Compare commits

..

10 Commits

42 changed files with 272 additions and 252 deletions

31
.clang-uml Normal file
View File

@@ -0,0 +1,31 @@
compilation_database_dir: build
output_directory: puml
diagrams:
BayesNet:
type: class
glob:
- src/BayesNet/*.cc
- src/Platform/*.cc
using_namespace: bayesnet
include:
namespaces:
- bayesnet
- platform
plantuml:
after:
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
sequence:
type: sequence
glob:
- src/Platform/main.cc
combine_free_functions_into_file_participants: true
using_namespace:
- std
- bayesnet
- platform
include:
paths:
- src/BayesNet
- src/Platform
start_from:
- function: main(int,const char **)

1
.gitignore vendored
View File

@@ -35,3 +35,4 @@ build/
*.dSYM/** *.dSYM/**
cmake-build*/** cmake-build*/**
.idea .idea
puml/**

3
.gitmodules vendored
View File

@@ -10,3 +10,6 @@
[submodule "lib/json"] [submodule "lib/json"]
path = lib/json path = lib/json
url = https://github.com/nlohmann/json.git url = https://github.com/nlohmann/json.git
[submodule "lib/openXLSX"]
path = lib/openXLSX
url = https://github.com/troldal/OpenXLSX.git

16
.vscode/launch.json vendored
View File

@@ -10,7 +10,7 @@
"-d", "-d",
"iris", "iris",
"-m", "-m",
"KDB", "TANLd",
"-s", "-s",
"271", "271",
"-p", "-p",
@@ -25,17 +25,17 @@
"program": "${workspaceFolder}/build/src/Platform/main", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [ "args": [
"-m", "-m",
"BoostAODE", "AODE",
"-p", "-p",
"/Users/rmontanana/Code/discretizbench/datasets", "/home/rmontanana/Code/discretizbench/datasets",
"--discretize",
"--stratified", "--stratified",
"-d", "-d",
"glass", "mfeat-morphological",
"--hyperparameters", "--discretize"
"{\"repeatSparent\": true, \"maxModels\": 12}" // "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
], ],
"cwd": "/Users/rmontanana/Code/discretizbench", "cwd": "/home/rmontanana/Code/discretizbench",
}, },
{ {
"type": "lldb", "type": "lldb",

View File

@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20) cmake_minimum_required(VERSION 3.20)
project(BayesNet project(BayesNet
VERSION 0.1.0 VERSION 0.2.0
DESCRIPTION "Bayesian Network and basic classifiers Library." DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet" HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX LANGUAGES CXX
@@ -30,7 +30,7 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF) option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF) option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF) option(CODE_COVERAGE "Collect coverage from test library" OFF)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# CMakes modules # CMakes modules
# -------------- # --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH}) set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
@@ -40,8 +40,7 @@ if (CODE_COVERAGE)
enable_testing() enable_testing()
include(CodeCoverage) include(CodeCoverage)
MESSAGE("Code coverage enabled") MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage") set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage") SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE) endif (CODE_COVERAGE)

View File

@@ -32,6 +32,9 @@ clean: ## Clean the debug info
find . -name "*.gcda" -print0 | xargs -0 rm find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done"; @echo ">>> Done";
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
debug: ## Build a debug version of the project debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ..."; @echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi

View File

@@ -1,12 +0,0 @@
digraph BayesNet {
label=<BayesNet >
fontsize=30
fontcolor=blue
labelloc=t
layout=circo
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
petallength -> sepallength petalwidth [shape=circle]
sepallength [shape=circle]
sepallength -> sepalwidth sepalwidth [shape=circle]
sepalwidth -> petalwidth }

View File

@@ -1 +0,0 @@
null

BIN
diagrams/BayesNet.pdf Executable file

Binary file not shown.

