Refactor grid classes and add summary of tasks at the end
This commit is contained in:
@@ -137,7 +137,7 @@
|
|||||||
|
|
||||||
include(CMakeParseArguments)
|
include(CMakeParseArguments)
|
||||||
|
|
||||||
option(CODE_COVERAGE_VERBOSE "Verbose information" FALSE)
|
option(CODE_COVERAGE_VERBOSE "Verbose information" TRUE)
|
||||||
|
|
||||||
# Check prereqs
|
# Check prereqs
|
||||||
find_program( GCOV_PATH gcov )
|
find_program( GCOV_PATH gcov )
|
||||||
@@ -160,7 +160,11 @@ foreach(LANG ${LANGUAGES})
|
|||||||
endif()
|
endif()
|
||||||
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
||||||
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
||||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
if ("${LANG}" MATCHES "CUDA")
|
||||||
|
message(STATUS "Ignoring CUDA")
|
||||||
|
else()
|
||||||
|
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
endforeach()
|
endforeach()
|
||||||
|
|
||||||
|
Submodule lib/Files updated: a4329f5f9d...18c79f6d48
Submodule lib/catch2 updated: 0321d2fce3...914aeecfe2
2
lib/json
2
lib/json
Submodule lib/json updated: 620034ecec...48e7b4c23b
Submodule lib/libxlsxwriter updated: 8206bda64a...14f13513cb
@@ -318,7 +318,7 @@ void experiment(argparse::ArgumentParser& program)
|
|||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
config.platform = env.get("platform");
|
config.platform = env.get("platform");
|
||||||
platform::Paths::createPath(platform::Paths::grid());
|
platform::Paths::createPath(platform::Paths::grid());
|
||||||
// auto grid_experiment = platform::GridExperiment(config);
|
auto grid_experiment = platform::GridExperiment(config);
|
||||||
platform::Timer timer;
|
platform::Timer timer;
|
||||||
timer.start();
|
timer.start();
|
||||||
struct platform::ConfigMPI mpi_config;
|
struct platform::ConfigMPI mpi_config;
|
||||||
@@ -329,7 +329,7 @@ void experiment(argparse::ArgumentParser& program)
|
|||||||
if (mpi_config.n_procs < 2) {
|
if (mpi_config.n_procs < 2) {
|
||||||
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
|
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
|
||||||
}
|
}
|
||||||
// grid_experiment.go(mpi_config);
|
grid_experiment.go(mpi_config);
|
||||||
if (mpi_config.rank == mpi_config.manager) {
|
if (mpi_config.rank == mpi_config.manager) {
|
||||||
// auto results = grid_experiment.loadResults();
|
// auto results = grid_experiment.loadResults();
|
||||||
// list_results(results, config.model);
|
// list_results(results, config.model);
|
||||||
|
@@ -1,3 +1,5 @@
|
|||||||
|
#include <random>
|
||||||
|
#include <cstddef>
|
||||||
#include "common/DotEnv.h"
|
#include "common/DotEnv.h"
|
||||||
#include "common/Paths.h"
|
#include "common/Paths.h"
|
||||||
#include "GridBase.h"
|
#include "GridBase.h"
|
||||||
@@ -18,5 +20,235 @@ namespace platform {
|
|||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
std::string GridBase::get_color_rank(int rank)
|
||||||
|
{
|
||||||
|
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
|
||||||
|
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||||
|
auto idx = rank % id.size();
|
||||||
|
return *(colors.begin() + rank % colors.size()) + id[idx];
|
||||||
|
};
|
||||||
|
json GridBase::build_tasks()
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Each task is a json object with the following structure:
|
||||||
|
* {
|
||||||
|
* "dataset": "dataset_name",
|
||||||
|
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||||
|
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||||
|
* "seed": # of seed to use,
|
||||||
|
* "fold": # of fold to process
|
||||||
|
* }
|
||||||
|
*/
|
||||||
|
auto tasks = json::array();
|
||||||
|
auto grid = GridData(Paths::grid_input(config.model));
|
||||||
|
auto datasets = Datasets(false, Paths::datasets());
|
||||||
|
auto all_datasets = datasets.getNames();
|
||||||
|
auto datasets_names = filterDatasets(datasets);
|
||||||
|
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||||
|
auto dataset = datasets_names[idx_dataset];
|
||||||
|
for (const auto& seed : config.seeds) {
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||||
|
json task = {
|
||||||
|
{ "dataset", dataset },
|
||||||
|
{ "idx_dataset", idx_dataset},
|
||||||
|
{ "seed", seed },
|
||||||
|
{ "fold", n_fold},
|
||||||
|
};
|
||||||
|
tasks.push_back(task);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
||||||
|
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||||
|
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||||
|
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
||||||
|
std::cout << separator << std::flush;
|
||||||
|
for (int i = 0; i < tasks.size(); ++i) {
|
||||||
|
if ((i + 1) % 10 == 0)
|
||||||
|
std::cout << separator;
|
||||||
|
else
|
||||||
|
std::cout << (i + 1) % 10;
|
||||||
|
}
|
||||||
|
std::cout << separator << std::endl << separator << std::flush;
|
||||||
|
return tasks;
|
||||||
|
}
|
||||||
|
void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi)
|
||||||
|
{
|
||||||
|
// Report the tasks done by each worker, showing dataset number, seed, fold and time spent
|
||||||
|
// The format I want to show is:
|
||||||
|
// worker, dataset, seed, fold, time
|
||||||
|
// with headers
|
||||||
|
std::cout << Colors::RESET() << "* Summary of tasks done by each worker" << std::endl;
|
||||||
|
json worker_tasks = json::array();
|
||||||
|
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||||
|
worker_tasks.push_back(json::array());
|
||||||
|
}
|
||||||
|
int max_dataset = 7;
|
||||||
|
for (const auto& [key, results] : all_results.items()) {
|
||||||
|
auto dataset = key;
|
||||||
|
if (dataset.size() > max_dataset)
|
||||||
|
max_dataset = dataset.size();
|
||||||
|
for (const auto& result : results) {
|
||||||
|
int n_task = result["task"].get<int>();
|
||||||
|
json task = tasks[n_task];
|
||||||
|
auto seed = task["seed"].get<int>();
|
||||||
|
auto fold = task["fold"].get<int>();
|
||||||
|
auto time = result["time"].get<double>();
|
||||||
|
auto worker = result["process"].get<int>();
|
||||||
|
json line = {
|
||||||
|
{ "dataset", dataset },
|
||||||
|
{ "seed", seed },
|
||||||
|
{ "fold", fold },
|
||||||
|
{ "time", time }
|
||||||
|
};
|
||||||
|
worker_tasks[worker].push_back(line);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << Colors::MAGENTA() << " W " << setw(max_dataset) << std::left << "Dataset";
|
||||||
|
std::cout << " Seed Fold Time" << std::endl;
|
||||||
|
std::cout << "=== " << std::string(max_dataset, '=') << " ==== ==== " << std::string(15, '=') << std::endl;
|
||||||
|
for (int worker = 0; worker < config_mpi.n_procs; ++worker) {
|
||||||
|
auto color = (worker % 2) ? Colors::CYAN() : Colors::BLUE();
|
||||||
|
std::cout << color << std::right << setw(3) << worker << " ";
|
||||||
|
if (worker == config_mpi.manager) {
|
||||||
|
std::cout << "Manager" << std::endl;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (worker_tasks[worker].empty()) {
|
||||||
|
std::cout << "No tasks" << std::endl;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
bool first = true;
|
||||||
|
double total = 0.0;
|
||||||
|
int num_tasks = 0;
|
||||||
|
for (const auto& task : worker_tasks[worker]) {
|
||||||
|
num_tasks++;
|
||||||
|
if (!first)
|
||||||
|
std::cout << std::string(4, ' ');
|
||||||
|
else
|
||||||
|
first = false;
|
||||||
|
std::cout << std::left << setw(max_dataset) << task["dataset"].get<std::string>();
|
||||||
|
std::cout << " " << setw(4) << std::right << task["seed"].get<int>();
|
||||||
|
std::cout << " " << setw(4) << task["fold"].get<int>();
|
||||||
|
std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << task["time"].get<double>() << std::endl;
