Compare commits
219 Commits
Author | SHA1 | Date | |
---|---|---|---|
f3b8150e2c
|
|||
03f8b8653b
|
|||
2163e95c4a
|
|||
b33da34655
|
|||
e17aee7bdb
|
|||
37c31ee4c2
|
|||
80afdc06f7
|
|||
|
666782217e | ||
55af0714cd
|
|||
6ef5ca541a
|
|||
4364317411 | |||
65a96851ef
|
|||
722da7f781
|
|||
b1833a5feb
|
|||
41a0bd4ddd
|
|||
9ab4fc7d76
|
|||
beadb7465f
|
|||
652e5f623f
|
|||
b7fef9a99d
|
|||
343269d48c
|
|||
21c4c6df51
|
|||
702f086706
|
|||
981bc8f98b
|
|||
e0b7b2d316
|
|||
9b9e91e856 | |||
18e8e84284
|
|||
7de11b0e6d
|
|||
9b8db37a4b
|
|||
49b26bd04b
|
|||
b5b5b48864
|
|||
19586a3a5a
|
|||
ffe6d37436
|
|||
b73f4be146
|
|||
dbf2f35502
|
|||
db9e80a70e
|
|||
40ae4ad7f9
|
|||
234342f2de
|
|||
aa0936abd1
|
|||
f0d6f0cc38
|
|||
cc316bb8d3
|
|||
0723564e66
|
|||
2e95e8999d
|
|||
fb9b395748
|
|||
03e4437fea
|
|||
33cd32c639
|
|||
c460ef46ed
|
|||
dee9c674da
|
|||
e3f6dc1e0b
|
|||
460d20a402
|
|||
8dbbb65a2f
|
|||
d06bf187b2
|
|||
4addaefb47
|
|||
82964190f6
|
|||
4fefe9a1d2
|
|||
7c12dd25e5
|
|||
c713c0b1df
|
|||
64069a6cb7
|
|||
ba2a3f9523 | |||
f94e2d6a27
|
|||
2121ba9b98
|
|||
8b7b59d42b
|
|||
bbe5302ab1
|
|||
c2eb727fc7
|
|||
fb347ed5b9
|
|||
b657762c0c
|
|||
495d8a8528
|
|||
4628e48d3c
|
|||
5876be4b24
|
|||
dc3400197f
|
|||
26d3a57782
|
|||
4f3a04058f
|
|||
89c4613591
|
|||
28f3d87e32 | |||
e8d2c9fc0b
|
|||
d3cb580387
|
|||
f088df14fd
|
|||
e2249eace7
|
|||
64f5a7f14a
|
|||
408db2aad5
|
|||
e03efb5f63
|
|||
f617886133
|
|||
69ad660040
|
|||
431b3a3aa5
|
|||
6a23e2cc26
|
|||
f6e00530be
|
|||
f9258e43b9
|
|||
92820555da
|
|||
5a3af51826
|
|||
a8f9800631
|
|||
84cec0c1e0
|
|||
130139f644
|
|||
651f84b562
|
|||
553ab0fa22
|
|||
4975feabff
|
|||
32293af69f
|
|||
858664be2d
|
|||
1f705f6018
|
|||
7bcd2eed06
|
|||
833acefbb3
|
|||
26b649ebae
|
|||
080eddf9cd
|
|||
04e754b2f5
|
|||
38423048bd
|
|||
64fc97b892
|
|||
2c2159f192
|
|||
6765552a7c
|
|||
f72aa5b9a6 | |||
fa7fe081ad
|
|||
660e783517
|
|||
b35532dd9e
|
|||
6ef49385ea
|
|||
6d5a25cdc8
|
|||
d00b08cbe8
|
|||
977ff6fddb
|
|||
54b8939f35
|
|||
5022a4dc90
|
|||
40d1dad5d8
|
|||
47e2b138c5
|
|||
e7ded68267
|
|||
ca833a34f5
|
|||
df9b4c48d2
|
|||
f288bbd6fa
|
|||
7d8aca4f59
|
|||
8fdad78a8c
|
|||
e3ae073333
|
|||
4b732e76c2
|
|||
fe5fead27e
|
|||
8c3864f3c8
|
|||
1287160c47
|
|||
2f58807322
|
|||
17e079edd5
|
|||
b9e0028e9d
|
|||
e0d39fe631
|
|||
36b0277576
|
|||
da8d018ec4
|
|||
5f0676691c
|
|||
3448fb1299
|
|||
5e938d5cca
|
|||
55e742438f
|
|||
c4ae3fe429
|
|||
93e4ff94db
|
|||
57c27f739c
|
|||
a434d7f1ae
|
|||
294666c516
|
|||
fd04e78ad9
|
|||
66ec1b343b
|
|||
bb423da42f
|
|||
db17c14042
|
|||
a4401cb78f
|
|||
9d3d9cc6c6
|
|||
cfcf3c16df
|
|||
85202260f3
|
|||
82acb3cab5
|
|||
623ceed396 | |||
926de2bebd
|
|||
71704e3547
|
|||
3b06534327
|
|||
ac89a451e3
|
|||
00c6cf663b
|
|||
5043c12be8
|
|||
11320e2cc7
|
|||
ce66483b65
|
|||
cab8e14b2d
|
|||
f0d0abe891
|
|||
dcba146e12
|
|||
3ea0285119
|
|||
e3888e1503 | |||
06de13df98
|
|||
de4fa6a04f
|
|||
3a7bf4e672
|
|||
cd0bc02a74
|
|||
c8597a794e
|
|||
b30416364d
|
|||
3a16589220
|
|||
c4f9187e2a
|
|||
c4d0a5b4e6
|
|||
7bfafe555f
|
|||
337b6f7e79
|
|||
5fa0b957dd
|
|||
67252fc41d
|
|||
94ae9456a0
|
|||
781993e326
|
|||
8257a6ae39
|
|||
fc81730dfc | |||
d8734ff082
|
|||
03533461c8
|
|||
68f22a673d
|
|||
b9bc0088f3
|
|||
c280e254ca
|
|||
3d0f29fda3
|
|||
20a6ebab7c
|
|||
925f71166c
|
|||
f69f415b92
|
|||
1bdfbd1620
|
|||
06fb135526
|
|||
501ea0ab4e
|
|||
847c6761d7
|
|||
6030885fc3
|
|||
89df7f4db0
|
|||
41257ed566
|
|||
506369e46b
|
|||
d908f389f5
|
|||
5a7c8f1818
|
|||
64fc7bd9dd
|
|||
0b7beda78c
|
|||
05b670dfc0
|
|||
de62d42b74
|
|||
edb957d22e
|
|||
4de5cb4c6c | |||
c35030f137
|
|||
182b07ed90
|
|||
7806f961e2
|
|||
7c3e315ae7
|
|||
284ef6dfd1
|
|||
1c6af619b5
|
|||
86ffdfd6f3
|
|||
d82148079d
|
|||
067430fd1b
|
|||
f5d0d16365 |
5
.gitignore
vendored
5
.gitignore
vendored
@@ -31,7 +31,10 @@
|
||||
*.exe
|
||||
*.out
|
||||
*.app
|
||||
build/
|
||||
build/**
|
||||
build_*/**
|
||||
*.dSYM/**
|
||||
cmake-build*/**
|
||||
.idea
|
||||
puml/**
|
||||
.vscode/settings.json
|
||||
|
12
.gitmodules
vendored
12
.gitmodules
vendored
@@ -1,12 +1,18 @@
|
||||
[submodule "lib/mdlp"]
|
||||
path = lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/argparse"]
|
||||
path = lib/argparse
|
||||
url = https://github.com/p-ranav/argparse
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/folding"]
|
||||
path = lib/folding
|
||||
url = https://github.com/rmontanana/folding
|
||||
|
18
.vscode/c_cpp_properties.json
vendored
Normal file
