Continue grid Experiment
This commit is contained in:
@@ -36,22 +36,22 @@ void add_experiment_args(argparse::ArgumentParser& program)
|
|||||||
{
|
{
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
||||||
auto& group = program.add_mutually_exclusive_group(true);
|
// auto& group = program.add_mutually_exclusive_group(true);
|
||||||
group.add_argument("-d", "--dataset")
|
// group.add_argument("-d", "--dataset")
|
||||||
.help("Dataset file name: " + datasets.toString())
|
// .help("Dataset file name: " + datasets.toString())
|
||||||
.default_value("all")
|
// .default_value("all")
|
||||||
.action([](const std::string& value) {
|
// .action([](const std::string& value) {
|
||||||
auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
// auto datasets = platform::Datasets(false, platform::Paths::datasets());
|
||||||
static std::vector<std::string> choices_datasets(datasets.getNames());
|
// static std::vector<std::string> choices_datasets(datasets.getNames());
|
||||||
choices_datasets.push_back("all");
|
// choices_datasets.push_back("all");
|
||||||
if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
|
// if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
|
||||||
return value;
|
// return value;
|
||||||
}
|
// }
|
||||||
throw std::runtime_error("Dataset must be one of: " + datasets.toString());
|
// throw std::runtime_error("Dataset must be one of: " + datasets.toString());
|
||||||
}
|
// }
|
||||||
);
|
// );
|
||||||
group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
|
// group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
|
||||||
group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
|
// group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
|
||||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||||
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||||
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
|
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
|
||||||
@@ -261,7 +261,7 @@ void report(argparse::ArgumentParser& program)
|
|||||||
list_results(results, config.model);
|
list_results(results, config.model);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void compute(argparse::ArgumentParser& program)
|
void search(argparse::ArgumentParser& program)
|
||||||
{
|
{
|
||||||
struct platform::ConfigGrid config;
|
struct platform::ConfigGrid config;
|
||||||
config.model = program.get<std::string>("model");
|
config.model = program.get<std::string>("model");
|
||||||
@@ -298,6 +298,7 @@ void compute(argparse::ArgumentParser& program)
|
|||||||
grid_search.go(mpi_config);
|
grid_search.go(mpi_config);
|
||||||
if (mpi_config.rank == mpi_config.manager) {
|
if (mpi_config.rank == mpi_config.manager) {
|
||||||
auto results = grid_search.loadResults();
|
auto results = grid_search.loadResults();
|
||||||
|
std::cout << Colors::RESET() << "* Report of the computed hyperparameters" << std::endl;
|
||||||
list_results(results, config.model);
|
list_results(results, config.model);
|
||||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||||
}
|
}
|
||||||
@@ -331,7 +332,9 @@ void experiment(argparse::ArgumentParser& program)
|
|||||||
}
|
}
|
||||||
grid_experiment.go(mpi_config);
|
grid_experiment.go(mpi_config);
|
||||||
if (mpi_config.rank == mpi_config.manager) {
|
if (mpi_config.rank == mpi_config.manager) {
|
||||||
// auto results = grid_experiment.loadResults();
|
auto results = grid_experiment.getResults();
|
||||||
|
std::cout << "****** RESULTS ********" << std::endl;
|
||||||
|
std::cout << results.dump(4) << std::endl;
|
||||||
// list_results(results, config.model);
|
// list_results(results, config.model);
|
||||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||||
}
|
}
|
||||||
@@ -354,10 +357,10 @@ int main(int argc, char** argv)
|
|||||||
report_command.add_description("Report the computed hyperparameters of a model.");
|
report_command.add_description("Report the computed hyperparameters of a model.");
|
||||||
|
|
||||||
// grid compute subparser
|
// grid compute subparser
|
||||||
argparse::ArgumentParser compute_command("compute");
|
argparse::ArgumentParser search_command("search");
|
||||||
compute_command.add_description("Compute using mpi the hyperparameters of a model.");
|
search_command.add_description("Search using mpi the hyperparameters of a model.");