|
||||||
|
total += task["time"].get<double>();
|
||||||
|
}
|
||||||
|
if (num_tasks > 1) {
|
||||||
|
std::cout << Colors::MAGENTA() << setw(3) << std::right << num_tasks;
|
||||||
|
std::cout << setw(max_dataset) << " Total..." << std::string(10, '.');
|
||||||
|
std::cout << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void GridBase::go(struct ConfigMPI& config_mpi)
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Each task is a json object with the following structure:
|
||||||
|
* {
|
||||||
|
* "dataset": "dataset_name",
|
||||||
|
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||||
|
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||||
|
* "seed": # of seed to use,
|
||||||
|
* "fold": # of fold to process
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||||
|
*
|
||||||
|
* The overall process consists in these steps:
|
||||||
|
* 0. Create the MPI result type & tasks
|
||||||
|
* 0.1 Create the MPI result type
|
||||||
|
* 0.2 Manager creates the tasks
|
||||||
|
* 1. Manager will broadcast the tasks to all the processes
|
||||||
|
* 1.1 Broadcast the number of tasks
|
||||||
|
* 1.2 Broadcast the length of the following string
|
||||||
|
* 1.2 Broadcast the tasks as a char* string
|
||||||
|
* 2a. Producer delivers the tasks to the consumers
|
||||||
|
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||||
|
* 2a.2 Producer will send the end message to all the consumers
|
||||||
|
* 2b. Consumers process the tasks and send the results to the producer
|
||||||
|
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||||
|
* 2b.2 Consumers receive the task from the producer and process it
|
||||||
|
* 2b.3 Consumers send the result to the producer
|
||||||
|
* 3. Manager select the bests scores for each dataset
|
||||||
|
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||||
|
* 3.2 Save the results
|
||||||
|
* 3.3 Summary of jobs done
|
||||||
|
*/
|
||||||
|
//
|
||||||
|
// 0.1 Create the MPI result type
|
||||||
|
//
|
||||||
|
Task_Result result;
|
||||||
|
int tasks_size;
|
||||||
|
MPI_Datatype MPI_Result;
|
||||||
|
MPI_Datatype type[10] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_INT, MPI_INT };
|
||||||
|
int blocklen[10] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
|
||||||
|
MPI_Aint disp[10];
|
||||||
|
disp[0] = offsetof(Task_Result, idx_dataset);
|
||||||
|
disp[1] = offsetof(Task_Result, idx_combination);
|
||||||
|
disp[2] = offsetof(Task_Result, n_fold);
|
||||||
|
disp[3] = offsetof(Task_Result, score);
|
||||||
|
disp[4] = offsetof(Task_Result, time);
|
||||||
|
disp[5] = offsetof(Task_Result, nodes);
|
||||||
|
disp[6] = offsetof(Task_Result, leaves);
|
||||||
|
disp[7] = offsetof(Task_Result, depth);
|
||||||
|
disp[8] = offsetof(Task_Result, process);
|
||||||
|
disp[9] = offsetof(Task_Result, task);
|
||||||
|
MPI_Type_create_struct(10, blocklen, disp, type, &MPI_Result);
|
||||||
|
MPI_Type_commit(&MPI_Result);
|
||||||
|
//
|
||||||
|
// 0.2 Manager creates the tasks
|
||||||
|
//
|
||||||
|
char* msg;
|
||||||
|
json tasks;
|
||||||
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
|
timer.start();
|
||||||
|
tasks = build_tasks();
|
||||||
|
auto tasks_str = tasks.dump();
|
||||||
|
tasks_size = tasks_str.size();
|
||||||
|
msg = new char[tasks_size + 1];
|
||||||
|
strcpy(msg, tasks_str.c_str());
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// 1. Manager will broadcast the tasks to all the processes
|
||||||
|
//
|
||||||
|
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||||
|
if (config_mpi.rank != config_mpi.manager) {
|
||||||
|
msg = new char[tasks_size + 1];
|
||||||
|
}
|
||||||
|
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||||
|
tasks = json::parse(msg);
|
||||||
|
delete[] msg;
|
||||||
|
auto env = platform::DotEnv();
|
||||||
|
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
||||||
|
|
||||||
|
if (config_mpi.rank == config_mpi.manager) {
|
||||||
|
//
|
||||||
|
// 2a. Producer delivers the tasks to the consumers
|
||||||
|
//
|
||||||
|
auto datasets_names = filterDatasets(datasets);
|
||||||
|
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||||
|
std::cout << separator << std::endl;
|
||||||
|
//
|
||||||
|
// 3. Manager select the bests sccores for each dataset
|
||||||
|
//
|
||||||
|
auto results = initializeResults();
|
||||||
|
select_best_results_folds(results, all_results, config.model);
|
||||||
|
//
|
||||||
|
// 3.2 Save the results
|
||||||
|
//
|
||||||
|
save(results);
|
||||||
|
//
|
||||||
|
// 3.3 Summary of jobs done
|
||||||
|
//
|
||||||
|
if (!config.quiet)
|
||||||
|
summary(all_results, tasks, config_mpi);
|
||||||
|
} else {
|
||||||
|
//
|
||||||
|
// 2b. Consumers process the tasks and send the results to the producer
|
||||||
|
//
|
||||||
|
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
@@ -19,23 +19,23 @@ namespace platform {
|
|||||||
public:
|
public:
|
||||||
explicit GridBase(struct ConfigGrid& config);
|
explicit GridBase(struct ConfigGrid& config);
|
||||||
~GridBase() = default;
|
~GridBase() = default;
|
||||||
|
void go(struct ConfigMPI& config_mpi);
|
||||||
protected:
|
protected:
|
||||||
virtual json build_tasks() = 0;
|
|
||||||
virtual void save(json& results) = 0;
|
virtual void save(json& results) = 0;
|
||||||
|
virtual std::vector<std::string> filterDatasets(Datasets& datasets) const = 0;
|
||||||
|
virtual json initializeResults() = 0;
|
||||||
|
virtual json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
||||||
|
virtual void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
||||||
|
virtual void select_best_results_folds(json& results, json& all_results, std::string& model) = 0;
|
||||||
|
virtual json store_result(std::vector<std::string>& names, Task_Result& result, json& results) = 0;
|
||||||
|
virtual void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result) = 0;
|
||||||
|
std::string get_color_rank(int rank);
|
||||||
|
json build_tasks();
|
||||||
|
void summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi);
|
||||||
struct ConfigGrid config;
|
struct ConfigGrid config;
|
||||||
Timer timer; // used to measure the time of the whole process
|
Timer timer; // used to measure the time of the whole process
|
||||||
const std::string separator = "|";
|
const std::string separator = "|";
|
||||||
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
|
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
|
||||||
};
|
};
|
||||||
class MPI_Base {
|
|
||||||
public:
|
|
||||||
static std::string get_color_rank(int rank)
|
|
||||||
{
|
|
||||||
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
|
|
||||||
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
||||||
auto idx = rank % id.size();
|
|
||||||
return *(colors.begin() + rank % colors.size()) + id[idx];
|
|
||||||
}
|
|
||||||
};
|
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
||||||
#endif
|
#endif
|
@@ -38,8 +38,13 @@ namespace platform {
|
|||||||
uint idx_dataset;
|
uint idx_dataset;
|
||||||
uint idx_combination;
|
uint idx_combination;
|
||||||
int n_fold;
|
int n_fold;
|
||||||
double score;
|
double score; // Experiment: Score test, no score train in this case
|
||||||
double time;
|
double time; // Experiment: Time train+test, no time train and/or time test in this case
|
||||||
|
double nodes; // Experiment specific
|
||||||
|
double leaves; // Experiment specific
|
||||||
|
double depth; // Experiment specific
|
||||||
|
int process;
|
||||||
|
int task;
|
||||||
} Task_Result;
|
} Task_Result;
|
||||||
const int TAG_QUERY = 1;
|
const int TAG_QUERY = 1;
|
||||||