18
.vscode/c_cpp_properties.json
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Mac",
|
||||
"includePath": [
|
||||
"${workspaceFolder}/**"
|
||||
],
|
||||
"defines": [],
|
||||
"macFrameworkPath": [
|
||||
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
|
||||
],
|
||||
"cStandard": "c17",
|
||||
"cppStandard": "c++17",
|
||||
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
|
||||
}
|
||||
],
|
||||
"version": 4
|
||||
}
|
85
.vscode/launch.json
vendored
85
.vscode/launch.json
vendored
@@ -5,12 +5,12 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "sample",
|
||||
"program": "${workspaceFolder}/build/sample/BayesNetSample",
|
||||
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
|
||||
"args": [
|
||||
"-d",
|
||||
"iris",
|
||||
"-m",
|
||||
"KDB",
|
||||
"TANLd",
|
||||
"-s",
|
||||
"271",
|
||||
"-p",
|
||||
@@ -21,46 +21,103 @@
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experiment",
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"name": "experimentPy",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"BoostAODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--discretize",
|
||||
"STree",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris",
|
||||
//"--discretize"
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "gridsearch",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
|
||||
"args": [
|
||||
"-m",
|
||||
"KDB",
|
||||
"--discretize",
|
||||
"--continue",
|
||||
"glass",
|
||||
"--only",
|
||||
"--compute"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experimentBayes",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"TAN",
|
||||
"--stratified",
|
||||
"--discretize",
|
||||
"-d",
|
||||
"iris",
|
||||
"--hyperparameters",
|
||||
"{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "best",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
|
||||
"args": [
|
||||
"-m",
|
||||
"BoostAODE",
|
||||
"-s",
|
||||
"accuracy",
|
||||
"--build",
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/manage",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
|
||||
"args": [
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/list",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
||||
"args": [],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
|
||||
"args": [
|
||||
"-c=\"Metrics Test\"",
|
||||
// "-s",
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build/tests",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
"type": "cppdbg",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/build/bayesnet",
|
||||
"program": "${workspaceFolder}/build_debug/bayesnet",
|
||||
"args": [],
|
||||
"stopAtEntry": false,
|
||||
"cwd": "${workspaceFolder}",
|
||||
|
109
.vscode/settings.json
vendored
109
.vscode/settings.json
vendored
@@ -1,109 +0,0 @@
|
||||
{
|
||||
"files.associations": {
|
||||
"*.rmd": "markdown",
|
||||
"*.py": "python",
|
||||
"vector": "cpp",
|
||||
"__bit_reference": "cpp",
|
||||
"__bits": "cpp",
|
||||
"__config": "cpp",
|
||||
"__debug": "cpp",
|
||||
"__errc": "cpp",
|
||||
"__hash_table": "cpp",
|
||||
"__locale": "cpp",
|
||||
"__mutex_base": "cpp",
|
||||
"__node_handle": "cpp",
|
||||
"__nullptr": "cpp",
|
||||
"__split_buffer": "cpp",
|
||||
"__string": "cpp",
|
||||
"__threading_support": "cpp",
|
||||
"__tuple": "cpp",
|
||||
"array": "cpp",
|
||||
"atomic": "cpp",
|
||||
"bitset": "cpp",
|
||||
"cctype": "cpp",
|
||||
"chrono": "cpp",
|
||||
"clocale": "cpp",
|
||||
"cmath": "cpp",
|
||||
"compare": "cpp",
|
||||
"complex": "cpp",
|
||||
"concepts": "cpp",
|
||||
"cstdarg": "cpp",
|
||||
"cstddef": "cpp",
|
||||
"cstdint": "cpp",
|
||||
"cstdio": "cpp",
|
||||
"cstdlib": "cpp",
|
||||
"cstring": "cpp",
|
||||
"ctime": "cpp",
|
||||
"cwchar": "cpp",
|
||||
"cwctype": "cpp",
|
||||
"exception": "cpp",
|
||||
"initializer_list": "cpp",
|
||||
"ios": "cpp",
|
||||
"iosfwd": "cpp",
|
||||
"istream": "cpp",
|
||||
"limits": "cpp",
|
||||
"locale": "cpp",
|
||||
"memory": "cpp",
|
||||
"mutex": "cpp",
|
||||
"new": "cpp",
|
||||
"optional": "cpp",
|
||||
"ostream": "cpp",
|
||||
"ratio": "cpp",
|
||||
"sstream": "cpp",
|
||||
"stdexcept": "cpp",
|
||||
"streambuf": "cpp",
|
||||
"string": "cpp",
|
||||
"string_view": "cpp",
|
||||
"system_error": "cpp",
|
||||
"tuple": "cpp",
|
||||
"type_traits": "cpp",
|
||||
"typeinfo": "cpp",
|
||||
"unordered_map": "cpp",
|
||||
"variant": "cpp",
|
||||
"algorithm": "cpp",
|
||||
"iostream": "cpp",
|
||||
"iomanip": "cpp",
|
||||
"numeric": "cpp",
|
||||
"set": "cpp",
