Continue grid Experiment
This commit is contained in:
@@ -36,22 +36,22 @@ void add_experiment_args(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
||||
auto& group = program.add_mutually_exclusive_group(true);
|
||||
group.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name: " + datasets.toString())
|
||||
.default_value("all")
|
||||
.action([](const std::string& value) {
|
||||
auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
||||
static std::vector<std::string> choices_datasets(datasets.getNames());
|
||||
choices_datasets.push_back("all");
|
||||
if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
throw std::runtime_error("Dataset must be one of: " + datasets.toString());
|
||||
}
|
||||
);
|
||||
group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
|
||||
group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
|
||||
// auto& group = program.add_mutually_exclusive_group(true);
|
||||
// group.add_argument("-d", "--dataset")
|
||||
// .help("Dataset file name: " + datasets.toString())
|
||||
// .default_value("all")
|
||||
// .action([](const std::string& value) {
|
||||
// auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
||||
// static std::vector<std::string> choices_datasets(datasets.getNames());
|
||||
// choices_datasets.push_back("all");
|
||||
// if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
|
||||
// return value;
|
||||
// }
|
||||
// throw std::runtime_error("Dataset must be one of: " + datasets.toString());
|
||||
// }
|
||||
// );
|
||||
// group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
|
||||
// group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
|
||||
@@ -261,7 +261,7 @@ void report(argparse::ArgumentParser& program)
|
||||
list_results(results, config.model);
|
||||
}
|
||||
}
|
||||
void compute(argparse::ArgumentParser& program)
|
||||
void search(argparse::ArgumentParser& program)
|
||||
{
|
||||
struct platform::ConfigGrid config;
|
||||
config.model = program.get<std::string>("model");
|
||||
@@ -298,6 +298,7 @@ void compute(argparse::ArgumentParser& program)
|
||||
grid_search.go(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
auto results = grid_search.loadResults();
|
||||
std::cout << Colors::RESET() << "* Report of the computed hyperparameters" << std::endl;
|
||||
list_results(results, config.model);
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
@@ -331,7 +332,9 @@ void experiment(argparse::ArgumentParser& program)
|
||||
}
|
||||
grid_experiment.go(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
// auto results = grid_experiment.loadResults();
|
||||
auto results = grid_experiment.getResults();
|
||||
std::cout << "****** RESULTS ********" << std::endl;
|
||||
std::cout << results.dump(4) << std::endl;
|
||||
// list_results(results, config.model);
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
@@ -354,10 +357,10 @@ int main(int argc, char** argv)
|
||||
report_command.add_description("Report the computed hyperparameters of a model.");
|
||||
|
||||
// grid compute subparser
|
||||
argparse::ArgumentParser compute_command("compute");
|
||||
compute_command.add_description("Compute using mpi the hyperparameters of a model.");
|
||||
assignModel(compute_command);
|
||||
add_compute_args(compute_command);
|
||||
argparse::ArgumentParser search_command("search");
|
||||
search_command.add_description("Search using mpi the hyperparameters of a model.");
|
||||
assignModel(search_command);
|
||||
add_compute_args(search_command);
|
||||
|
||||
// grid experiment subparser
|
||||
argparse::ArgumentParser experiment_command("experiment");
|
||||
@@ -367,7 +370,7 @@ int main(int argc, char** argv)
|
||||
|
||||
program.add_subparser(dump_command);
|
||||
program.add_subparser(report_command);
|
||||
program.add_subparser(compute_command);
|
||||
program.add_subparser(search_command);
|
||||
program.add_subparser(experiment_command);
|
||||
|
||||
//
|
||||
@@ -376,7 +379,7 @@ int main(int argc, char** argv)
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
bool found = false;
|
||||
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"dump", &dump}, {"report", &report}, {"compute", &compute}, { "experiment",&experiment } };
|
||||
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"dump", &dump}, {"report", &report}, {"search", &search}, { "experiment",&experiment } };
|
||||
for (const auto& command : commands) {
|
||||
if (program.is_subcommand_used(command.first)) {
|
||||
std::invoke(command.second, program.at<argparse::ArgumentParser>(command.first));
|
||||
|
@@ -26,39 +26,9 @@ namespace platform {
|
||||
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
auto idx = rank % id.size();
|
||||
return *(colors.begin() + rank % colors.size()) + id[idx];
|
||||
};
|
||||
json GridBase::build_tasks()
|
||||
}
|
||||
void GridBase::shuffle_and_progress_bar(json& tasks)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*/
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
@@ -71,7 +41,6 @@ namespace platform {
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << separator << std::endl << separator << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi)
|
||||
{
|
||||
@@ -135,25 +104,16 @@ namespace platform {
|
||||
total += task["time"].get<double>();
|
||||
}
|
||||
if (num_tasks > 1) {
|
||||
std::cout << Colors::MAGENTA() << setw(3) << std::right << num_tasks;
|
||||
std::cout << setw(max_dataset) << " Total..." << std::string(10, '.');
|
||||
std::cout << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
|
||||
std::cout << Colors::MAGENTA() << " ";
|
||||
std::cout << setw(max_dataset) << "Total (" << setw(2) << std::right << num_tasks << ")" << std::string(7, '.');
|
||||
std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