const int TAG_RESULT = 2;
|
const int TAG_RESULT = 2;
|
||||||
|
@@ -4,12 +4,10 @@
|
|||||||
#include <folding.hpp>
|
#include <folding.hpp>
|
||||||
#include "main/Models.h"
|
#include "main/Models.h"
|
||||||
#include "common/Paths.h"
|
#include "common/Paths.h"
|
||||||
#include "common/Colors.h"
|
|
||||||
#include "common/Utils.h"
|
#include "common/Utils.h"
|
||||||
#include "GridExperiment.h"
|
#include "GridExperiment.h"
|
||||||
|
|
||||||
namespace platform {
|
namespace platform {
|
||||||
|
|
||||||
GridExperiment::GridExperiment(struct ConfigGrid& config) : GridBase(config)
|
GridExperiment::GridExperiment(struct ConfigGrid& config) : GridBase(config)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
@@ -21,56 +19,59 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
return json();
|
return json();
|
||||||
}
|
}
|
||||||
json GridExperiment::build_tasks()
|
std::vector<std::string> GridExperiment::filterDatasets(Datasets& datasets) const
|
||||||
{
|
{
|
||||||
/*
|
// Load datasets
|
||||||
* Each task is a json object with the following structure:
|
auto datasets_names = datasets.getNames();
|
||||||
* {
|
if (config.continue_from != NO_CONTINUE()) {
|
||||||
* "dataset": "dataset_name",
|
// Continue previous execution:
|
||||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||||
* "seed": # of seed to use,
|
}
|
||||||
* "fold": # of fold to process
|
// Remove datasets already processed
|
||||||
* }
|
std::vector<string>::iterator it = datasets_names.begin();
|
||||||
*/
|
while (it != datasets_names.end()) {
|
||||||
auto tasks = json::array();
|
if (*it != config.continue_from) {
|
||||||
auto grid = GridData(Paths::grid_input(config.model));
|
it = datasets_names.erase(it);
|
||||||
auto datasets = Datasets(false, Paths::datasets());
|
} else {
|
||||||
auto all_datasets = datasets.getNames();
|
if (config.only)
|
||||||
auto datasets_names = all_datasets;
|
++it;
|
||||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
else
|
||||||
auto dataset = datasets_names[idx_dataset];
|
break;
|
||||||
for (const auto& seed : config.seeds) {
|
|
||||||
auto combinations = grid.getGrid(dataset);
|
|
||||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
|
||||||
json task = {
|
|
||||||
{ "dataset", dataset },
|
|
||||||
{ "idx_dataset", idx_dataset},
|
|
||||||
{ "seed", seed },
|
|
||||||
{ "fold", n_fold},
|
|
||||||
};
|
|
||||||
tasks.push_back(task);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
// Exclude datasets
|
||||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
for (const auto& name : config.excluded) {
|
||||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
auto dataset = name.get<std::string>();
|
||||||
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||||
std::cout << separator << std::flush;
|
if (it == datasets_names.end()) {
|
||||||
for (int i = 0; i < tasks.size(); ++i) {
|
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||||
if ((i + 1) % 10 == 0)
|
}
|
||||||
std::cout << separator;
|
datasets_names.erase(it);
|
||||||
else
|
|
||||||
std::cout << (i + 1) % 10;
|
|
||||||
}
|
}
|
||||||
std::cout << separator << std::endl << separator << std::flush;
|
return datasets_names;
|
||||||
return tasks;
|
|
||||||
}
|
}
|
||||||
json GridExperiment::initializeResults()
|
json GridExperiment::initializeResults()
|
||||||
{
|
{
|
||||||
// Load previous results if continue is set
|
// Load previous results if continue is set
|
||||||
json results;
|
json results;
|
||||||
|
if (config.continue_from != NO_CONTINUE()) {
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
|
||||||
|
try {
|
||||||
|
std::ifstream file(Paths::grid_output(config.model));
|
||||||
|
if (file.is_open()) {
|
||||||
|
results = json::parse(file);
|
||||||
|
results = results["results"];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
catch (const std::exception& e) {
|
||||||
|
std::cerr << "* There were no previous results" << std::endl;
|
||||||
|
std::cerr << "* Initizalizing new results" << std::endl;
|
||||||
|
results = json();
|
||||||
|
}
|
||||||
|
}
|
||||||
return results;
|
return results;
|
||||||
}
|
}
|
||||||
void GridExperiment::save(json& results)
|
void GridExperiment::save(json& results)
|
||||||
@@ -92,5 +93,226 @@ namespace platform {
|
|||||||
};
|
};
|
||||||
file << output.dump(4);
|
file << output.dump(4);
|
||||||
}
|
}
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
json GridExperiment::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||||
|
{
|
||||||
|
Task_Result result;
|
||||||
|
json results;
|
||||||
|
int num_tasks = tasks.size();
|
||||||
|
//
|
||||||
|
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||||
|
//
|
||||||
|
for (int i = 0; i < num_tasks; ++i) {
|
||||||
|
MPI_Status status;
|
||||||
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_RESULT) {
|
||||||
|
//Store result
|
||||||
|
store_result(names, result, results);
|
||||||
|
|
||||||
|
}
|
||||||
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// 2a.2 Producer will send the end message to all the consumers
|
||||||
|
//
|
||||||
|
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||||
|
MPI_Status status;
|
||||||
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_RESULT) {
|
||||||
|
//Store result
|
||||||
|
store_result(names, result, results);
|
||||||
|
}
|
||||||
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
}
|
||||||
|
void GridExperiment::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||||
|
{
|
||||||
|
Task_Result result;
|
||||||
|
//
|
||||||
|
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||||
|
//
|
||||||
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||||
|
int task;
|
||||||
|
while (true) {
|
||||||
|
MPI_Status status;
|
||||||
|
//
|
||||||
|
// 2b.2 Consumers receive the task from the producer and process it
|
||||||
|
//
|
||||||
|
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_END) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||||
|
//
|
||||||
|
// 2b.3 Consumers send the result to the producer
|
||||||
|
//
|
||||||
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void GridExperiment::select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||||
|
{
|
||||||
|
Timer timer;
|
||||||
|
auto grid = GridData(Paths::grid_input(model));
|
||||||
|
//
|
||||||
|
// Select the best result of the computed outer folds
|
||||||
|
//
|
||||||
|
for (const auto& result : all_results.items()) {
|
||||||
|
// each result has the results of all the outer folds as each one were a different task
|
||||||
|
double best_score = 0.0;
|
||||||
|
json best;
|
||||||
|
for (const auto& result_fold : result.value()) {
|
||||||
|
double score = result_fold["score"].get<double>();
|
||||||
|
if (score > best_score) {
|
||||||
|
best_score = score;
|
||||||
|
best = result_fold;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto dataset = result.key();
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
json json_best = {
|
||||||
|
{ "score", best_score },
|
||||||
|
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||||
|
{ "date", get_date() + " " + get_time() },
|
||||||
|
{ "grid", grid.getInputGrid(dataset) },
|
||||||
|
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||||
|
};
|
||||||
|
results[dataset] = json_best;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
json GridExperiment::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||||
|
{
|
||||||
|
json json_result = {
|
||||||
|
{ "score", result.score },
|
||||||
|
{ "combination", result.idx_combination },
|
||||||
|
{ "fold", result.n_fold },
|
||||||
|
{ "time", result.time },
|
||||||