|
||||
"__tree": "cpp",
|
||||
"deque": "cpp",
|
||||
"list": "cpp",
|
||||
"map": "cpp",
|
||||
"unordered_set": "cpp",
|
||||
"any": "cpp",
|
||||
"condition_variable": "cpp",
|
||||
"forward_list": "cpp",
|
||||
"fstream": "cpp",
|
||||
"stack": "cpp",
|
||||
"thread": "cpp",
|
||||
"__memory": "cpp",
|
||||
"filesystem": "cpp",
|
||||
"*.toml": "toml",
|
||||
"utility": "cpp",
|
||||
"__verbose_abort": "cpp",
|
||||
"bit": "cpp",
|
||||
"random": "cpp",
|
||||
"*.tcc": "cpp",
|
||||
"functional": "cpp",
|
||||
"iterator": "cpp",
|
||||
"memory_resource": "cpp",
|
||||
"format": "cpp",
|
||||
"valarray": "cpp",
|
||||
"regex": "cpp",
|
||||
"span": "cpp",
|
||||
"cfenv": "cpp",
|
||||
"cinttypes": "cpp",
|
||||
"csetjmp": "cpp",
|
||||
"future": "cpp",
|
||||
"queue": "cpp",
|
||||
"typeindex": "cpp",
|
||||
"shared_mutex": "cpp",
|
||||
"*.ipp": "cpp",
|
||||
"cassert": "cpp",
|
||||
"charconv": "cpp",
|
||||
"source_location": "cpp",
|
||||
"ranges": "cpp"
|
||||
},
|
||||
"cmake.configureOnOpen": false,
|
||||
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"
|
||||
}
|
23
CHANGELOG.md
Normal file
23
CHANGELOG.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Changelog
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [1.0.1] - 2024-02-12
|
||||
|
||||
### Added
|
||||
|
||||
- Notes in Classifier class
|
||||
- BoostAODE: Add note with used features in initialization with feature selection
|
||||
- BoostAODE: Add note with the number of models
|
||||
- BoostAODE: Add note with the number of features used to create models if not all features are used
|
||||
- Test version number in TestBayesModels
|
||||
- Add tests with feature_select and notes on BoostAODE
|
||||
|
||||
### Fixed
|
||||
|
||||
- Network predict test
|
||||
- Network predict_proba test
|
||||
- Network score test
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 0.1.0
|
||||
VERSION 1.0.1
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@@ -24,7 +24,7 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
@@ -34,14 +34,13 @@ option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
|
||||
include(AddGitSubmodule)
|
||||
|
||||
if (CODE_COVERAGE)
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
@@ -53,29 +52,23 @@ endif (ENABLE_CLANG_TIDY)
|
||||
# ---------------------------------------------
|
||||
# include(FetchContent)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/argparse")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/openXLSX")
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(src/BayesNet)
|
||||
add_subdirectory(src/Platform)
|
||||
add_subdirectory(sample)
|
||||
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
|
||||
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
|
||||
add_git_submodule("lib/catch2")
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
|
98
Makefile
98
Makefile
@@ -1,6 +1,26 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: coverage setup help build test
|
||||
.PHONY: coverage setup help buildr buildd test clean debug release
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
app_targets = BayesNet
|
||||
test_targets = unit_tests_bayesnet
|
||||
n_procs = -j 16
|
||||
|
||||
define ClearTests
|
||||
@for t in $(test_targets); do \
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
echo ">>> Cleaning $$t..." ; \
|
||||
rm -f $(f_debug)/tests/$$t ; \
|
||||
fi ; \
|
||||
done
|
||||
@nfiles="$(find . -name "*.gcda" -print0)" ; \
|
||||
if test "${nfiles}" != "" ; then \
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
|
||||
fi ;
|
||||
endef
|
||||
|
||||
|
||||
setup: ## Install dependencies for tests and coverage
|
||||
@if [ "$(shell uname)" = "Darwin" ]; then \
|
||||
@@ -11,59 +31,55 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
fi
|
||||
|
||||
dest ?= ../discretizbench
|
||||
copy: ## Copy binary files to selected folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make build
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@cp build/src/Platform/main $(dest)
|
||||
@cp build/src/Platform/list $(dest)
|
||||
@cp build/src/Platform/manage $(dest)
|
||||
@echo ">>> Done"
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
@echo ">>> Creating dependency graph diagram of the project...";
|
||||
$(MAKE) debug
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
build: ## Build the main and BayesNetSample
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
|
||||
clean: ## Clean the debug info
|
||||
