGBoost.h>
|
||||
#include <pyclassifiers/RandomForest.h>
|
||||
#include "../experimental_clfs/XA1DE.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
public:
|
||||
|
@@ -2,7 +2,7 @@
|
||||
#include <locale>
|
||||
#include "best/BestScore.h"
|
||||
#include "common/CLocale.h"
|
||||
#include "common/Timer.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "ReportConsole.h"
|
||||
#include "main/Scores.h"
|
||||
|
||||
@@ -251,7 +251,7 @@ namespace platform {
|
||||
if (train_data) {
|
||||
oss << color_line << std::left << std::setw(maxLine) << output_train[i]
|
||||
<< suffix << Colors::BLUE() << " | " << color_line << std::left << std::setw(maxLine)
|
||||
<< output_test[i] << std::endl;
|
||||
<< output_test[i] << std::endl;
|
||||
} else {
|
||||
oss << color_line << output_test[i] << std::endl;
|
||||
}
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "common/Timer.h"
|
||||
#include "common/Timer.hpp"
|
||||
#include "main/HyperParameters.h"
|
||||
#include "main/PartialResult.h"
|
||||
|
||||
|
Reference in New Issue
Block a user