|
{ "dataset", result.idx_dataset },
|
||||||
|
{ "process", result.process },
|
||||||
|
{ "task", result.task }
|
||||||
|
};
|
||||||
|
auto name = names[result.idx_dataset];
|
||||||
|
if (!results.contains(name)) {
|
||||||
|
results[name] = json::array();
|
||||||
|
}
|
||||||
|
results[name].push_back(json_result);
|
||||||
|
return results;
|
||||||
|
}
|
||||||
|
void GridExperiment::consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||||
|
{
|
||||||
|
//
|
||||||
|
// initialize
|
||||||
|
//
|
||||||
|
Timer timer;
|
||||||
|
timer.start();
|
||||||
|
json task = tasks[n_task];
|
||||||
|
auto model = config.model;
|
||||||
|
auto grid = GridData(Paths::grid_input(model));
|
||||||
|
auto dataset_name = task["dataset"].get<std::string>();
|
||||||
|
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||||
|
auto seed = task["seed"].get<int>();
|
||||||
|
auto n_fold = task["fold"].get<int>();
|
||||||
|
bool stratified = config.stratified;
|
||||||
|
bayesnet::Smoothing_t smooth;
|
||||||
|
if (config.smooth_strategy == "ORIGINAL")
|
||||||
|
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||||
|
else if (config.smooth_strategy == "LAPLACE")
|
||||||
|
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||||
|
else if (config.smooth_strategy == "CESTNIK")
|
||||||
|
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||||
|
//
|
||||||
|
// Generate the hyperparameters combinations
|
||||||
|
//
|
||||||
|
auto& dataset = datasets.getDataset(dataset_name);
|
||||||
|
auto combinations = grid.getGrid(dataset_name);
|
||||||
|
dataset.load();
|
||||||
|
auto [X, y] = dataset.getTensors();
|
||||||
|
auto features = dataset.getFeatures();
|
||||||
|
auto className = dataset.getClassName();
|
||||||
|
//
|
||||||
|
// Start working on task
|
||||||
|
//
|
||||||
|
folding::Fold* fold;
|
||||||
|
if (stratified)
|
||||||
|
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
||||||
|
else
|
||||||
|
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
||||||
|
auto [train, test] = fold->getFold(n_fold);
|
||||||
|
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||||
|
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||||
|
float best_fold_score = 0.0;
|
||||||
|
int best_idx_combination = -1;
|
||||||
|
json best_fold_hyper;
|
||||||
|
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||||
|
auto hyperparam_line = combinations[idx_combination];
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||||
|
folding::Fold* nested_fold;
|
||||||
|
if (config.stratified)
|
||||||
|
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||||
|
else
|
||||||
|
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||||
|
double score = 0.0;
|
||||||
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||||
|
//
|
||||||
|
// Nested level fold
|
||||||
|
//
|
||||||
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||||
|
auto train_nested_t = torch::tensor(train_nested);
|
||||||
|
auto test_nested_t = torch::tensor(test_nested);
|
||||||
|
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||||
|
auto y_nested_train = y_train.index({ train_nested_t });
|
||||||
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||||
|
auto y_nested_test = y_train.index({ test_nested_t });
|
||||||
|
//
|
||||||
|
// Build Classifier with selected hyperparameters
|
||||||
|
//
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, dataset_name);
|
||||||
|
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||||
|
//
|
||||||
|
// Train model
|
||||||
|
//
|
||||||
|
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||||
|
//
|
||||||
|
// Test model
|
||||||
|
//
|
||||||
|
score += clf->score(X_nested_test, y_nested_test);
|
||||||
|
}
|
||||||
|
delete nested_fold;
|
||||||
|
score /= config.nested;
|
||||||
|
if (score > best_fold_score) {
|
||||||
|
best_fold_score = score;
|
||||||
|
best_idx_combination = idx_combination;
|
||||||
|
best_fold_hyper = hyperparam_line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
delete fold;
|
||||||
|
//
|
||||||
|
// Build Classifier with the best hyperparameters to obtain the best score
|
||||||
|
//
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, dataset_name);
|
||||||
|
clf->setHyperparameters(best_fold_hyper);
|
||||||
|
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||||
|
best_fold_score = clf->score(X_test, y_test);
|
||||||
|
//
|
||||||
|
// Return the result
|
||||||
|
//
|
||||||
|
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||||
|
result->idx_combination = best_idx_combination;
|
||||||
|
result->score = best_fold_score;
|
||||||
|
result->n_fold = n_fold;
|
||||||
|
result->time = timer.getDuration();
|
||||||
|
result->process = config_mpi.rank;
|
||||||
|
result->task = n_task;
|
||||||
|
//
|
||||||
|
// Update progress bar
|
||||||
|
//
|
||||||
|
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||||
|
}
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
@@ -18,234 +18,16 @@ namespace platform {
|
|||||||
explicit GridExperiment(struct ConfigGrid& config);
|
explicit GridExperiment(struct ConfigGrid& config);
|
||||||
~GridExperiment() = default;
|
~GridExperiment() = default;
|
||||||
json loadResults();
|
json loadResults();
|
||||||
void go(struct ConfigMPI& config_mpi);
|
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||||
private:
|
private:
|
||||||
void save(json& results);
|
void save(json& results);
|
||||||
json initializeResults();
|
json initializeResults();
|
||||||
json build_tasks();
|
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||||
};
|
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||||
/* *************************************************************************************************************
|
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||||
//
|
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
||||||
// MPI Experiment Functions
|
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||||
//
|
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||||
************************************************************************************************************* */
|
|
||||||
class MPI_EXPERIMENT :public MPI_Base {
|
|
||||||
public:
|
|
||||||
static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
json results;
|
|
||||||
int num_tasks = tasks.size();
|
|
||||||
|
|
||||||
//
|
|
||||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
||||||
//
|
|
||||||
for (int i = 0; i < num_tasks; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
//
|
|
||||||
// 2a.2 Producer will send the end message to all the consumers
|
|
||||||
//
|
|
||||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
static void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
//
|
|
||||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
|
||||||
int task;
|
|
||||||
while (true) {
|
|
||||||
MPI_Status status;
|
|
||||||
//
|
|
||||||
// 2b.2 Consumers receive the task from the producer and process it
|
|
||||||
//
|
|
||||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_END) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
|
||||||
//
|
|
||||||
// 2b.3 Consumers send the result to the producer
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
static void select_best_results_folds(json& results, json& all_results, std::string& model)
|
|
||||||
{
|
|
||||||
Timer timer;
|
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
|
||||||
//
|
|
||||||
// Select the best result of the computed outer folds
|
|
||||||
//
|
|
||||||
for (const auto& result : all_results.items()) {
|
|
||||||