@echo ">>> Cleaning Debug BayesNet ...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
$(call ClearTests)
|
||||
@echo ">>> Done";
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
|
||||
cmake --build build -j 32;
|
||||
@echo ">>> Building Debug BayesNet...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@mkdir $(f_debug);
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
@echo ">>> Building Release BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
|
||||
@echo ">>> Building Release BayesNet...";
|
||||
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
|
||||
@mkdir $(f_release);
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||
@echo ">>> Done";
|
||||
|
||||
test: ## Run tests
|
||||
@echo "* Running tests...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@cd build; \
|
||||
cmake --build . --target unit_tests ;
|
||||
@cd build/tests; \
|
||||
./unit_tests;
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet & Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@for t in $(test_targets); do \
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
cd $(f_debug)/tests ; \
|
||||
./$$t $(opt) ; \
|
||||
fi ; \
|
||||
done
|
||||
@echo ">>> Done";
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo "*Building tests...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@cd build; \
|
||||
cmake --build . --target unit_tests ;
|
||||
@cd build/tests; \
|
||||
./unit_tests;
|
||||
gcovr ;
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) test
|
||||
@gcovr $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
|
19
README.md
19
README.md
@@ -1,5 +1,22 @@
|
||||
# BayesNet
|
||||
|
||||
Bayesian Network Classifier with libtorch from scratch
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
make release
|
||||
make buildr
|
||||
```
|
||||
|
||||
### Debug & Tests
|
||||
|
||||
```bash
|
||||
make debug
|
||||
make test
|
||||
make coverage
|
||||
```
|
||||
|
||||
## 1. Introduction
|
||||
|
12
TAN_iris.dot
12
TAN_iris.dot
@@ -1,12 +0,0 @@
|
||||
digraph BayesNet {
|
||||
label=<BayesNet >
|
||||
fontsize=30
|
||||
fontcolor=blue
|
||||
labelloc=t
|
||||
layout=circo
|
||||
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
|
||||
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
|
||||
petallength -> sepallength petalwidth [shape=circle]
|
||||
sepallength [shape=circle]
|
||||
sepallength -> sepalwidth sepalwidth [shape=circle]
|
||||
sepalwidth -> petalwidth }
|
@@ -7,7 +7,8 @@
|
||||
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR @
|
||||
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH @
|
||||
|
||||
static constexpr std::string_view project_name = " @PROJECT_NAME@ ";
|
||||
static constexpr std::string_view project_name = "@PROJECT_NAME@";
|
||||
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
|
||||
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
|
||||
static constexpr std::string_view git_sha = "@GIT_SHA@";
|
||||
static constexpr std::string_view data_path = "@BayesNet_SOURCE_DIR@/tests/data/";
|
@@ -1 +0,0 @@
|
||||
null
|
@@ -1,25 +0,0 @@
|
||||
Type Si
|
||||
Type Fe
|
||||
Type RI
|
||||
Type Na
|
||||
Type Ba
|
||||
Type Ca
|
||||
Type Al
|
||||
Type K
|
||||
Type Mg
|
||||
Fe RI
|
||||
Fe Ba
|
||||
Fe Ca
|
||||
RI Na
|
||||
RI Ba
|
||||
RI Ca
|
||||
RI Al
|
||||
RI K
|
||||
RI Mg
|
||||
Ba Ca
|
||||
Ba Al
|
||||
Ca Al
|
||||
Ca K
|
||||
Ca Mg
|
||||
Al K
|
||||
K Mg
|
@@ -1,645 +0,0 @@
|
||||
class att215
|
||||
class att25
|
||||
class att131
|
||||
class att95
|
||||
class att122
|
||||
class att17
|
||||
class att28
|
||||
class att5
|
||||
class att121
|
||||
class att214
|
||||
class att197
|
||||
class att116
|
||||
class att182
|
||||
class att60
|
||||
class att168
|
||||
class att178
|
||||
class att206
|
||||
class att89
|
||||
class att77
|
||||
class att209
|
||||
class att73
|
||||
class att126
|
||||
class att16
|
||||
class att74
|
||||
class att27
|
||||
class att61
|
||||
class att20
|
||||
class att101
|
||||
class att85
|
||||
class att76
|
||||
class att137
|
||||
class att211
|
||||
class att143
|
||||
class att14
|
||||
class att40
|
||||
class att210
|
||||
class att155
|
||||
class att170
|
||||
class att160
|
||||
class att23
|
||||
class att162
|
||||
class att203
|
||||
class att164
|
||||
class att107
|
||||
class att62
|
||||
class att42
|
||||
class att71
|
||||
class att128
|
||||
class att138
|
||||
class att83
|
||||
class att171
|
||||
class att92
|
||||
class att163
|
||||
class att49
|
||||
class att161
|