|
||||||
assignModel(compute_command);
|
assignModel(search_command);
|
||||||
add_compute_args(compute_command);
|
add_compute_args(search_command);
|
||||||
|
|
||||||
// grid experiment subparser
|
// grid experiment subparser
|
||||||
argparse::ArgumentParser experiment_command("experiment");
|
argparse::ArgumentParser experiment_command("experiment");
|
||||||
@@ -367,7 +370,7 @@ int main(int argc, char** argv)
|
|||||||
|
|
||||||
program.add_subparser(dump_command);
|
program.add_subparser(dump_command);
|
||||||
program.add_subparser(report_command);
|
program.add_subparser(report_command);
|
||||||
program.add_subparser(compute_command);
|
program.add_subparser(search_command);
|
||||||
program.add_subparser(experiment_command);
|
program.add_subparser(experiment_command);
|
||||||
|
|
||||||
//
|
//
|
||||||
@@ -376,7 +379,7 @@ int main(int argc, char** argv)
|
|||||||
try {
|
try {
|
||||||
program.parse_args(argc, argv);
|
program.parse_args(argc, argv);
|
||||||
bool found = false;
|
bool found = false;
|
||||||
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"dump", &dump}, {"report", &report}, {"compute", &compute}, { "experiment",&experiment } };
|
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"dump", &dump}, {"report", &report}, {"search", &search}, { "experiment",&experiment } };
|
||||||
for (const auto& command : commands) {
|
for (const auto& command : commands) {
|
||||||
if (program.is_subcommand_used(command.first)) {
|
if (program.is_subcommand_used(command.first)) {
|
||||||
std::invoke(command.second, program.at<argparse::ArgumentParser>(command.first));
|
std::invoke(command.second, program.at<argparse::ArgumentParser>(command.first));
|
||||||
|
@@ -26,39 +26,9 @@ namespace platform {
|
|||||||
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||||
auto idx = rank % id.size();
|
auto idx = rank % id.size();
|
||||||
return *(colors.begin() + rank % colors.size()) + id[idx];
|
return *(colors.begin() + rank % colors.size()) + id[idx];
|
||||||
};
|
}
|
||||||
json GridBase::build_tasks()
|
void GridBase::shuffle_and_progress_bar(json& tasks)
|
||||||
{
|
{
|
||||||
/*
|
|
||||||
* Each task is a json object with the following structure:
|
|
||||||
* {
|
|
||||||
* "dataset": "dataset_name",
|
|
||||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
|
||||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
|
||||||
* "seed": # of seed to use,
|
|
||||||
* "fold": # of fold to process
|
|
||||||
* }
|
|
||||||
*/
|
|
||||||
auto tasks = json::array();
|
|
||||||
auto grid = GridData(Paths::grid_input(config.model));
|
|
||||||
auto datasets = Datasets(false, Paths::datasets());
|
|
||||||
auto all_datasets = datasets.getNames();
|
|
||||||
auto datasets_names = filterDatasets(datasets);
|
|
||||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
|
||||||
auto dataset = datasets_names[idx_dataset];
|
|
||||||
for (const auto& seed : config.seeds) {
|
|
||||||
auto combinations = grid.getGrid(dataset);
|
|
||||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
|
||||||
json task = {
|
|
||||||
{ "dataset", dataset },
|
|
||||||
{ "idx_dataset", idx_dataset},
|
|
||||||
{ "seed", seed },
|
|
||||||
{ "fold", n_fold},
|
|
||||||
};
|
|
||||||
tasks.push_back(task);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
||||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||||
@@ -71,7 +41,6 @@ namespace platform {
|
|||||||
std::cout << (i + 1) % 10;
|
std::cout << (i + 1) % 10;
|
||||||
}
|
}
|
||||||
std::cout << separator << std::endl << separator << std::flush;
|
std::cout << separator << std::endl << separator << std::flush;
|
||||||
return tasks;
|
|
||||||
}
|
}
|
||||||
void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi)
|
void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi)
|
||||||
{
|
{
|
||||||
@@ -135,25 +104,16 @@ namespace platform {
|
|||||||
total += task["time"].get<double>();
|
total += task["time"].get<double>();
|
||||||
}
|
}
|
||||||
if (num_tasks > 1) {
|
if (num_tasks > 1) {
|
||||||
std::cout << Colors::MAGENTA() << setw(3) << std::right << num_tasks;
|
std::cout << Colors::MAGENTA() << " ";
|
||||||
std::cout << setw(max_dataset) << " Total..." << std::string(10, '.');
|
std::cout << setw(max_dataset) << "Total (" << setw(2) << std::right << num_tasks << ")" << std::string(7, '.');