void GridBase::go(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||
* Each task is a json object with the data needed by the process
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 0. Create the MPI result type & tasks
|
||||
@@ -170,7 +130,7 @@ namespace platform {
|
||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
* 2b.2 Consumers receive the task from the producer and process it
|
||||
* 2b.3 Consumers send the result to the producer
|
||||
* 3. Manager select the bests scores for each dataset
|
||||
* 3. Manager compile results for each dataset
|
||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||
* 3.2 Save the results
|
||||
* 3.3 Summary of jobs done
|
||||
@@ -201,9 +161,11 @@ namespace platform {
|
||||
//
|
||||
char* msg;
|
||||
json tasks;
|
||||
auto env = platform::DotEnv();
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
tasks = build_tasks();
|
||||
tasks = build_tasks(datasets);
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
@@ -219,8 +181,7 @@ namespace platform {
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
auto env = platform::DotEnv();
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
||||
|
||||
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
//
|
||||
@@ -230,10 +191,10 @@ namespace platform {
|
||||
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||
std::cout << separator << std::endl;
|
||||
//
|
||||
// 3. Manager select the bests sccores for each dataset
|
||||
// 3. Manager compile results for each dataset
|
||||
//
|
||||
auto results = initializeResults();
|
||||
select_best_results_folds(results, all_results, config.model);
|
||||
compile_results(results, all_results, config.model);
|
||||
//
|
||||
// 3.2 Save the results
|
||||
//
|
||||
@@ -250,5 +211,61 @@ namespace platform {
|
||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
json GridBase::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridBase::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@@ -21,16 +21,17 @@ namespace platform {
|
||||
~GridBase() = default;
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
protected:
|
||||
virtual json build_tasks(Datasets& datasets) = 0;
|
||||
virtual void save(json& results) = 0;
|
||||
virtual std::vector<std::string> filterDatasets(Datasets& datasets) const = 0;
|
||||
virtual json initializeResults() = 0;
|
||||
virtual json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
||||
virtual void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
||||
virtual void select_best_results_folds(json& results, json& all_results, std::string& model) = 0;
|
||||
virtual void compile_results(json& results, json& all_results, std::string& model) = 0;
|
||||
virtual json store_result(std::vector<std::string>& names, Task_Result& result, json& results) = 0;
|
||||
virtual void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result) = 0;
|
||||
void shuffle_and_progress_bar(json& tasks);
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
std::string get_color_rank(int rank);
|
||||
json build_tasks();
|
||||
void summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi);
|
||||
struct ConfigGrid config;
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
|
@@ -11,176 +11,91 @@ namespace platform {
|
||||
GridExperiment::GridExperiment(struct ConfigGrid& config) : GridBase(config)
|
||||
{
|
||||
}
|
||||
json GridExperiment::loadResults()
|
||||
json GridExperiment::getResults()
|
||||
{
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
return json::parse(file);
|
||||
return computed_results;
|
||||
}
|
||||
return json();
|
||||
json GridExperiment::build_tasks(Datasets& datasets)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* "hyperpameters": json object with the hyperparameters to use
|
||||
* }
|
||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||
*/
|
||||
auto tasks = json::array();
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
{ "hyperparameters", json::object() }
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
shuffle_and_progress_bar(tasks);
|
||||
return tasks;
|
||||
}
|
||||
std::vector<std::string> GridExperiment::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets_names = datasets.getNames();
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
// Continue previous execution:
|
||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||
}
|
||||
// Remove datasets already processed
|
||||
std::vector<string>::iterator it = datasets_names.begin();
|
||||
while (it != datasets_names.end()) {
|
||||
if (*it != config.continue_from) {
|
||||
it = datasets_names.erase(it);
|
||||
} else {
|
||||
if (config.only)
|
||||
++it;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Exclude datasets
|
||||
for (const auto& name : config.excluded) {
|
||||
auto dataset = name.get<std::string>();
|
||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||
if (it == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||
}
|
||||
datasets_names.erase(it);
|
||||
}
|
||||
datasets_names.clear();
|
||||
datasets_names.push_back("iris");
|
||||
return datasets_names;
|
||||
}
|
||||
json GridExperiment::initializeResults()
|
||||
{
|
||||
// Load previous results if continue is set
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
results = json::parse(file);
|
||||
results = results["results"];
|
||||
}
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << "* There were no previous results" << std::endl;
|
||||
std::cerr << "* Initizalizing new results" << std::endl;
|
||||
results = json();
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridExperiment::save(json& results)
|
||||
{
|
||||
std::ofstream file(Paths::grid_output(config.model));
|
||||
json output = {
|
||||
{ "model", config.model },
|
||||