||||
class att158
|
||||
class att176
|
||||
class att11
|
||||
class att145
|
||||
class att4
|
||||
class att172
|
||||
class att196
|
||||
class att58
|
||||
class att68
|
||||
class att169
|
||||
class att80
|
||||
class att32
|
||||
class att175
|
||||
class att87
|
||||
class att88
|
||||
class att159
|
||||
class att18
|
||||
class att52
|
||||
class att98
|
||||
class att136
|
||||
class att150
|
||||
class att156
|
||||
class att110
|
||||
class att100
|
||||
class att63
|
||||
class att148
|
||||
class att90
|
||||
class att167
|
||||
class att35
|
||||
class att205
|
||||
class att51
|
||||
class att21
|
||||
class att142
|
||||
class att46
|
||||
class att134
|
||||
class att39
|
||||
class att102
|
||||
class att208
|
||||
class att130
|
||||
class att149
|
||||
class att96
|
||||
class att75
|
||||
class att118
|
||||
class att78
|
||||
class att213
|
||||
class att112
|
||||
class att38
|
||||
class att174
|
||||
class att189
|
||||
class att70
|
||||
class att179
|
||||
class att59
|
||||
class att79
|
||||
class att15
|
||||
class att47
|
||||
class att124
|
||||
class att34
|
||||
class att54
|
||||
class att191
|
||||
class att86
|
||||
class att56
|
||||
class att151
|
||||
class att66
|
||||
class att173
|
||||
class att44
|
||||
class att198
|
||||
class att139
|
||||
class att216
|
||||
class att129
|
||||
class att152
|
||||
class att69
|
||||
class att81
|
||||
class att50
|
||||
class att153
|
||||
class att41
|
||||
class att204
|
||||
class att188
|
||||
class att26
|
||||
class att13
|
||||
class att117
|
||||
class att114
|
||||
class att10
|
||||
class att64
|
||||
class att200
|
||||
class att9
|
||||
class att3
|
||||
class att119
|
||||
class att45
|
||||
class att104
|
||||
class att140
|
||||
class att30
|
||||
class att183
|
||||
class att146
|
||||
class att141
|
||||
class att202
|
||||
class att194
|
||||
class att24
|
||||
class att147
|
||||
class att8
|
||||
class att212
|
||||
class att123
|
||||
class att166
|
||||
class att187
|
||||
class att127
|
||||
class att190
|
||||
class att105
|
||||
class att106
|
||||
class att184
|
||||
class att82
|
||||
class att2
|
||||
class att135
|
||||
class att154
|
||||
class att111
|
||||
class att115
|
||||
class att99
|
||||
class att22
|
||||
class att84
|
||||
class att207
|
||||
class att94
|
||||
class att177
|
||||
class att103
|
||||
class att93
|
||||
class att201
|
||||
class att43
|
||||
class att36
|
||||
class att12
|
||||
class att125
|
||||
class att165
|
||||
class att180
|
||||
class att195
|
||||
class att157
|
||||
class att48
|
||||
class att6
|
||||
class att113
|
||||
class att193
|
||||
class att91
|
||||
class att72
|
||||
class att31
|
||||
class att132
|
||||
class att33
|
||||
class att57
|
||||
class att144
|
||||
class att192
|
||||
class att185
|
||||
class att37
|
||||
class att53
|
||||
class att120
|
||||
class att186
|
||||
class att199
|
||||
class att65
|
||||
class att108
|
||||
class att133
|
||||
class att29
|
||||
class att19
|
||||
class att7
|
||||
class att97
|
||||
class att67
|
||||
class att55
|
||||
class att1
|
||||
class att109
|
||||
class att181
|
||||
att215 att25
|
||||
att215 att131
|
||||
att215 att95
|
||||
att25 att131
|
||||
att25 att121
|
||||
att25 att73
|
||||
att25 att61
|
||||
att25 att85
|
||||
att25 att169
|
||||
att25 att13
|
||||
att131 att95
|
||||
att131 att122
|
||||
att131 att17
|
||||
att131 att28
|
||||
att131 att121
|
||||
att131 att214
|
||||
att131 att116
|
||||
att131 att126
|
||||
att131 att143
|
||||
att95 att122
|
||||
att95 att17
|
||||
att95 att28
|
||||
att95 att5
|
||||
att95 att214
|
||||
att95 att116
|
||||
att95 att60
|
||||
att95 att143
|
||||
att95 att155
|
||||
att95 att71
|
||||
att122 att182
|
||||
att122 att170
|
||||
att17 att5
|
||||
att17 att197
|
||||
att17 att89
|
||||
att17 att77
|
||||
att17 att161
|
||||
att28 att206
|
||||
att28 att16
|
||||
att28 att76
|
||||
att28 att172
|
||||
att28 att124
|
||||
att28 att64
|
||||
att5 att197
|
||||
att5 att89
|
||||
att5 att209
|
||||
att121 att73
|
||||
att214 att178
|
||||
att214 att58
|
||||
att214 att142
|
||||
att197 att209
|
||||
att197 att101
|
||||
att116 att182
|
||||
att116 att60
|
||||
att116 att168
|
||||
att116 att178
|
||||
att116 att206
|
||||
att116 att126
|
||||
att116 att16
|
||||
att116 att27
|
||||
att116 att20
|
||||
att116 att211
|
||||
att116 att164
|
||||
att116 att128
|
||||
att182 att27
|
||||
att182 att14
|
||||
att60 att168
|
||||
att60 att156
|
||||
att168 att156
|
||||