|
||||||
std::cout << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
|
std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void GridBase::go(struct ConfigMPI& config_mpi)
|
void GridBase::go(struct ConfigMPI& config_mpi)
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
* Each task is a json object with the following structure:
|
* Each task is a json object with the data needed by the process
|
||||||
* {
|
|
||||||
* "dataset": "dataset_name",
|
|
||||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
|
||||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
|
||||||
* "seed": # of seed to use,
|
|
||||||
* "fold": # of fold to process
|
|
||||||
* }
|
|
||||||
*
|
|
||||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
|
||||||
*
|
*
|
||||||
* The overall process consists in these steps:
|
* The overall process consists in these steps:
|
||||||
* 0. Create the MPI result type & tasks
|
* 0. Create the MPI result type & tasks
|
||||||
@@ -170,7 +130,7 @@ namespace platform {
|
|||||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||||
* 2b.2 Consumers receive the task from the producer and process it
|
* 2b.2 Consumers receive the task from the producer and process it
|
||||||
* 2b.3 Consumers send the result to the producer
|
* 2b.3 Consumers send the result to the producer
|
||||||
* 3. Manager select the bests scores for each dataset
|
* 3. Manager compile results for each dataset
|
||||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||||
* 3.2 Save the results
|
* 3.2 Save the results
|
||||||
* 3.3 Summary of jobs done
|
* 3.3 Summary of jobs done
|
||||||
@@ -201,9 +161,11 @@ namespace platform {
|
|||||||
//
|
//
|
||||||
char* msg;
|
char* msg;
|
||||||
json tasks;
|
json tasks;
|
||||||
|
auto env = platform::DotEnv();
|
||||||
|
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
||||||
if (config_mpi.rank == config_mpi.manager) {
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
timer.start();
|
timer.start();
|
||||||
tasks = build_tasks();
|
tasks = build_tasks(datasets);
|
||||||
auto tasks_str = tasks.dump();
|
auto tasks_str = tasks.dump();
|
||||||
tasks_size = tasks_str.size();
|
tasks_size = tasks_str.size();
|
||||||
msg = new char[tasks_size + 1];
|
msg = new char[tasks_size + 1];
|
||||||
@@ -219,8 +181,7 @@ namespace platform {
|
|||||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||||
tasks = json::parse(msg);
|
tasks = json::parse(msg);
|
||||||
delete[] msg;
|
delete[] msg;
|
||||||
auto env = platform::DotEnv();
|
|
||||||
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
|
||||||
|
|
||||||
if (config_mpi.rank == config_mpi.manager) {
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
//
|
//
|
||||||
@@ -230,10 +191,10 @@ namespace platform {
|
|||||||
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||||
std::cout << separator << std::endl;
|
std::cout << separator << std::endl;
|
||||||
//
|
//
|
||||||
// 3. Manager select the bests sccores for each dataset
|
// 3. Manager compile results for each dataset
|
||||||
//
|
//
|
||||||
auto results = initializeResults();
|
auto results = initializeResults();
|
||||||
select_best_results_folds(results, all_results, config.model);
|
compile_results(results, all_results, config.model);
|
||||||
//
|
//
|
||||||
// 3.2 Save the results
|
// 3.2 Save the results
|
||||||
//
|
//
|
||||||
@@ -250,5 +211,61 @@ namespace platform {
|
|||||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
json GridBase::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||||
|
{
|
||||||
|
Task_Result result;
|
||||||
|
json results;
|
||||||
|
int num_tasks = tasks.size();
|
||||||
|
//
|
||||||
|
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||||
|
//
|
||||||
|
for (int i = 0; i < num_tasks; ++i) {
|
||||||
|
MPI_Status status;
|
||||||
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_RESULT) {
|
||||||
|
//Store result
|
||||||
|
store_result(names, result, results);
|
||||||
|
|
||||||
|
}
|
||||||
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// 2a.2 Producer will send the end message to all the consumers
|
||||||
|
//
|
||||||
|
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||||
|
MPI_Status status;
|
||||||
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_RESULT) {
|
||||||
|
//Store result