View File

@@ -10,7 +10,7 @@
#include "Folding.h" #include "Folding.h"
#include "Models.h" #include "Models.h"
#include "modelRegister.h" #include "modelRegister.h"
#include <fstream>
using namespace std; using namespace std;
@@ -195,11 +195,11 @@ int main(int argc, char** argv)
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32)); Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} }
float total_score = 0, total_score_train = 0, score_train, score_test; float total_score = 0, total_score_train = 0, score_train, score_test;
Fold* fold; platform::Fold* fold;
if (stratified) if (stratified)
fold = new StratifiedKFold(nFolds, y, seed); fold = new platform::StratifiedKFold(nFolds, y, seed);
else else
fold = new KFold(nFolds, y.size(), seed); fold = new platform::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) { for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i); auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl; cout << "Fold: " << i + 1 << endl;

View File

@@ -10,7 +10,6 @@ namespace bayesnet {
AODE(); AODE();
virtual ~AODE() {}; virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") const override; vector<string> graph(const string& title = "AODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif #endif

View File

@@ -4,9 +4,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {} AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;
@@ -26,6 +26,7 @@ namespace bayesnet {
models.push_back(std::make_unique<SPODELd>(i)); models.push_back(std::make_unique<SPODELd>(i));
} }
n_models = models.size(); n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
} }
void AODELd::trainModel(const torch::Tensor& weights) void AODELd::trainModel(const torch::Tensor& weights)
{ {

View File

@@ -12,11 +12,10 @@ namespace bayesnet {
void buildModel(const torch::Tensor& weights) override; void buildModel(const torch::Tensor& weights) override;
public: public:
AODELd(); AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override; AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default; virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODE") const override; vector<string> graph(const string& name = "AODELd") const override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif // !AODELD_H #endif // !AODELD_H

View File

@@ -10,11 +10,11 @@ namespace bayesnet {
virtual void trainModel(const torch::Tensor& weights) = 0; virtual void trainModel(const torch::Tensor& weights) = 0;
public: public:
// X is nxm vector, y is nx1 vector // X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor // X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0; virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default; virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0; torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0; vector<int> virtual predict(vector<vector<int>>& X) = 0;
@@ -25,7 +25,7 @@ namespace bayesnet {
int virtual getNumberOfStates() const = 0; int virtual getNumberOfStates() const = 0;
vector<string> virtual show() const = 0; vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") const = 0; vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.1.0"; }; const string inline getVersion() const { return "0.2.0"; };
vector<string> virtual topological_order() = 0; vector<string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0; void virtual dump_cpt()const = 0;
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0; virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;

View File

@@ -77,7 +77,6 @@ namespace bayesnet {
auto source = vector<string>(features); auto source = vector<string>(features);
source.push_back(className); source.push_back(className);
auto combinations = doCombinations(source); auto combinations = doCombinations(source);
double totalWeight = weights.sum().item<double>();
// Compute class prior // Compute class prior
auto margin = torch::zeros({ classNumStates }, torch::kFloat); auto margin = torch::zeros({ classNumStates }, torch::kFloat);
for (int value = 0; value < classNumStates; ++value) { for (int value = 0; value < classNumStates; ++value) {

View File

@@ -37,7 +37,6 @@ namespace bayesnet {
// Step 0: Set the finish condition // Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features // if not repeatSparent a finish condition is run out of features
// n_models == maxModels // n_models == maxModels
int numClasses = states[className].size();
while (!exitCondition) { while (!exitCondition) {
// Step 1: Build ranking with mutual information // Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted

View File

@@ -5,7 +5,7 @@ namespace bayesnet {
using namespace torch; using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {} Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) Classifier& Classifier::build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
{ {
this->features = features; this->features = features;
this->className = className; this->className = className;
@@ -13,7 +13,7 @@ namespace bayesnet {
m = dataset.size(1); m = dataset.size(1);
n = dataset.size(0) - 1; n = dataset.size(0) - 1;
checkFitParameters(); checkFitParameters();
auto n_classes = states[className].size(); auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes); metrics = Metrics(dataset, features, className, n_classes);
model.initialize(); model.initialize();
buildModel(weights); buildModel(weights);
@@ -39,7 +39,7 @@ namespace bayesnet {
model.fit(dataset, weights, features, className, states); model.fit(dataset, weights, features, className, states);
} }
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{ {
dataset = X; dataset = X;
buildDataset(y); buildDataset(y);
@@ -47,7 +47,7 @@ namespace bayesnet {
return build(features, className, states, weights); return build(features, className, states, weights);
} }
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{ {
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32); dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
for (int i = 0; i < X.size(); ++i) { for (int i = 0; i < X.size(); ++i) {
@@ -58,19 +58,22 @@ namespace bayesnet {
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble); const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights); return build(features, className, states, weights);
} }
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{ {
this->dataset = dataset; this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble); const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights); return build(features, className, states, weights);
} }
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
{ {
this->dataset = dataset; this->dataset = dataset;
return build(features, className, states, weights); return build(features, className, states, weights);
} }
void Classifier::checkFitParameters() void Classifier::checkFitParameters()
{ {
if (torch::is_floating_point(dataset)) {
throw invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) { if (n != features.size()) {
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features"); throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
} }
@@ -160,4 +163,10 @@ namespace bayesnet {
} }
} }
} }
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const vector<string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
}
} }