att168 att96
|
||||
att178 att20
|
||||
att178 att58
|
||||
att178 att142
|
||||
att178 att130
|
||||
att206 att74
|
||||
att206 att170
|
||||
att206 att158
|
||||
att89 att77
|
||||
att89 att137
|
||||
att89 att149
|
||||
att89 att173
|
||||
att77 att137
|
||||
att77 att161
|
||||
att209 att101
|
||||
att209 att41
|
||||
att73 att61
|
||||
att73 att157
|
||||
att126 att162
|
||||
att126 att138
|
||||
att126 att150
|
||||
att16 att74
|
||||
att16 att76
|
||||
att16 att40
|
||||
att16 att4
|
||||
att74 att14
|
||||
att74 att62
|
||||
att27 att171
|
||||
att61 att85
|
||||
att61 att169
|
||||
att20 att211
|
||||
att20 att210
|
||||
att20 att164
|
||||
att20 att176
|
||||
att101 att41
|
||||
att85 att13
|
||||
att76 att40
|
||||
att76 att160
|
||||
att137 att149
|
||||
att211 att210
|
||||
att211 att162
|
||||
att211 att171
|
||||
att211 att163
|
||||
att211 att175
|
||||
att211 att79
|
||||
att143 att155
|
||||
att143 att23
|
||||
att143 att71
|
||||
att143 att83
|
||||
att143 att11
|
||||
att14 att98
|
||||
att40 att160
|
||||
att40 att4
|
||||
att40 att196
|
||||
att40 att52
|
||||
att210 att42
|
||||
att210 att114
|
||||
att155 att23
|
||||
att155 att203
|
||||
att155 att107
|
||||
att155 att11
|
||||
att170 att158
|
||||
att160 att52
|
||||
att23 att203
|
||||
att162 att138
|
||||
att162 att18
|
||||
att162 att150
|
||||
att162 att90
|
||||
att162 att174
|
||||
att203 att107
|
||||
att203 att49
|
||||
att203 att59
|
||||
att203 att191
|
||||
att203 att119
|
||||
att164 att62
|
||||
att164 att42
|
||||
att164 att128
|
||||
att164 att92
|
||||
att164 att163
|
||||
att164 att176
|
||||
att164 att145
|
||||
att164 att68
|
||||
att164 att80
|
||||
att164 att98
|
||||
att164 att110
|
||||
att164 att205
|
||||
att164 att21
|
||||
att164 att213
|
||||
att164 att112
|
||||
att164 att38
|
||||
att164 att56
|
||||
att164 att44
|
||||
att107 att59
|
||||
att107 att47
|
||||
att107 att191
|
||||
att71 att83
|
||||
att71 att167
|
||||
att71 att35
|
||||
att128 att92
|
||||
att138 att18
|
||||
att83 att167
|
||||
att171 att87
|
||||
att171 att159
|
||||
att171 att63
|
||||
att171 att51
|
||||
att171 att39
|
||||
att171 att75
|
||||
att163 att49
|
||||
att163 att175
|
||||
att163 att87
|
||||
att163 att79
|
||||
att163 att151
|
||||
att163 att139
|
||||
att163 att187
|
||||
att163 att91
|
||||
att161 att173
|
||||
att176 att145
|
||||
att176 att172
|
||||
att176 att68
|
||||
att176 att80
|
||||
att176 att32
|
||||
att176 att110
|
||||
att176 att205
|
||||
att176 att21
|
||||
att176 att134
|
||||
att176 att56
|
||||
att4 att196
|
||||
att4 att88
|
||||
att4 att136
|
||||
att4 att100
|
||||
att4 att148
|
||||
att4 att208
|
||||
att172 att112
|
||||
att172 att184
|
||||
att196 att88
|
||||
att196 att136
|
||||
att196 att100
|
||||
att196 att208
|
||||
att58 att46
|
||||
att68 att32
|
||||
att32 att200
|
||||
att87 att159
|
||||
att87 att63
|
||||
att87 att75
|
||||
att87 att15
|
||||
att87 att99
|
||||
att159 att195
|
||||
att18 att90
|
||||
att18 att102
|
||||
att18 att78
|
||||
att18 att198
|
||||
att52 att124
|
||||
att98 att86
|
||||
att150 att174
|
||||
att150 att66
|
||||
att156 att96
|
||||
att156 att216
|
||||
att156 att204
|
||||
att156 att24
|
||||
att156 att84
|
||||
att100 att148
|
||||
att63 att51
|
||||
att63 att3
|
||||
att63 att183
|
||||
att90 att102
|
||||
att90 att78
|
||||
att167 att35
|
||||
att167 att179
|
||||
att35 att179
|
||||
att51 att39
|
||||
att51 att3
|
||||
att21 att134
|
||||
att21 att213
|
||||
att21 att38
|
||||
att21 att189
|
||||
att21 att129
|
||||
att21 att81
|
||||
att21 att117
|
||||
att21 att9
|
||||
att142 att46
|
||||
att142 att130
|
||||
att142 att118
|
||||
att142 att10
|
||||
att142 att202
|
||||
att142 att190
|
||||
att142 att106
|
||||
att46 att70
|
||||
att46 att34
|
||||
att46 att166
|
||||
att134 att2
|
||||
att102 att54
|
||||
att130 att118
|
||||
att130 att10
|
||||
att130 att202
|
||||
att149 att125
|
||||
att96 att216
|
||||
att96 att24
|
||||
att75 att15
|
||||
att75 att99
|
||||
att118 att70
|
||||
att78 att198
|
||||
att213 att189
|
||||
att38 att50
|
||||
att38 att26
|
||||
att174 att54
|
||||
att174 att66
|
||||
att174 att30
|
||||
att189 att86
|
||||
att189 att129
|
||||
att189 att69
|
||||
att189 att81
|
||||
att189 att153
|
||||
att189 att117
|
||||
att189 att9
|
||||
att189 att45
|
||||
att189 att105
|
||||
att70 att34
|
||||
att59 att47
|
||||
att79 att151
|
||||
att79 att139
|
||||
att79 att187
|
||||
att79 att127
|
||||
att79 att103
|
||||
att79 att43
|
||||
att79 att91