|
||||||
|
store_result(names, result, results);
|
||||||
|
}
|
||||||
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
}
|
||||||
|
void GridBase::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||||
|
{
|
||||||
|
Task_Result result;
|
||||||
|
//
|
||||||
|
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||||
|
//
|
||||||
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||||
|
int task;
|
||||||
|
while (true) {
|
||||||
|
MPI_Status status;
|
||||||
|
//
|
||||||
|
// 2b.2 Consumers receive the task from the producer and process it
|
||||||
|
//
|
||||||
|
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_END) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||||
|
//
|
||||||
|
// 2b.3 Consumers send the result to the producer
|
||||||
|
//
|
||||||
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
@@ -21,16 +21,17 @@ namespace platform {
|
|||||||
~GridBase() = default;
|
~GridBase() = default;
|
||||||
void go(struct ConfigMPI& config_mpi);
|
void go(struct ConfigMPI& config_mpi);
|
||||||
protected:
|
protected:
|
||||||
|
virtual json build_tasks(Datasets& datasets) = 0;
|
||||||
virtual void save(json& results) = 0;
|
virtual void save(json& results) = 0;
|
||||||
virtual std::vector<std::string> filterDatasets(Datasets& datasets) const = 0;
|
virtual std::vector<std::string> filterDatasets(Datasets& datasets) const = 0;
|
||||||
virtual json initializeResults() = 0;
|
virtual json initializeResults() = 0;
|
||||||
virtual json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
virtual void compile_results(json& results, json& all_results, std::string& model) = 0;
|
||||||
virtual void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
|
||||||
virtual void select_best_results_folds(json& results, json& all_results, std::string& model) = 0;
|
|
||||||
virtual json store_result(std::vector<std::string>& names, Task_Result& result, json& results) = 0;
|
virtual json store_result(std::vector<std::string>& names, Task_Result& result, json& results) = 0;
|
||||||
virtual void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result) = 0;
|
virtual void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result) = 0;
|
||||||
|
void shuffle_and_progress_bar(json& tasks);
|
||||||
|
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||||
|
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||||
std::string get_color_rank(int rank);
|
std::string get_color_rank(int rank);
|
||||||
json build_tasks();
|
|
||||||
void summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi);
|
void summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi);
|
||||||
struct ConfigGrid config;
|
struct ConfigGrid config;
|
||||||
Timer timer; // used to measure the time of the whole process
|
Timer timer; // used to measure the time of the whole process
|
||||||
|
@@ -11,176 +11,91 @@ namespace platform {
|
|||||||
GridExperiment::GridExperiment(struct ConfigGrid& config) : GridBase(config)
|
GridExperiment::GridExperiment(struct ConfigGrid& config) : GridBase(config)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
json GridExperiment::loadResults()
|
json GridExperiment::getResults()
|
||||||
{
|
{
|
||||||
std::ifstream file(Paths::grid_output(config.model));
|
return computed_results;
|
||||||
if (file.is_open()) {
|
}
|
||||||
return json::parse(file);
|
json GridExperiment::build_tasks(Datasets& datasets)
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Each task is a json object with the following structure:
|
||||||
|
* {
|
||||||
|
* "dataset": "dataset_name",
|
||||||
|
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||||
|
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||||
|
* "seed": # of seed to use,
|
||||||
|
* "fold": # of fold to process
|
||||||
|
* "hyperpameters": json object with the hyperparameters to use
|
||||||
|
* }
|
||||||
|
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||||
|
*/
|
||||||
|
auto tasks = json::array();
|
||||||
|
auto all_datasets = datasets.getNames();
|
||||||
|
auto datasets_names = filterDatasets(datasets);
|
||||||
|
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||||
|
auto dataset = datasets_names[idx_dataset];
|
||||||
|
for (const auto& seed : config.seeds) {
|
||||||
|
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||||
|
json task = {
|