{ "score", config.score },
|
||||
{ "discretize", config.discretize },
|
||||
{ "stratified", config.stratified },
|
||||
{ "n_folds", config.n_folds },
|
||||
{ "seeds", config.seeds },
|
||||
{ "date", get_date() + " " + get_time()},
|
||||
{ "nested", config.nested},
|
||||
{ "platform", config.platform },
|
||||
{ "duration", timer.getDurationString(true)},
|
||||
{ "results", results }
|
||||
|
||||
};
|
||||
file << output.dump(4);
|
||||
// std::ofstream file(Paths::grid_output(config.model));
|
||||
// json output = {
|
||||
// { "model", config.model },
|
||||
// { "score", config.score },
|
||||
// { "discretize", config.discretize },
|
||||
// { "stratified", config.stratified },
|
||||
// { "n_folds", config.n_folds },
|
||||
// { "seeds", config.seeds },
|
||||
// { "date", get_date() + " " + get_time()},
|
||||
// { "nested", config.nested},
|
||||
// { "platform", config.platform },
|
||||
// { "duration", timer.getDurationString(true)},
|
||||
// { "results", results }
|
||||
// };
|
||||
// file << output.dump(4);
|
||||
}
|
||||
//
|
||||
//
|
||||
//
|
||||
json GridExperiment::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
void GridExperiment::compile_results(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridExperiment::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridExperiment::select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
results = json::object();
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
results[dataset] = json::array();
|
||||
for (int fold = 0; fold < result.value().size(); ++fold) {
|
||||
results[dataset].push_back(json::object());
|
||||
}
|
||||
for (const auto& result_fold : result.value()) {
|
||||
results[dataset][result_fold["fold"].get<int>()] = result_fold;
|
||||
}
|
||||
}
|
||||
computed_results = results;
|
||||
}
|
||||
json GridExperiment::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
@@ -190,6 +105,9 @@ namespace platform {
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset },
|
||||
{ "nodes", result.nodes },
|
||||
{ "leaves", result.leaves },
|
||||
{ "depth", result.depth },
|
||||
{ "process", result.process },
|
||||
{ "task", result.task }
|
||||
};
|
||||
@@ -209,7 +127,6 @@ namespace platform {
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset_name = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
@@ -226,7 +143,6 @@ namespace platform {
|
||||
// Generate the hyperparameters combinations
|
||||
//
|
||||
auto& dataset = datasets.getDataset(dataset_name);
|
||||
auto combinations = grid.getGrid(dataset_name);
|
||||
dataset.load();
|
||||
auto [X, y] = dataset.getTensors();
|
||||
auto features = dataset.getFeatures();
|
||||
@@ -242,72 +158,35 @@ namespace platform {
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||
float best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
folding::Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
//
|
||||
// Nested level fold
|
||||
//
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
|
||||
//
|
||||
// Build Classifier with selected hyperparameters
|
||||
//
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), task["hyperparameters"]);
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||
//
|
||||
// Train model
|
||||
//
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
//
|
||||
// Test model
|
||||
//
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
double score = clf->score(X_test, y_test);
|
||||
delete fold;
|
||||
//
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
//
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
//
|
||||
// Return the result
|
||||
//
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->idx_combination = 0;
|
||||
result->score = score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
result->nodes = clf->getNumberOfNodes();
|
||||
result->leaves = clf->getNumberOfEdges();
|
||||
result->depth = clf->getNumberOfStates();
|
||||
result->process = config_mpi.rank;
|
||||
result->task = n_task;
|
||||
//
|
||||
|
@@ -17,15 +17,14 @@ namespace platform {
|
||||
public:
|
||||
explicit GridExperiment(struct ConfigGrid& config);
|
||||
~GridExperiment() = default;
|
||||
json loadResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
json getResults();
|
||||
private:
|
||||
json computed_results;
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
json build_tasks(Datasets& datasets);
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
||||
void compile_results(json& results, json& all_results, std::string& model);
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||
};
|
||||
|
@@ -19,6 +19,41 @@ namespace platform {
|
||||
}
|
||||
return json();
|
||||
}
|
||||
json GridSearch::build_tasks(Datasets& datasets)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||
*/
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
shuffle_and_progress_bar(tasks);
|
||||
return tasks;
|
||||
}
|
||||
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
// Load datasets
|
||||
@@ -93,66 +128,7 @@ namespace platform {
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
//
|
||||
//
|
||||
//
|
||||
json GridSearch::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridSearch::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridSearch::select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
void GridSearch::compile_results(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
|
@@ -24,10 +24,9 @@ namespace platform {
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
json build_tasks(Datasets& datasets);
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
||||
void compile_results(json& results, json& all_results, std::string& model);
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||
};
|
||||
|
Reference in New Issue
Block a user