// each result has the results of all the outer folds as each one were a different task
|
|
||||||
double best_score = 0.0;
|
|
||||||
json best;
|
|
||||||
for (const auto& result_fold : result.value()) {
|
|
||||||
double score = result_fold["score"].get<double>();
|
|
||||||
if (score > best_score) {
|
|
||||||
best_score = score;
|
|
||||||
best = result_fold;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
auto dataset = result.key();
|
|
||||||
auto combinations = grid.getGrid(dataset);
|
|
||||||
json json_best = {
|
|
||||||
{ "score", best_score },
|
|
||||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
|
||||||
{ "date", get_date() + " " + get_time() },
|
|
||||||
{ "grid", grid.getInputGrid(dataset) },
|
|
||||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
|
||||||
};
|
|
||||||
results[dataset] = json_best;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
static json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
|
||||||
{
|
|
||||||
json json_result = {
|
|
||||||
{ "score", result.score },
|
|
||||||
{ "combination", result.idx_combination },
|
|
||||||
{ "fold", result.n_fold },
|
|
||||||
{ "time", result.time },
|
|
||||||
{ "dataset", result.idx_dataset }
|
|
||||||
};
|
|
||||||
auto name = names[result.idx_dataset];
|
|
||||||
if (!results.contains(name)) {
|
|
||||||
results[name] = json::array();
|
|
||||||
}
|
|
||||||
results[name].push_back(json_result);
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
static void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
|
||||||
{
|
|
||||||
//
|
|
||||||
// initialize
|
|
||||||
//
|
|
||||||
Timer timer;
|
|
||||||
timer.start();
|
|
||||||
json task = tasks[n_task];
|
|
||||||
auto model = config.model;
|
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
|
||||||
auto dataset_name = task["dataset"].get<std::string>();
|
|
||||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
|
||||||
auto seed = task["seed"].get<int>();
|
|
||||||
auto n_fold = task["fold"].get<int>();
|
|
||||||
bool stratified = config.stratified;
|
|
||||||
bayesnet::Smoothing_t smooth;
|
|
||||||
if (config.smooth_strategy == "ORIGINAL")
|
|
||||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
|
||||||
else if (config.smooth_strategy == "LAPLACE")
|
|
||||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
|
||||||
else if (config.smooth_strategy == "CESTNIK")
|
|
||||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
|
||||||
//
|
|
||||||
// Generate the hyperparameters combinations
|
|
||||||
//
|
|
||||||
auto& dataset = datasets.getDataset(dataset_name);
|
|
||||||
auto combinations = grid.getGrid(dataset_name);
|
|
||||||
dataset.load();
|
|
||||||
auto [X, y] = dataset.getTensors();
|
|
||||||
auto features = dataset.getFeatures();
|
|
||||||
auto className = dataset.getClassName();
|
|
||||||
//
|
|
||||||
// Start working on task
|
|
||||||
//
|
|
||||||
folding::Fold* fold;
|
|
||||||
if (stratified)
|
|
||||||
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
|
||||||
else
|
|
||||||
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
|
||||||
auto [train, test] = fold->getFold(n_fold);
|
|
||||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
|
||||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
|
||||||
float best_fold_score = 0.0;
|
|
||||||
int best_idx_combination = -1;
|
|
||||||
json best_fold_hyper;
|
|
||||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
|
||||||
auto hyperparam_line = combinations[idx_combination];
|
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
||||||
folding::Fold* nested_fold;
|
|
||||||
if (config.stratified)
|
|
||||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
|
||||||
else
|
|
||||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
|
||||||
double score = 0.0;
|
|
||||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
|
||||||
//
|
|
||||||
// Nested level fold
|
|
||||||
//
|
|
||||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
|
||||||
auto train_nested_t = torch::tensor(train_nested);
|
|
||||||
auto test_nested_t = torch::tensor(test_nested);
|
|
||||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
|
||||||
auto y_nested_train = y_train.index({ train_nested_t });
|
|
||||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
|
||||||
auto y_nested_test = y_train.index({ test_nested_t });
|
|
||||||
//
|
|
||||||
// Build Classifier with selected hyperparameters
|
|
||||||
//
|
|
||||||
auto clf = Models::instance()->create(config.model);
|
|
||||||
auto valid = clf->getValidHyperparameters();
|
|
||||||
hyperparameters.check(valid, dataset_name);
|
|
||||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
|
||||||
//
|
|
||||||
// Train model
|
|
||||||
//
|
|
||||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
|
||||||
//
|
|
||||||
// Test model
|
|
||||||
//
|
|
||||||
score += clf->score(X_nested_test, y_nested_test);
|
|
||||||
}
|
|
||||||
delete nested_fold;
|
|
||||||
score /= config.nested;
|
|
||||||
if (score > best_fold_score) {
|
|
||||||
best_fold_score = score;
|
|
||||||
best_idx_combination = idx_combination;
|
|
||||||
best_fold_hyper = hyperparam_line;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
delete fold;
|
|
||||||
//
|
|
||||||
// Build Classifier with the best hyperparameters to obtain the best score
|
|
||||||
//
|
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
|
||||||
auto clf = Models::instance()->create(config.model);
|
|
||||||
auto valid = clf->getValidHyperparameters();
|
|
||||||
hyperparameters.check(valid, dataset_name);
|
|
||||||
clf->setHyperparameters(best_fold_hyper);
|
|
||||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
|
||||||
best_fold_score = clf->score(X_test, y_test);
|
|
||||||
//
|
|
||||||
// Return the result
|
|
||||||
//
|
|
||||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
|
||||||
result->idx_combination = best_idx_combination;
|
|
||||||
result->score = best_fold_score;
|
|
||||||
result->n_fold = n_fold;
|
|
||||||
result->time = timer.getDuration();
|
|
||||||
//
|
|
||||||
// Update progress bar
|
|
||||||
//
|
|
||||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
||||||
#endif
|
#endif
|
@@ -52,157 +52,13 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
return datasets_names;
|
return datasets_names;
|
||||||
}
|
}
|
||||||
json GridSearch::build_tasks()
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* Each task is a json object with the following structure:
|
|
||||||
* {
|
|
||||||
* "dataset": "dataset_name",
|
|
||||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
|
||||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
|
||||||
* "seed": # of seed to use,
|
|
||||||
* "fold": # of fold to process
|
|
||||||
* }
|
|
||||||
*/
|
|
||||||
auto tasks = json::array();
|
|
||||||
auto grid = GridData(Paths::grid_input(config.model));
|
|
||||||
auto datasets = Datasets(false, Paths::datasets());
|
|
||||||
auto all_datasets = datasets.getNames();
|
|
||||||
auto datasets_names = filterDatasets(datasets);
|
|
||||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
|
||||||
auto dataset = datasets_names[idx_dataset];
|
|
||||||
for (const auto& seed : config.seeds) {
|
|
||||||
auto combinations = grid.getGrid(dataset);
|
|
||||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
|
||||||
json task = {
|
|
||||||
{ "dataset", dataset },
|
|
||||||
{ "idx_dataset", idx_dataset},
|
|
||||||
{ "seed", seed },
|
|
||||||
{ "fold", n_fold},
|
|
||||||
};
|
|
||||||
tasks.push_back(task);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
|
||||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
|