View File

@@ -11,7 +11,7 @@ namespace bayesnet {
class Classifier : public BaseClassifier { class Classifier : public BaseClassifier {
private: private:
void buildDataset(torch::Tensor& y); void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights); Classifier& build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights);
protected: protected:
bool fitted; bool fitted;
int m, n; // m: number of samples, n: number of features int m, n; // m: number of samples, n: number of features
@@ -28,10 +28,10 @@ namespace bayesnet {
public: public:
Classifier(Network model); Classifier(Network model);
virtual ~Classifier() = default; virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override; Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
void addNodes(); void addNodes();
int getNumberOfNodes() const override; int getNumberOfNodes() const override;
int getNumberOfEdges() const override; int getNumberOfEdges() const override;
@@ -43,6 +43,7 @@ namespace bayesnet {
vector<string> show() const override; vector<string> show() const override;
vector<string> topological_order() override; vector<string> topological_order() override;
void dump_cpt() const override; void dump_cpt() const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
}; };
} }
#endif #endif

View File

@@ -3,7 +3,7 @@
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
Ensemble::Ensemble() : Classifier(Network()) {} Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
void Ensemble::trainModel(const torch::Tensor& weights) void Ensemble::trainModel(const torch::Tensor& weights)
{ {
@@ -17,9 +17,13 @@ namespace bayesnet {
{ {
auto y_pred_ = y_pred.accessor<int, 2>(); auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final; vector<int> y_pred_final;
int numClasses = states.at(className).size();
// y_pred is m x n_models with the prediction of every model for each sample
for (int i = 0; i < y_pred.size(0); ++i) { for (int i = 0; i < y_pred.size(0); ++i) {
vector<double> votes(y_pred.size(1), 0); // votes store in each index (value of class) the significance added by each model
for (int j = 0; j < y_pred.size(1); ++j) { // i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
vector<double> votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
votes[y_pred_[i][j]] += significanceModels[j]; votes[y_pred_[i][j]] += significanceModels[j];
} }
// argsort in descending order // argsort in descending order
@@ -34,7 +38,6 @@ namespace bayesnet {
throw logic_error("Ensemble has not been fitted"); throw logic_error("Ensemble has not been fitted");
} }
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32); Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool
auto threads{ vector<thread>() }; auto threads{ vector<thread>() };
mutex mtx; mutex mtx;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {

View File

@@ -4,6 +4,18 @@ namespace bayesnet {
using namespace torch; using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "k", "theta" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
}
}
void KDB::buildModel(const torch::Tensor& weights) void KDB::buildModel(const torch::Tensor& weights)
{ {
/* /*

View File

@@ -16,7 +16,7 @@ namespace bayesnet {
public: public:
explicit KDB(int k, float theta = 0.03); explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {}; virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override {}; void setHyperparameters(nlohmann::json& hyperparameters) override;
vector<string> graph(const string& name = "KDB") const override; vector<string> graph(const string& name = "KDB") const override;
}; };
} }

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {} KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;

View File

@@ -10,10 +10,9 @@ namespace bayesnet {
public: public:
explicit KDBLd(int k); explicit KDBLd(int k);
virtual ~KDBLd() = default; virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override; vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };
} }