||||||
|
{ "dataset", dataset },
|
||||||
|
{ "idx_dataset", idx_dataset},
|
||||||
|
{ "seed", seed },
|
||||||
|
{ "fold", n_fold},
|
||||||
|
{ "hyperparameters", json::object() }
|
||||||
|
};
|
||||||
|
tasks.push_back(task);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return json();
|
shuffle_and_progress_bar(tasks);
|
||||||
|
return tasks;
|
||||||
}
|
}
|
||||||
std::vector<std::string> GridExperiment::filterDatasets(Datasets& datasets) const
|
std::vector<std::string> GridExperiment::filterDatasets(Datasets& datasets) const
|
||||||
{
|
{
|
||||||
// Load datasets
|
// Load datasets
|
||||||
auto datasets_names = datasets.getNames();
|
auto datasets_names = datasets.getNames();
|
||||||
if (config.continue_from != NO_CONTINUE()) {
|
datasets_names.clear();
|
||||||
// Continue previous execution:
|
datasets_names.push_back("iris");
|
||||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
|
||||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
|
||||||
}
|
|
||||||
// Remove datasets already processed
|
|
||||||
std::vector<string>::iterator it = datasets_names.begin();
|
|
||||||
while (it != datasets_names.end()) {
|
|
||||||
if (*it != config.continue_from) {
|
|
||||||
it = datasets_names.erase(it);
|
|
||||||
} else {
|
|
||||||
if (config.only)
|
|
||||||
++it;
|
|
||||||
else
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Exclude datasets
|
|
||||||
for (const auto& name : config.excluded) {
|
|
||||||
auto dataset = name.get<std::string>();
|
|
||||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
|
||||||
if (it == datasets_names.end()) {
|
|
||||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
|
||||||
}
|
|
||||||
datasets_names.erase(it);
|
|
||||||
}
|
|
||||||
return datasets_names;
|
return datasets_names;
|
||||||
}
|
}
|
||||||
json GridExperiment::initializeResults()
|
json GridExperiment::initializeResults()
|
||||||
{
|
{
|
||||||
// Load previous results if continue is set
|
|
||||||
json results;
|
json results;
|
||||||
if (config.continue_from != NO_CONTINUE()) {
|
|
||||||
if (!config.quiet)
|
|
||||||
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
|
|
||||||
try {
|
|
||||||
std::ifstream file(Paths::grid_output(config.model));
|
|
||||||
if (file.is_open()) {
|
|
||||||
results = json::parse(file);
|
|
||||||
results = results["results"];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
catch (const std::exception& e) {
|
|
||||||
std::cerr << "* There were no previous results" << std::endl;
|
|
||||||
std::cerr << "* Initizalizing new results" << std::endl;
|
|
||||||
results = json();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return results;
|
return results;
|
||||||
}
|
}
|
||||||
void GridExperiment::save(json& results)
|
void GridExperiment::save(json& results)
|
||||||
{
|
{
|
||||||
std::ofstream file(Paths::grid_output(config.model));
|
// std::ofstream file(Paths::grid_output(config.model));
|
||||||
json output = {
|
// json output = {
|
||||||
{ "model", config.model },
|
// { "model", config.model },
|
||||||
{ "score", config.score },
|
// { "score", config.score },
|
||||||
{ "discretize", config.discretize },
|
// { "discretize", config.discretize },
|
||||||
{ "stratified", config.stratified },
|
// { "stratified", config.stratified },
|
||||||
{ "n_folds", config.n_folds },
|
// { "n_folds", config.n_folds },
|
||||||
{ "seeds", config.seeds },
|
// { "seeds", config.seeds },
|
||||||
{ "date", get_date() + " " + get_time()},
|
// { "date", get_date() + " " + get_time()},
|
||||||
{ "nested", config.nested},
|
// { "nested", config.nested},
|
||||||
{ "platform", config.platform },
|
// { "platform", config.platform },
|
||||||
{ "duration", timer.getDurationString(true)},
|
// { "duration", timer.getDurationString(true)},
|
||||||
{ "results", results }
|
// { "results", results }
|
||||||
|
// };
|
||||||
};
|
// file << output.dump(4);
|
||||||
file << output.dump(4);
|
|
||||||
}
|
}
|
||||||
//
|
void GridExperiment::compile_results(json& results, json& all_results, std::string& model)
|
||||||
//
|
|
||||||
//
|
|
||||||
json GridExperiment::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
{
|
||||||
Task_Result result;
|
results = json::object();
|
||||||
json results;
|
|
||||||
int num_tasks = tasks.size();
|
|
||||||
//
|
|
||||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
||||||
//
|
|
||||||
for (int i = 0; i < num_tasks; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
//
|
|
||||||
// 2a.2 Producer will send the end message to all the consumers
|
|
||||||
//
|
|
||||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
void GridExperiment::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
//
|
|
||||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
|
||||||
int task;
|
|
||||||
while (true) {
|
|
||||||
MPI_Status status;
|
|
||||||
//
|
|
||||||
// 2b.2 Consumers receive the task from the producer and process it
|
|
||||||
//
|
|
||||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_END) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
|
||||||
//
|
|
||||||
// 2b.3 Consumers send the result to the producer
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void GridExperiment::select_best_results_folds(json& results, json& all_results, std::string& model)
|
|
||||||
{
|
|
||||||
Timer timer;
|
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
|
||||||
//
|
|
||||||
// Select the best result of the computed outer folds
|
|
||||||
//
|
|
||||||
for (const auto& result : all_results.items()) {
|
for (const auto& result : all_results.items()) {
|
||||||
// each result has the results of all the outer folds as each one were a different task
|
// each result has the results of all the outer folds as each one were a different task
|
||||||
double best_score = 0.0;
|
|
||||||
json best;
|
|
||||||
for (const auto& result_fold : result.value()) {
|
|
||||||
double score = result_fold["score"].get<double>();
|
|
||||||
if (score > best_score) {
|
|
||||||
best_score = score;
|
|
||||||
best = result_fold;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
auto dataset = result.key();
|
auto dataset = result.key();
|
||||||
auto combinations = grid.getGrid(dataset);
|
results[dataset] = json::array();
|
||||||
json json_best = {
|
for (int fold = 0; fold < result.value().size(); ++fold) {
|
||||||
{ "score", best_score },
|
results[dataset].push_back(json::object());
|
||||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
}
|
||||||
{ "date", get_date() + " " + get_time() },
|
for (const auto& result_fold : result.value()) {
|
||||||
{ "grid", grid.getInputGrid(dataset) },
|
results[dataset][result_fold["fold"].get<int>()] = result_fold;
|
||||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
}
|
||||||
};
|
|
||||||
results[dataset] = json_best;
|
|
||||||
}
|
}
|
||||||
|
computed_results = results;
|
||||||
}
|
}
|
||||||
json GridExperiment::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
json GridExperiment::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||||
{
|
{
|
||||||
@@ -190,6 +105,9 @@ namespace platform {
|
|||||||
{ "fold", result.n_fold },
|
{ "fold", result.n_fold },
|
||||||
{ "time", result.time },
|
{ "time", result.time },
|
||||||
{ "dataset", result.idx_dataset },
|
{ "dataset", result.idx_dataset },
|
||||||
|
{ "nodes", result.nodes },
|
||||||
|
{ "leaves", result.leaves },
|
||||||
|
{ "depth", result.depth },
|
||||||
{ "process", result.process },
|
{ "process", result.process },
|
||||||
{ "task", result.task }
|
{ "task", result.task }
|
||||||
};
|
};
|
||||||
@@ -209,7 +127,6 @@ namespace platform {
|
|||||||
timer.start();
|
timer.start();
|
||||||
json task = tasks[n_task];
|
json task = tasks[n_task];
|
||||||
auto model = config.model;
|
auto model = config.model;
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
|
||||||
auto dataset_name = task["dataset"].get<std::string>();
|
auto dataset_name = task["dataset"].get<std::string>();
|
||||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||||
auto seed = task["seed"].get<int>();
|
auto seed = task["seed"].get<int>();
|
||||||
@@ -226,7 +143,6 @@ namespace platform {
|
|||||||
// Generate the hyperparameters combinations
|
// Generate the hyperparameters combinations
|
||||||
//
|
//
|
||||||
auto& dataset = datasets.getDataset(dataset_name);
|
auto& dataset = datasets.getDataset(dataset_name);
|
||||||
auto combinations = grid.getGrid(dataset_name);
|
|
||||||
dataset.load();
|
dataset.load();
|
||||||
auto [X, y] = dataset.getTensors();
|
auto [X, y] = dataset.getTensors();
|
||||||
auto features = dataset.getFeatures();
|
auto features = dataset.getFeatures();