||||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
|
||||||
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
|
||||||
std::cout << separator << std::flush;
|
|
||||||
for (int i = 0; i < tasks.size(); ++i) {
|
|
||||||
if ((i + 1) % 10 == 0)
|
|
||||||
std::cout << separator;
|
|
||||||
else
|
|
||||||
std::cout << (i + 1) % 10;
|
|
||||||
}
|
|
||||||
std::cout << separator << std::endl << separator << std::flush;
|
|
||||||
return tasks;
|
|
||||||
}
|
|
||||||
void GridSearch::go(struct ConfigMPI& config_mpi)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* Each task is a json object with the following structure:
|
|
||||||
* {
|
|
||||||
* "dataset": "dataset_name",
|
|
||||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
|
||||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
|
||||||
* "seed": # of seed to use,
|
|
||||||
* "fold": # of fold to process
|
|
||||||
* }
|
|
||||||
*
|
|
||||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
|
||||||
*
|
|
||||||
* The overall process consists in these steps:
|
|
||||||
* 0. Create the MPI result type & tasks
|
|
||||||
* 0.1 Create the MPI result type
|
|
||||||
* 0.2 Manager creates the tasks
|
|
||||||
* 1. Manager will broadcast the tasks to all the processes
|
|
||||||
* 1.1 Broadcast the number of tasks
|
|
||||||
* 1.2 Broadcast the length of the following string
|
|
||||||
* 1.2 Broadcast the tasks as a char* string
|
|
||||||
* 2a. Producer delivers the tasks to the consumers
|
|
||||||
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
||||||
* 2a.2 Producer will send the end message to all the consumers
|
|
||||||
* 2b. Consumers process the tasks and send the results to the producer
|
|
||||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
||||||
* 2b.2 Consumers receive the task from the producer and process it
|
|
||||||
* 2b.3 Consumers send the result to the producer
|
|
||||||
* 3. Manager select the bests scores for each dataset
|
|
||||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
|
||||||
* 3.2 Save the results
|
|
||||||
*/
|
|
||||||
//
|
|
||||||
// 0.1 Create the MPI result type
|
|
||||||
//
|
|
||||||
Task_Result result;
|
|
||||||
int tasks_size;
|
|
||||||
MPI_Datatype MPI_Result;
|
|
||||||
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
|
|
||||||
int blocklen[5] = { 1, 1, 1, 1, 1 };
|
|
||||||
MPI_Aint disp[5];
|
|
||||||
disp[0] = offsetof(Task_Result, idx_dataset);
|
|
||||||
disp[1] = offsetof(Task_Result, idx_combination);
|
|
||||||
disp[2] = offsetof(Task_Result, n_fold);
|
|
||||||
disp[3] = offsetof(Task_Result, score);
|
|
||||||
disp[4] = offsetof(Task_Result, time);
|
|
||||||
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
|
|
||||||
MPI_Type_commit(&MPI_Result);
|
|
||||||
//
|
|
||||||
// 0.2 Manager creates the tasks
|
|
||||||
//
|
|
||||||
char* msg;
|
|
||||||
json tasks;
|
|
||||||
if (config_mpi.rank == config_mpi.manager) {
|
|
||||||
timer.start();
|
|
||||||
tasks = build_tasks();
|
|
||||||
auto tasks_str = tasks.dump();
|
|
||||||
tasks_size = tasks_str.size();
|
|
||||||
msg = new char[tasks_size + 1];
|
|
||||||
strcpy(msg, tasks_str.c_str());
|
|
||||||
}
|
|
||||||
//
|
|
||||||
// 1. Manager will broadcast the tasks to all the processes
|
|
||||||
//
|
|
||||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
|
||||||
if (config_mpi.rank != config_mpi.manager) {
|
|
||||||
msg = new char[tasks_size + 1];
|
|
||||||
}
|
|
||||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
|
||||||
tasks = json::parse(msg);
|
|
||||||
delete[] msg;
|
|
||||||
auto env = platform::DotEnv();
|
|
||||||
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
|
||||||
|
|
||||||
if (config_mpi.rank == config_mpi.manager) {
|
|
||||||
//
|
|
||||||
// 2a. Producer delivers the tasks to the consumers
|
|
||||||
//
|
|
||||||
auto datasets_names = filterDatasets(datasets);
|
|
||||||
json all_results = MPI_SEARCH::producer(datasets_names, tasks, config_mpi, MPI_Result);
|
|
||||||
std::cout << separator << std::endl;
|
|
||||||
//
|
|
||||||
// 3. Manager select the bests sccores for each dataset
|
|
||||||
//
|
|
||||||
auto results = initializeResults();
|
|
||||||
MPI_SEARCH::select_best_results_folds(results, all_results, config.model);
|
|
||||||
//
|
|
||||||
// 3.2 Save the results
|
|
||||||
//
|
|
||||||
save(results);
|
|
||||||
} else {
|
|
||||||
//
|
|
||||||
// 2b. Consumers process the tasks and send the results to the producer
|
|
||||||
//
|
|
||||||
MPI_SEARCH::consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
json GridSearch::initializeResults()
|
json GridSearch::initializeResults()
|
||||||
{
|
{
|
||||||
// Load previous results if continue is set
|
// Load previous results if continue is set
|
||||||
json results;
|
json results;
|
||||||
if (config.continue_from != NO_CONTINUE()) {
|
if (config.continue_from != NO_CONTINUE()) {
|
||||||
if (!config.quiet)
|
if (!config.quiet)
|
||||||
std::cout << "* Loading previous results" << std::endl;
|
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
|
||||||
try {
|
try {
|
||||||
std::ifstream file(Paths::grid_output(config.model));
|
std::ifstream file(Paths::grid_output(config.model));
|
||||||
if (file.is_open()) {
|
if (file.is_open()) {
|
||||||
@@ -237,4 +93,226 @@ namespace platform {
|
|||||||
};
|
};
|
||||||
file << output.dump(4);
|
file << output.dump(4);
|
||||||
}
|
}
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
json GridSearch::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||||
|
{
|
||||||
|
Task_Result result;
|
||||||
|
json results;
|
||||||
|
int num_tasks = tasks.size();
|
||||||
|
//
|
||||||
|
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||||
|
//
|
||||||
|
for (int i = 0; i < num_tasks; ++i) {
|
||||||
|
MPI_Status status;
|
||||||
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_RESULT) {
|
||||||
|
//Store result
|
||||||
|
store_result(names, result, results);
|
||||||
|
|
||||||
|
}
|
||||||
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// 2a.2 Producer will send the end message to all the consumers
|
||||||
|
//
|
||||||
|
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||||
|
MPI_Status status;
|
||||||
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_RESULT) {
|
||||||
|
//Store result
|
||||||
|
store_result(names, result, results);
|
||||||
|
}
|
||||||
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
}
|
||||||
|
void GridSearch::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||||
|
{
|
||||||
|
Task_Result result;
|
||||||
|
//
|
||||||
|
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||||
|
//
|
||||||
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||||
|
int task;
|
||||||
|
while (true) {
|
||||||
|
MPI_Status status;
|
||||||
|
//
|
||||||
|
// 2b.2 Consumers receive the task from the producer and process it
|
||||||
|
//
|
||||||
|
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||||
|
if (status.MPI_TAG == TAG_END) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||||
|
//
|
||||||
|
// 2b.3 Consumers send the result to the producer
|
||||||
|
//
|
||||||
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void GridSearch::select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||||
|
{
|
||||||
|
Timer timer;
|
||||||
|
auto grid = GridData(Paths::grid_input(model));
|
||||||
|
//
|
||||||
|
// Select the best result of the computed outer folds
|
||||||
|
//
|
||||||
|
for (const auto& result : all_results.items()) {
|
||||||
|
// each result has the results of all the outer folds as each one were a different task
|
||||||
|
double best_score = 0.0;
|