View File

@@ -3,8 +3,8 @@
#include "Network.h" #include "Network.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {} Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other. Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted) getmaxThreads()), fitted(other.fitted)
{ {
@@ -174,43 +174,11 @@ namespace bayesnet {
{ {
setStates(states); setStates(states);
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); for (auto& node : nodes) {
if (maxThreadsRunning < 1) { node.second->computeCPT(samples, features, laplaceSmoothing, weights);
maxThreadsRunning = 1;
}
vector<thread> threads;
mutex mtx;
condition_variable cv;
int activeThreads = 0;
int nextNodeIndex = 0;
while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
while (true) {
unique_lock<mutex> lock(mtx);
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex;
lock.unlock();
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
lock.lock();
nodes[pair.first] = std::move(pair.second);
lock.unlock();
}
lock_guard<mutex> lock(mtx);
--activeThreads;
cv.notify_one();
});
++activeThreads;
}
for (auto& thread : threads) {
thread.join();
}
fitted = true; fitted = true;
} }
}
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba) torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{ {
if (!fitted) { if (!fitted) {
@@ -399,7 +367,6 @@ namespace bayesnet {
auto result = features; auto result = features;
result.erase(remove(result.begin(), result.end(), className), result.end()); result.erase(remove(result.begin(), result.end(), className), result.end());
bool ending{ false }; bool ending{ false };
int idx = 0;
while (!ending) { while (!ending) {
ending = true; ending = true;
for (auto feature : features) { for (auto feature : features) {

View File

@@ -27,6 +27,7 @@ namespace bayesnet {
Network(); Network();
explicit Network(float); explicit Network(float);
explicit Network(Network&); explicit Network(Network&);
~Network() = default;
torch::Tensor& getSamples(); torch::Tensor& getSamples();
float getmaxThreads(); float getmaxThreads();
void addNode(const string&); void addNode(const string&);
@@ -52,7 +53,7 @@ namespace bayesnet {
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize(); void initialize();
void dump_cpt() const; void dump_cpt() const;
inline string version() { return "0.1.0"; } inline string version() { return "0.2.0"; }
}; };
} }
#endif #endif

View File

@@ -100,7 +100,7 @@ namespace bayesnet {
} }
int name_index = pos - features.begin(); int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) { for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates; c10::List<c10::optional<at::Tensor>> coordinates;
coordinates.push_back(dataset.index({ name_index, n_sample })); coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto parent : parents) { for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName()); pos = find(features.begin(), features.end(), parent->getName());
@@ -118,10 +118,10 @@ namespace bayesnet {
} }
float Node::getFactorValue(map<string, int>& evidence) float Node::getFactorValue(map<string, int>& evidence)
{ {
torch::List<c10::optional<torch::Tensor>> coordinates; c10::List<c10::optional<at::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h) // following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name])); coordinates.push_back(at::tensor(evidence[name]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); }); transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<float>(); return cpTable.index({ coordinates }).item<float>();
} }
vector<string> Node::graph(const string& className) vector<string> Node::graph(const string& className)

View File

@@ -9,6 +9,15 @@ namespace bayesnet {
delete value; delete value;
} }
} }
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
{
if (!torch::is_floating_point(X)) {
throw std::invalid_argument("X must be a floating point tensor");
}
if (torch::is_floating_point(y)) {
throw std::invalid_argument("y must be an integer tensor");
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model) map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{ {
// order of local discretization is important. no good 0, 1, 2... // order of local discretization is important. no good 0, 1, 2...
@@ -44,15 +53,6 @@ namespace bayesnet {
auto xvf_ptr = Xf.index({ index }).data_ptr<float>(); auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1)); auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv); discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
} }
if (upgrade) { if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers // Discretize again X (only the affected indices) with the new fitted discretizers

View File

@@ -13,6 +13,7 @@ namespace bayesnet {
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_); Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal(); virtual ~Proposal();
protected: protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X); torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model); map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y); map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);

View File

@@ -12,7 +12,6 @@ namespace bayesnet {
explicit SPODE(int root); explicit SPODE(int root);
virtual ~SPODE() {}; virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") const override; vector<string> graph(const string& name = "SPODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif #endif

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {} SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;
@@ -18,11 +18,13 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model); states = localDiscretizationProposal(states, model);
return *this; return *this;
} }
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_) SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone(); Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone(); y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_; features = features_;
className = className_; className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y

View File

@@ -9,11 +9,10 @@ namespace bayesnet {
public: public:
explicit SPODELd(int root); explicit SPODELd(int root);
virtual ~SPODELd() = default; virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override; SPODELd& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override; vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };
} }

View File

@@ -11,7 +11,6 @@ namespace bayesnet {
TAN(); TAN();
virtual ~TAN() {}; virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") const override; vector<string> graph(const string& name = "TAN") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif #endif