|
||||
att79 att19
|
||||
att124 att64
|
||||
att54 att114
|
||||
att54 att30
|
||||
att191 att119
|
||||
att86 att194
|
||||
att56 att44
|
||||
att56 att152
|
||||
att56 att50
|
||||
att56 att188
|
||||
att56 att26
|
||||
att56 att104
|
||||
att56 att140
|
||||
att56 att146
|
||||
att56 att194
|
||||
att56 att8
|
||||
att56 att2
|
||||
att56 att133
|
||||
att56 att1
|
||||
att173 att125
|
||||
att173 att113
|
||||
att44 att152
|
||||
att44 att188
|
||||
att44 att200
|
||||
att44 att212
|
||||
att44 att1
|
||||
att139 att103
|
||||
att139 att43
|
||||
att139 att31
|
||||
att139 att199
|
||||
att139 att7
|
||||
att216 att204
|
||||
att216 att36
|
||||
att216 att12
|
||||
att216 att180
|
||||
att216 att108
|
||||
att129 att69
|
||||
att152 att140
|
||||
att69 att153
|
||||
att81 att45
|
||||
att153 att141
|
||||
att41 att53
|
||||
att204 att12
|
||||
att13 att157
|
||||
att114 att6
|
||||
att114 att186
|
||||
att10 att190
|
||||
att64 att184
|
||||
att200 att104
|
||||
att9 att146
|
||||
att9 att141
|
||||
att9 att177
|
||||
att9 att37
|
||||
att9 att133
|
||||
att9 att109
|
||||
att9 att181
|
||||
att3 att183
|
||||
att3 att147
|
||||
att3 att123
|
||||
att3 att135
|
||||
att3 att111
|
||||
att45 att105
|
||||
att45 att177
|
||||
att45 att93
|
||||
att45 att201
|
||||
att45 att193
|
||||
att45 att37
|
||||
att45 att97
|
||||
att140 att8
|
||||
att30 att6
|
||||
att183 att147
|
||||
att183 att123
|
||||
att202 att166
|
||||
att202 att106
|
||||
att202 att82
|
||||
att24 att84
|
||||
att24 att36
|
||||
att147 att135
|
||||
att8 att212
|
||||
att166 att82
|
||||
att187 att127
|
||||
att187 att115
|
||||
att127 att115
|
||||
att105 att93
|
||||
att106 att154
|
||||
att82 att154
|
||||
att82 att22
|
||||
att135 att111
|
||||
att135 att207
|
||||
att154 att22
|
||||
att154 att94
|
||||
att111 att207
|
||||
att22 att94
|
||||
att84 att48
|
||||
att177 att165
|
||||
att103 att195
|
||||
att103 att109
|
||||
att93 att201
|
||||
att93 att165
|
||||
att93 att193
|
||||
att93 att33
|
||||
att201 att33
|
||||
att201 att57
|
||||
att36 att180
|
||||
att36 att72
|
||||
att36 att132
|
||||
att36 att144
|
||||
att125 att113
|
||||
att125 att185
|
||||
att125 att65
|
||||
att125 att29
|
||||
att180 att48
|
||||
att180 att72
|
||||
att180 att192
|
||||
att180 att108
|
||||
att6 att186
|
||||
att113 att185
|
||||
att113 att53
|
||||
att193 att97
|
||||
att91 att31
|
||||
att91 att19
|
||||
att72 att132
|
||||
att72 att192
|
||||
att31 att199
|
||||
att31 att67
|
||||
att132 att144
|
||||
att132 att120
|
||||
att33 att57
|
||||
att144 att120
|
||||
att185 att65
|
||||
att199 att7
|
||||
att199 att67
|
||||
att199 att55
|
||||
att65 att29
|
||||
att67 att55
|
||||
att109 att181
|
@@ -1,859 +0,0 @@
|
||||
class att215
|
||||
class att25
|
||||
class att131
|
||||
class att95
|
||||
class att122
|
||||
class att17
|
||||
class att28
|
||||
class att5
|
||||
class att121
|
||||
class att214
|
||||
class att197
|
||||
class att116
|
||||
class att182
|
||||
class att60
|
||||
class att168
|
||||
class att178
|
||||
class att206
|
||||
class att89
|
||||
class att77
|
||||
class att209
|
||||
class att73
|
||||
class att126
|
||||
class att16
|
||||
class att74
|
||||
class att27
|
||||
class att61
|
||||
class att20
|
||||
class att101
|
||||
class att85
|
||||
class att76
|
||||
class att137
|
||||
class att211
|
||||
class att143
|
||||
class att14
|
||||
class att40
|
||||
class att210
|
||||
class att155
|
||||
class att170
|
||||
class att160
|
||||
class att23
|
||||
class att162
|
||||
class att203
|
||||
class att164
|
||||
class att107
|
||||
class att62
|
||||
class att42
|
||||
class att71
|
||||
class att128
|
||||
class att138
|
||||
class att83
|
||||
class att171
|
||||
class att92
|
||||
class att163
|
||||
class att49
|
||||
class att161
|
||||
class att158
|
||||
class att176
|
||||
class att11
|
||||
class att145
|
||||
class att4
|
||||
class att172
|
||||
class att196
|
||||
class att58
|
||||
class att68
|
||||
class att169
|
||||
class att80
|
||||
class att32
|
||||
class att175
|
||||
class att87
|
||||
class att88
|
||||
class att159
|
||||
class att18
|
||||
class att52
|
||||
class att98
|
||||
class att136
|
||||
class att150
|
||||
class att156
|
||||
class att110
|
||||
class att100
|
||||
class att63
|
||||
class att148
|
||||
class att90
|
||||
class att167
|
||||
class att35
|
||||
class att205
|
||||
class att51
|
||||
class att21
|
||||
class att142
|
||||
class att46
|
||||
class att134
|
||||
class att39
|