|
||||||
@@ -242,72 +158,35 @@ namespace platform {
|
|||||||
auto [train, test] = fold->getFold(n_fold);
|
auto [train, test] = fold->getFold(n_fold);
|
||||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||||
float best_fold_score = 0.0;
|
|
||||||
int best_idx_combination = -1;
|
|
||||||
json best_fold_hyper;
|
|
||||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
|
||||||
auto hyperparam_line = combinations[idx_combination];
|
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
||||||
folding::Fold* nested_fold;
|
|
||||||
if (config.stratified)
|
|
||||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
|
||||||
else
|
|
||||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
|
||||||
double score = 0.0;
|
|
||||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
|
||||||
//
|
|
||||||
// Nested level fold
|
|
||||||
//
|
|
||||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
|
||||||
auto train_nested_t = torch::tensor(train_nested);
|
|
||||||
auto test_nested_t = torch::tensor(test_nested);
|
|
||||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
|
||||||
auto y_nested_train = y_train.index({ train_nested_t });
|
|
||||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
|
||||||
auto y_nested_test = y_train.index({ test_nested_t });
|
|
||||||
//
|
|
||||||
// Build Classifier with selected hyperparameters
|
|
||||||
//
|
|
||||||
auto clf = Models::instance()->create(config.model);
|
|
||||||
auto valid = clf->getValidHyperparameters();
|
|
||||||
hyperparameters.check(valid, dataset_name);
|
|
||||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
|
||||||
//
|
|
||||||
// Train model
|
|
||||||
//
|
|
||||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
|
||||||
//
|
|
||||||
// Test model
|
|
||||||
//
|
|
||||||
score += clf->score(X_nested_test, y_nested_test);
|
|
||||||
}
|
|
||||||
delete nested_fold;
|
|
||||||
score /= config.nested;
|
|
||||||
if (score > best_fold_score) {
|
|
||||||
best_fold_score = score;
|
|
||||||
best_idx_combination = idx_combination;
|
|
||||||
best_fold_hyper = hyperparam_line;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
delete fold;
|
|
||||||
//
|
//
|
||||||
// Build Classifier with the best hyperparameters to obtain the best score
|
// Build Classifier with selected hyperparameters
|
||||||
//
|
//
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
|
||||||
auto clf = Models::instance()->create(config.model);
|
auto clf = Models::instance()->create(config.model);
|
||||||
auto valid = clf->getValidHyperparameters();
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), task["hyperparameters"]);
|
||||||
hyperparameters.check(valid, dataset_name);
|
hyperparameters.check(valid, dataset_name);
|
||||||
clf->setHyperparameters(best_fold_hyper);
|
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||||
|
//
|
||||||
|
// Train model
|
||||||
|
//
|
||||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||||
best_fold_score = clf->score(X_test, y_test);
|
//
|
||||||
|
// Test model
|
||||||
|
//
|
||||||
|
double score = clf->score(X_test, y_test);
|
||||||
|
delete fold;
|
||||||
//
|
//
|
||||||
// Return the result
|
// Return the result
|
||||||
//
|
//
|
||||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||||
result->idx_combination = best_idx_combination;
|
result->idx_combination = 0;
|
||||||
result->score = best_fold_score;
|
result->score = score;
|
||||||
result->n_fold = n_fold;
|
result->n_fold = n_fold;
|
||||||
result->time = timer.getDuration();
|
result->time = timer.getDuration();
|
||||||
|
result->nodes = clf->getNumberOfNodes();
|
||||||
|
result->leaves = clf->getNumberOfEdges();
|
||||||
|
result->depth = clf->getNumberOfStates();
|
||||||
result->process = config_mpi.rank;
|
result->process = config_mpi.rank;
|
||||||
result->task = n_task;
|
result->task = n_task;
|
||||||
//
|
//
|
||||||
|
@@ -17,15 +17,14 @@ namespace platform {
|
|||||||
public:
|
public:
|
||||||
explicit GridExperiment(struct ConfigGrid& config);
|
explicit GridExperiment(struct ConfigGrid& config);
|
||||||
~GridExperiment() = default;
|
~GridExperiment() = default;
|
||||||
json loadResults();
|
json getResults();
|
||||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
|
||||||
private:
|
private:
|
||||||
|
json computed_results;
|
||||||
void save(json& results);
|
void save(json& results);
|
||||||
json initializeResults();
|
json initializeResults();
|
||||||
|
json build_tasks(Datasets& datasets);
|
||||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
void compile_results(json& results, json& all_results, std::string& model);
|
||||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
|
||||||
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
|
||||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||||
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||||
};
|
};
|
||||||
|
@@ -19,6 +19,41 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
return json();
|
return json();
|
||||||
}
|
}
|
||||||
|
json GridSearch::build_tasks(Datasets& datasets)
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Each task is a json object with the following structure:
|
||||||
|
* {
|
||||||
|
* "dataset": "dataset_name",
|
||||||
|
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||||
|
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||||
|
* "seed": # of seed to use,
|
||||||
|
* "fold": # of fold to process
|
||||||
|
* }
|
||||||
|
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||||
|
*/
|
||||||
|
auto tasks = json::array();
|
||||||
|
auto grid = GridData(Paths::grid_input(config.model));
|
||||||
|
auto all_datasets = datasets.getNames();
|
||||||
|
auto datasets_names = filterDatasets(datasets);
|
||||||
|
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||||
|
auto dataset = datasets_names[idx_dataset];
|
||||||
|
for (const auto& seed : config.seeds) {
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||||
|
json task = {
|
||||||
|
{ "dataset", dataset },
|
||||||
|
{ "idx_dataset", idx_dataset},
|
||||||
|
{ "seed", seed },
|
||||||
|
{ "fold", n_fold},
|
||||||
|
};
|
||||||
|
tasks.push_back(task);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
shuffle_and_progress_bar(tasks);
|
||||||
|
return tasks;
|
||||||
|
}
|
||||||
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
||||||
{
|
{
|
||||||
// Load datasets
|
// Load datasets
|
||||||
@@ -93,66 +128,7 @@ namespace platform {
|
|||||||
};
|
};
|
||||||
file << output.dump(4);
|
file << output.dump(4);
|
||||||
}
|
}
|
||||||
//
|
void GridSearch::compile_results(json& results, json& all_results, std::string& model)
|
||||||
//
|
|
||||||
//
|
|
||||||
json GridSearch::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
json results;
|
|
||||||
int num_tasks = tasks.size();
|
|
||||||
//
|
|
||||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
||||||
//
|
|
||||||
for (int i = 0; i < num_tasks; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
//
|
|
||||||
// 2a.2 Producer will send the end message to all the consumers
|
|
||||||
//
|
|
||||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
void GridSearch::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
//
|
|
||||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
|
||||||
int task;
|
|
||||||
while (true) {
|
|
||||||
MPI_Status status;
|
|
||||||
//
|
|
||||||
// 2b.2 Consumers receive the task from the producer and process it
|
|
||||||
//
|
|
||||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_END) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
|
||||||
//
|
|
||||||
// 2b.3 Consumers send the result to the producer
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void GridSearch::select_best_results_folds(json& results, json& all_results, std::string& model)
|
|
||||||
{
|
{
|
||||||
Timer timer;
|
Timer timer;
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
auto grid = GridData(Paths::grid_input(model));
|
||||||
|
@@ -24,10 +24,9 @@ namespace platform {
|
|||||||
private:
|
private:
|
||||||
void save(json& results);
|
void save(json& results);
|
||||||
json initializeResults();
|
json initializeResults();
|
||||||
|
json build_tasks(Datasets& datasets);
|
||||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
void compile_results(json& results, json& all_results, std::string& model);
|
||||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
|
||||||
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
|
||||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||||
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||||
};
|
};
|
||||||
|
Reference in New Issue
Block a user