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {} TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;

View File

@@ -10,11 +10,10 @@ namespace bayesnet {
public: public:
TANLd(); TANLd();
virtual ~TANLd() = default; virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; TANLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override; vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
void setHyperparameters(nlohmann::json& hyperparameters) override {};
}; };
} }
#endif // !TANLD_H #endif // !TANLD_H

View File

@@ -1,6 +1,7 @@
#include "Datasets.h" #include "Datasets.h"
#include "platformUtils.h" #include "platformUtils.h"
#include "ArffFiles.h" #include "ArffFiles.h"
#include <fstream>
namespace platform { namespace platform {
void Datasets::load() void Datasets::load()
{ {
@@ -212,10 +213,11 @@ namespace platform {
{ {
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1); states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
iota(begin(states[features[i]]), end(states[features[i]]), 0); auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
} }
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1); states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states[className]), end(states[className]), 0); iota(begin(states.at(className)), end(states.at(className)), 0);
} }
void Dataset::load_arff() void Dataset::load_arff()
{ {

View File

@@ -2,7 +2,7 @@
#include "Datasets.h" #include "Datasets.h"
#include "Models.h" #include "Models.h"
#include "ReportConsole.h" #include "ReportConsole.h"
#include <fstream>
namespace platform { namespace platform {
using json = nlohmann::json; using json = nlohmann::json;
string get_date() string get_date()
@@ -179,8 +179,10 @@ namespace platform {
result.addTimeTrain(train_time[item].item<double>()); result.addTimeTrain(train_time[item].item<double>());
result.addTimeTest(test_time[item].item<double>()); result.addTimeTest(test_time[item].item<double>());
item++; item++;
clf.reset();
} }
cout << "end. " << flush; cout << "end. " << flush;
delete fold;
} }
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>()); result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>()); result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());

View File

@@ -1,6 +1,7 @@
#include "Folding.h" #include "Folding.h"
#include <algorithm> #include <algorithm>
#include <map> #include <map>
namespace platform {
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed) Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
{ {
random_device rd; random_device rd;
@@ -93,3 +94,4 @@ pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
} }
return { train_indices, test_indices }; return { train_indices, test_indices };
} }
}

View File

@@ -4,7 +4,7 @@
#include <vector> #include <vector>
#include <random> #include <random>
using namespace std; using namespace std;
namespace platform {
class Fold { class Fold {
protected: protected:
int k; int k;
@@ -34,4 +34,5 @@ public:
StratifiedKFold(int k, torch::Tensor& y, int seed = -1); StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override; pair<vector<int>, vector<int>> getFold(int nFold) override;
}; };
}
#endif #endif

View File

@@ -26,7 +26,7 @@ namespace platform {
instance = it->second(); instance = it->second();
// wrap instance in a shared ptr and return // wrap instance in a shared ptr and return
if (instance != nullptr) if (instance != nullptr)
return shared_ptr<bayesnet::BaseClassifier>(instance); return unique_ptr<bayesnet::BaseClassifier>(instance);
else else
return nullptr; return nullptr;
} }

View File

@@ -47,11 +47,11 @@ namespace platform {
void ReportExcel::body() void ReportExcel::body()
{ {
auto header = vector<string>( auto head = vector<string>(
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time", { "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
"Time Std.", "Hyperparameters" }); "Time Std.", "Hyperparameters" });
int col = 1; int col = 1;
for (const auto& item : header) { for (const auto& item : head) {
wks.cell(8, col++).value() = item; wks.cell(8, col++).value() = item;
} }
int row = 9; int row = 9;

View File

@@ -100,11 +100,11 @@ namespace platform {
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl; cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
auto data = files.at(index).load(); auto data = files.at(index).load();
if (excelReport) { if (excelReport) {
ReportExcel report(data); ReportExcel reporter(data);
report.show(); reporter.show();
} else { } else {
ReportConsole report(data); ReportConsole reporter(data);
report.show(); reporter.show();
} }
} }
void Results::menu() void Results::menu()

View File

@@ -69,11 +69,12 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32); Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1); states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
iota(begin(states[features[i]]), end(states[features[i]]), 0); auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32)); Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
} }
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1); states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states[className]), end(states[className]), 0); iota(begin(states.at(className)), end(states.at(className)), 0);
} else { } else {
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32); Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {