48 lines
2.0 KiB
C++
48 lines
2.0 KiB
C++
#include "SPODELd.h"
|
|
|
|
namespace bayesnet {
|
|
using namespace std;
|
|
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
|
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
|
{
|
|
checkInput(X_, y_);
|
|
features = features_;
|
|
className = className_;
|
|
Xf = X_;
|
|
y = y_;
|
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
|
states = fit_local_discretization(y);
|
|
// We have discretized the input data
|
|
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
|
SPODE::fit(dataset, features, className, states);
|
|
states = localDiscretizationProposal(states, model);
|
|
return *this;
|
|
}
|
|
SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
|
|
{
|
|
if (!torch::is_floating_point(dataset)) {
|
|
throw std::runtime_error("Dataset must be a floating point tensor");
|
|
}
|
|
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
|
y = dataset.index({ -1, "..." }).clone();
|
|
features = features_;
|
|
className = className_;
|
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
|
states = fit_local_discretization(y);
|
|
// We have discretized the input data
|
|
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
|
SPODE::fit(dataset, features, className, states);
|
|
states = localDiscretizationProposal(states, model);
|
|
return *this;
|
|
}
|
|
|
|
Tensor SPODELd::predict(Tensor& X)
|
|
{
|
|
auto Xt = prepareX(X);
|
|
return SPODE::predict(Xt);
|
|
}
|
|
vector<string> SPODELd::graph(const string& name) const
|
|
{
|
|
return SPODE::graph(name);
|
|
}
|
|
} |