Complete refactor of XA1DE & XBAODE with new ExpClf class

This commit is contained in:
2025-02-26 16:55:04 +01:00
parent c63baf419f
commit 1a688f90b4
7 changed files with 319 additions and 402 deletions

View File

@@ -8,190 +8,20 @@
#include "TensorUtils.hpp"
namespace platform {
XA1DE::XA1DE() : semaphore_{ CountingSemaphore::getInstance() }
{
validHyperparameters = { "use_threads" };
}
void XA1DE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("use_threads")) {
use_threads = hyperparameters["use_threads"].get<bool>();
hyperparameters.erase("use_threads");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
XA1DE& XA1DE::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
Timer timer, timert;
timer.start();
timert.start();
// debug = true;
std::vector<std::vector<int>> instances = X;
instances.push_back(y);
int num_instances = instances[0].size();
int num_attributes = instances.size();
normalize_weights(num_instances);
std::vector<int> statesv;
for (int i = 0; i < num_attributes; i++) {
statesv.push_back(*max_element(instances[i].begin(), instances[i].end()) + 1);
}
// std::cout << "* States: " << statesv << std::endl;
// std::cout << "* Weights: " << weights_ << std::endl;
// std::cout << "* Instances: " << num_instances << std::endl;
// std::cout << "* Attributes: " << num_attributes << std::endl;
// std::cout << "* y: " << y << std::endl;
// std::cout << "* x shape: " << X.size() << "x" << X[0].size() << std::endl;
// for (int i = 0; i < num_attributes - 1; i++) {
// std::cout << "* " << features[i] << ": " << instances[i] << std::endl;
// }
// std::cout << "Starting to build the model" << std::endl;
aode_.init(statesv);
aode_.duration_first += timer.getDuration(); timer.start();
std::vector<int> instance;
for (int n_instance = 0; n_instance < num_instances; n_instance++) {
instance.clear();
for (int feature = 0; feature < num_attributes; feature++) {
instance.push_back(instances[feature][n_instance]);
}
aode_.addSample(instance, weights_[n_instance]);
}
aode_.duration_second += timer.getDuration(); timer.start();
// if (debug) aode_.show();
aode_.computeProbabilities();
aode_.duration_third += timer.getDuration();
if (debug) {
// std::cout << "* Checking coherence... ";
// aode_.checkCoherenceApprox(1e-6);
// std::cout << "Ok!" << std::endl;
aode_.show();
// std::cout << "* Accumulated first time: " << aode_.duration_first << std::endl;
// std::cout << "* Accumulated second time: " << aode_.duration_second << std::endl;
// std::cout << "* Accumulated third time: " << aode_.duration_third << std::endl;
std::cout << "* Time to build the model: " << timert.getDuration() << " seconds" << std::endl;
// exit(1);
}
aode_.fit(X, y, features, className, states, weights_, true);
fitted = true;
return *this;
}
std::vector<std::vector<double>> XA1DE::predict_proba(std::vector<std::vector<int>>& test_data)
{
if (use_threads) {
return predict_proba_threads(test_data);
}
int test_size = test_data[0].size();
std::vector<std::vector<double>> probabilities;
std::vector<int> instance;
for (int i = 0; i < test_size; i++) {
instance.clear();
for (int j = 0; j < (int)test_data.size(); j++) {
instance.push_back(test_data[j][i]);
}
probabilities.push_back(aode_.predict_proba(instance));
}
return probabilities;
}
std::vector<std::vector<double>> XA1DE::predict_proba_threads(const std::vector<std::vector<int>>& test_data)
{
int test_size = test_data[0].size();
int sample_size = test_data.size();
auto probabilities = std::vector<std::vector<double>>(test_size, std::vector<double>(aode_.statesClass()));
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin, int chunk, int sample_size, std::vector<std::vector<double>>& predictions) {
std::string threadName = "(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = aode_.predict_proba(instance);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
}
for (auto& thread : threads) {
thread.join();
}
return probabilities;
}
std::vector<int> XA1DE::predict(std::vector<std::vector<int>>& test_data)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
for (size_t i = 0; i < probabilities.size(); i++) {
predictions[i] = std::distance(probabilities[i].begin(), std::max_element(probabilities[i].begin(), probabilities[i].end()));
}
return predictions;
}
float XA1DE::score(std::vector<std::vector<int>>& test_data, std::vector<int>& labels)
{
aode_.duration_first = 0.0;
aode_.duration_second = 0.0;
aode_.duration_third = 0.0;
Timer timer;
timer.start();
std::vector<int> predictions = predict(test_data);
int correct = 0;
for (size_t i = 0; i < predictions.size(); i++) {
if (predictions[i] == labels[i]) {
correct++;
}
}
if (debug) {
std::cout << "* Time to predict: " << timer.getDurationString() << std::endl;
std::cout << "* Accumulated first time: " << aode_.duration_first << std::endl;
std::cout << "* Accumulated second time: " << aode_.duration_second << std::endl;
std::cout << "* Accumulated third time: " << aode_.duration_third << std::endl;
}
return static_cast<float>(correct) / predictions.size();
}
//
// statistics
//
int XA1DE::getNumberOfNodes() const
{
return aode_.getNumberOfNodes();
}
int XA1DE::getNumberOfEdges() const
{
return aode_.getNumberOfEdges();
}
int XA1DE::getNumberOfStates() const
{
return aode_.getNumberOfStates();
}
int XA1DE::getClassNumStates() const
{
return aode_.statesClass();
}
//
// Fit
//
// fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
XA1DE& XA1DE::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
auto X_ = TensorUtils::to_matrix(X);
@@ -206,71 +36,7 @@ namespace platform {
}
XA1DE& XA1DE::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
{
weights_ = TensorUtils::to_vector<double>(weights);
weights_ = weights;
return fit(dataset, features, className, states, smoothing);
}
//
// Predict
//
std::vector<int> XA1DE::predict_spode(std::vector<std::vector<int>>& test_data, int parent)
{
int test_size = test_data[0].size();
int sample_size = test_data.size();
auto predictions = std::vector<int>(test_size);
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin, int chunk, int sample_size, std::vector<int>& predictions) {
std::string threadName = "(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = aode_.predict_spode(instance, parent);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(predictions));
}
for (auto& thread : threads) {
thread.join();
}
return predictions;
}
torch::Tensor XA1DE::predict(torch::Tensor& X)
{
auto X_ = TensorUtils::to_matrix(X);
torch::Tensor y = torch::tensor(predict(X_));
return y;
}
torch::Tensor XA1DE::predict_proba(torch::Tensor& X)
{
auto X_ = TensorUtils::to_matrix(X);
auto probabilities = predict_proba(X_);
auto n_samples = X.size(1);
int n_classes = probabilities[0].size();
auto y = torch::zeros({ n_samples, n_classes });
for (int i = 0; i < n_samples; i++) {
for (int j = 0; j < n_classes; j++) {
y[i][j] = probabilities[i][j];
}
}
return y;
}
float XA1DE::score(torch::Tensor& X, torch::Tensor& y)
{
auto X_ = TensorUtils::to_matrix(X);
auto y_ = TensorUtils::to_vector<int>(y);
return score(X_, y_);
}
}