||||||
|
json best;
|
||||||
|
for (const auto& result_fold : result.value()) {
|
||||||
|
double score = result_fold["score"].get<double>();
|
||||||
|
if (score > best_score) {
|
||||||
|
best_score = score;
|
||||||
|
best = result_fold;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto dataset = result.key();
|
||||||
|
auto combinations = grid.getGrid(dataset);
|
||||||
|
json json_best = {
|
||||||
|
{ "score", best_score },
|
||||||
|
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||||
|
{ "date", get_date() + " " + get_time() },
|
||||||
|
{ "grid", grid.getInputGrid(dataset) },
|
||||||
|
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||||
|
};
|
||||||
|
results[dataset] = json_best;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
json GridSearch::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||||
|
{
|
||||||
|
json json_result = {
|
||||||
|
{ "score", result.score },
|
||||||
|
{ "combination", result.idx_combination },
|
||||||
|
{ "fold", result.n_fold },
|
||||||
|
{ "time", result.time },
|
||||||
|
{ "dataset", result.idx_dataset },
|
||||||
|
{ "process", result.process },
|
||||||
|
{ "task", result.task }
|
||||||
|
};
|
||||||
|
auto name = names[result.idx_dataset];
|
||||||
|
if (!results.contains(name)) {
|
||||||
|
results[name] = json::array();
|
||||||
|
}
|
||||||
|
results[name].push_back(json_result);
|
||||||
|
return results;
|
||||||
|
}
|
||||||
|
void GridSearch::consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||||
|
{
|
||||||
|
//
|
||||||
|
// initialize
|
||||||
|
//
|
||||||
|
Timer timer;
|
||||||
|
timer.start();
|
||||||
|
json task = tasks[n_task];
|
||||||
|
auto model = config.model;
|
||||||
|
auto grid = GridData(Paths::grid_input(model));
|
||||||
|
auto dataset_name = task["dataset"].get<std::string>();
|
||||||
|
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||||
|
auto seed = task["seed"].get<int>();
|
||||||
|
auto n_fold = task["fold"].get<int>();
|
||||||
|
bool stratified = config.stratified;
|
||||||
|
bayesnet::Smoothing_t smooth;
|
||||||
|
if (config.smooth_strategy == "ORIGINAL")
|
||||||
|
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||||
|
else if (config.smooth_strategy == "LAPLACE")
|
||||||
|
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||||
|
else if (config.smooth_strategy == "CESTNIK")
|
||||||
|
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||||
|
//
|
||||||
|
// Generate the hyperparameters combinations
|
||||||
|
//
|
||||||
|
auto& dataset = datasets.getDataset(dataset_name);
|
||||||
|
auto combinations = grid.getGrid(dataset_name);
|
||||||
|
dataset.load();
|
||||||
|
auto [X, y] = dataset.getTensors();
|
||||||
|
auto features = dataset.getFeatures();
|
||||||
|
auto className = dataset.getClassName();
|
||||||
|
//
|
||||||
|
// Start working on task
|
||||||
|
//
|
||||||
|
folding::Fold* fold;
|
||||||
|
if (stratified)
|
||||||
|
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
||||||
|
else
|
||||||
|
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
||||||
|
auto [train, test] = fold->getFold(n_fold);
|
||||||
|
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||||
|
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||||
|
float best_fold_score = 0.0;
|
||||||
|
int best_idx_combination = -1;
|
||||||
|
json best_fold_hyper;
|
||||||
|
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||||
|
auto hyperparam_line = combinations[idx_combination];
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||||
|
folding::Fold* nested_fold;
|
||||||
|
if (config.stratified)
|
||||||
|
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||||
|
else
|
||||||
|
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||||
|
double score = 0.0;
|
||||||
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||||
|
//
|
||||||
|
// Nested level fold
|
||||||
|
//
|
||||||
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||||
|
auto train_nested_t = torch::tensor(train_nested);
|
||||||
|
auto test_nested_t = torch::tensor(test_nested);
|
||||||
|
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||||
|
auto y_nested_train = y_train.index({ train_nested_t });
|
||||||
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||||
|
auto y_nested_test = y_train.index({ test_nested_t });
|
||||||
|
//
|
||||||
|
// Build Classifier with selected hyperparameters
|
||||||
|
//
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, dataset_name);
|
||||||
|
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||||
|
//
|
||||||
|
// Train model
|
||||||
|
//
|
||||||
|
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||||
|
//
|
||||||
|
// Test model
|
||||||
|
//
|
||||||
|
score += clf->score(X_nested_test, y_nested_test);
|
||||||
|
}
|
||||||
|
delete nested_fold;
|
||||||
|
score /= config.nested;
|
||||||
|
if (score > best_fold_score) {
|
||||||
|
best_fold_score = score;
|
||||||
|
best_idx_combination = idx_combination;
|
||||||
|
best_fold_hyper = hyperparam_line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
delete fold;
|
||||||
|
//
|
||||||
|
// Build Classifier with the best hyperparameters to obtain the best score
|
||||||
|
//
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
auto valid = clf->getValidHyperparameters();
|
||||||
|
hyperparameters.check(valid, dataset_name);
|
||||||
|
clf->setHyperparameters(best_fold_hyper);
|
||||||
|
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||||
|
best_fold_score = clf->score(X_test, y_test);
|
||||||
|
//
|
||||||
|
// Return the result
|
||||||
|
//
|
||||||
|
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||||
|
result->idx_combination = best_idx_combination;
|
||||||
|
result->score = best_fold_score;
|
||||||
|
result->n_fold = n_fold;
|
||||||
|
result->time = timer.getDuration();
|
||||||
|
result->process = config_mpi.rank;
|
||||||
|
result->task = n_task;
|
||||||
|
//
|
||||||
|
// Update progress bar
|
||||||
|
//
|
||||||
|
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||||
|
}
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
@@ -21,235 +21,15 @@ namespace platform {
|
|||||||
~GridSearch() = default;
|
~GridSearch() = default;
|
||||||
json loadResults();
|
json loadResults();
|
||||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||||
void go(struct ConfigMPI& config_mpi);
|
|
||||||
private:
|
private:
|
||||||
void save(json& results);
|
void save(json& results);
|
||||||
json initializeResults();
|
json initializeResults();
|
||||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||||
json build_tasks();
|
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||||
};
|
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||||
/* *************************************************************************************************************
|
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
||||||
//
|
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||||
// MPI Search Functions
|
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||||
//
|
|
||||||
************************************************************************************************************* */
|
|
||||||
class MPI_SEARCH :public MPI_Base {
|
|
||||||
public:
|
|
||||||
static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
json results;
|
|
||||||
int num_tasks = tasks.size();
|
|
||||||
|
|
||||||
//
|
|
||||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
||||||
//
|
|
||||||
for (int i = 0; i < num_tasks; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
//
|
|
||||||
// 2a.2 Producer will send the end message to all the consumers
|
|
||||||
//
|
|
||||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
|
||||||
MPI_Status status;
|
|
||||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_RESULT) {
|
|
||||||
//Store result
|
|
||||||
store_result(names, result, results);
|
|
||||||
}
|
|
||||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
static void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
||||||
{
|
|
||||||
Task_Result result;
|
|
||||||
//
|
|
||||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
|
||||||
int task;
|
|
||||||
while (true) {
|
|
||||||
MPI_Status status;
|
|
||||||
//
|
|
||||||
// 2b.2 Consumers receive the task from the producer and process it
|
|
||||||
//
|
|
||||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
if (status.MPI_TAG == TAG_END) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
|
||||||
//
|
|
||||||
// 2b.3 Consumers send the result to the producer
|
|
||||||
//
|
|
||||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
static void select_best_results_folds(json& results, json& all_results, std::string& model)
|
|
||||||
{
|
|
||||||
Timer timer;
|
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
|
||||||
//
|
|
||||||
// Select the best result of the computed outer folds
|
|
||||||
//
|
|
||||||
for (const auto& result : all_results.items()) {
|
|
||||||
// each result has the results of all the outer folds as each one were a different task
|
|
||||||
double best_score = 0.0;
|
|
||||||
json best;
|
|
||||||
for (const auto& result_fold : result.value()) {
|
|
||||||
double score = result_fold["score"].get<double>();
|
|
||||||
if (score > best_score) {
|
|
||||||
best_score = score;
|
|
||||||
best = result_fold;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
auto dataset = result.key();
|
|
||||||
auto combinations = grid.getGrid(dataset);
|
|
||||||
json json_best = {
|
|
||||||
{ "score", best_score },
|
|
||||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
|
||||||
{ "date", get_date() + " " + get_time() },
|
|
||||||
{ "grid", grid.getInputGrid(dataset) },
|
|
||||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
|
||||||
};
|
|
||||||
results[dataset] = json_best;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
static json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
|
||||||
{
|
|
||||||
json json_result = {
|
|
||||||
{ "score", result.score },
|
|
||||||
{ "combination", result.idx_combination },
|
|
||||||
{ "fold", result.n_fold },
|
|
||||||
{ "time", result.time },
|
|
||||||
{ "dataset", result.idx_dataset }
|
|
||||||
};
|
|
||||||
auto name = names[result.idx_dataset];
|
|
||||||
if (!results.contains(name)) {
|
|
||||||
results[name] = json::array();
|
|
||||||
}
|
|
||||||
results[name].push_back(json_result);
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
static void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
|
||||||
{
|
|
||||||
//
|
|
||||||
// initialize
|
|
||||||
//
|
|
||||||
Timer timer;
|
|
||||||
timer.start();
|
|
||||||
json task = tasks[n_task];
|
|
||||||
auto model = config.model;
|
|
||||||
auto grid = GridData(Paths::grid_input(model));
|
|
||||||
auto dataset_name = task["dataset"].get<std::string>();
|
|
||||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
|
||||||
auto seed = task["seed"].get<int>();
|
|
||||||
auto n_fold = task["fold"].get<int>();
|
|
||||||
bool stratified = config.stratified;
|
|
||||||
bayesnet::Smoothing_t smooth;
|
|
||||||
if (config.smooth_strategy == "ORIGINAL")
|
|
||||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
|
||||||
else if (config.smooth_strategy == "LAPLACE")
|
|
||||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
|
||||||
else if (config.smooth_strategy == "CESTNIK")
|
|
||||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
|
||||||
//
|
|
||||||
// Generate the hyperparameters combinations
|
|
||||||
//
|
|
||||||
auto& dataset = datasets.getDataset(dataset_name);
|
|
||||||
auto combinations = grid.getGrid(dataset_name);
|
|
||||||
dataset.load();
|
|
||||||
auto [X, y] = dataset.getTensors();
|
|
||||||
auto features = dataset.getFeatures();
|
|
||||||
auto className = dataset.getClassName();
|
|
||||||
//
|
|
||||||
// Start working on task
|
|
||||||
//
|
|
||||||
folding::Fold* fold;
|
|
||||||
if (stratified)
|
|
||||||
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
|
||||||
else
|
|
||||||
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
|
||||||
auto [train, test] = fold->getFold(n_fold);
|
|
||||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
|
||||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
|
||||||
float best_fold_score = 0.0;
|
|
||||||
int best_idx_combination = -1;
|
|
||||||
json best_fold_hyper;
|
|
||||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
|
||||||
auto hyperparam_line = combinations[idx_combination];
|
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
||||||
folding::Fold* nested_fold;
|
|
||||||
if (config.stratified)
|
|
||||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
|
||||||
else
|
|
||||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
|
||||||
double score = 0.0;
|
|
||||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
|
||||||
//
|
|
||||||
// Nested level fold
|
|
||||||
//
|
|
||||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
|
||||||
auto train_nested_t = torch::tensor(train_nested);
|
|
||||||
auto test_nested_t = torch::tensor(test_nested);
|
|
||||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
|
||||||
auto y_nested_train = y_train.index({ train_nested_t });
|
|
||||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
|
||||||
auto y_nested_test = y_train.index({ test_nested_t });
|
|
||||||
//
|
|
||||||
// Build Classifier with selected hyperparameters
|
|
||||||
//
|
|
||||||
auto clf = Models::instance()->create(config.model);
|
|
||||||
auto valid = clf->getValidHyperparameters();
|
|
||||||
hyperparameters.check(valid, dataset_name);
|
|
||||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
|
||||||
//
|
|
||||||
// Train model
|
|
||||||
//
|
|
||||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
|
||||||
//
|
|
||||||
// Test model
|
|
||||||
//
|
|
||||||
score += clf->score(X_nested_test, y_nested_test);
|
|
||||||
}
|
|
||||||
delete nested_fold;
|
|
||||||
score /= config.nested;
|
|
||||||
if (score > best_fold_score) {
|
|
||||||
best_fold_score = score;
|
|
||||||
best_idx_combination = idx_combination;
|
|
||||||
best_fold_hyper = hyperparam_line;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
delete fold;
|
|
||||||
//
|
|
||||||
// Build Classifier with the best hyperparameters to obtain the best score
|
|
||||||
//
|
|
||||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
|
||||||
auto clf = Models::instance()->create(config.model);
|
|
||||||
auto valid = clf->getValidHyperparameters();
|
|
||||||
hyperparameters.check(valid, dataset_name);
|
|
||||||
clf->setHyperparameters(best_fold_hyper);
|
|
||||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
|
||||||
best_fold_score = clf->score(X_test, y_test);
|
|
||||||
//
|
|
||||||
// Return the result
|
|
||||||
//
|
|
||||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
|
||||||
result->idx_combination = best_idx_combination;
|
|
||||||
result->score = best_fold_score;
|
|
||||||
result->n_fold = n_fold;
|
|
||||||
result->time = timer.getDuration();
|
|
||||||
//
|
|
||||||
// Update progress bar
|
|
||||||
//
|
|
||||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
} /* namespace platform */
|
} /* namespace platform */
|
||||||
#endif
|
#endif
|
Reference in New Issue
Block a user