||||
class att102
|
||||
class att208
|
||||
class att130
|
||||
class att149
|
||||
class att96
|
||||
class att75
|
||||
class att118
|
||||
class att78
|
||||
class att213
|
||||
class att112
|
||||
class att38
|
||||
class att174
|
||||
class att189
|
||||
class att70
|
||||
class att179
|
||||
class att59
|
||||
class att79
|
||||
class att15
|
||||
class att47
|
||||
class att124
|
||||
class att34
|
||||
class att54
|
||||
class att191
|
||||
class att86
|
||||
class att56
|
||||
class att151
|
||||
class att66
|
||||
class att173
|
||||
class att44
|
||||
class att198
|
||||
class att139
|
||||
class att216
|
||||
class att129
|
||||
class att152
|
||||
class att69
|
||||
class att81
|
||||
class att50
|
||||
class att153
|
||||
class att41
|
||||
class att204
|
||||
class att188
|
||||
class att26
|
||||
class att13
|
||||
class att117
|
||||
class att114
|
||||
class att10
|
||||
class att64
|
||||
class att200
|
||||
class att9
|
||||
class att3
|
||||
class att119
|
||||
class att45
|
||||
class att104
|
||||
class att140
|
||||
class att30
|
||||
class att183
|
||||
class att146
|
||||
class att141
|
||||
class att202
|
||||
class att194
|
||||
class att24
|
||||
class att147
|
||||
class att8
|
||||
class att212
|
||||
class att123
|
||||
class att166
|
||||
class att187
|
||||
class att127
|
||||
class att190
|
||||
class att105
|
||||
class att106
|
||||
class att184
|
||||
class att82
|
||||
class att2
|
||||
class att135
|
||||
class att154
|
||||
class att111
|
||||
class att115
|
||||
class att99
|
||||
class att22
|
||||
class att84
|
||||
class att207
|
||||
class att94
|
||||
class att177
|
||||
class att103
|
||||
class att93
|
||||
class att201
|
||||
class att43
|
||||
class att36
|
||||
class att12
|
||||
class att125
|
||||
class att165
|
||||
class att180
|
||||
class att195
|
||||
class att157
|
||||
class att48
|
||||
class att6
|
||||
class att113
|
||||
class att193
|
||||
class att91
|
||||
class att72
|
||||
class att31
|
||||
class att132
|
||||
class att33
|
||||
class att57
|
||||
class att144
|
||||
class att192
|
||||
class att185
|
||||
class att37
|
||||
class att53
|
||||
class att120
|
||||
class att186
|
||||
class att199
|
||||
class att65
|
||||
class att108
|
||||
class att133
|
||||
class att29
|
||||
class att19
|
||||
class att7
|
||||
class att97
|
||||
class att67
|
||||
class att55
|
||||
class att1
|
||||
class att109
|
||||
class att181
|
||||
att215 att25
|
||||
att215 att131
|
||||
att215 att95
|
||||
att215 att17
|
||||
att215 att214
|
||||
att215 att143
|
||||
att25 att131
|
||||
att25 att95
|
||||
att25 att122
|
||||
att25 att121
|
||||
att25 att73
|
||||
att25 att61
|
||||
att25 att85
|
||||
att25 att169
|
||||
att25 att13
|
||||
att25 att157
|
||||
att131 att95
|
||||
att131 att122
|
||||
att131 att17
|
||||
att131 att28
|
||||
att131 att5
|
||||
att131 att121
|
||||
att131 att214
|
||||
att131 att116
|
||||
att131 att182
|
||||
att131 att60
|
||||
att131 att126
|
||||
att131 att16
|
||||
att131 att27
|
||||
att131 att20
|
||||
att131 att143
|
||||
att131 att155
|
||||
att95 att122
|
||||
att95 att17
|
||||
att95 att28
|
||||
att95 att5
|
||||
att95 att121
|
||||
att95 att214
|
||||
att95 att197
|
||||
att95 att116
|
||||
att95 att60
|
||||
att95 att168
|
||||
att95 att178
|
||||
att95 att143
|
||||
att95 att155
|
||||
att95 att23
|
||||
att95 att71
|
||||
att95 att167
|
||||
att122 att28
|
||||
att122 att182
|
||||
att122 att170
|
||||
att17 att5
|
||||
att17 att197
|
||||
att17 att89
|
||||
att17 att77
|
||||
att17 att209
|
||||
att17 att137
|
||||
att17 att161
|
||||
att17 att41
|
||||
att28 att206
|
||||
att28 att16
|
||||
att28 att76
|
||||
att28 att40
|
||||
att28 att210
|
||||
att28 att160
|
||||
att28 att172
|
||||
att28 att124
|
||||
att28 att64
|
||||
att5 att197
|
||||
att5 att89
|
||||
att5 att77
|
||||
att5 att209
|
||||
att5 att101
|
||||
att121 att73
|
||||
att121 att61
|
||||
att214 att116
|
||||
att214 att178
|
||||
att214 att206
|
||||
att214 att58
|
||||
att214 att142
|
||||
att214 att46
|
||||
att197 att89
|
||||
att197 att209
|
||||
att197 att101
|
||||
att116 att182
|
||||
att116 att60
|
||||
att116 att168
|
||||
att116 att178
|
||||
att116 att206
|
||||
att116 att73
|
||||
att116 att126
|
||||
att116 att16
|
||||
att116 att74
|
||||
att116 att27
|
||||
att116 att20
|
||||
att116 att211
|
||||
att116 att164
|
||||
att116 att128
|
||||
att116 att92
|
||||
att116 att176
|
||||
att116 att68
|
||||
att182 att27
|
||||
att182 att14
|
||||
att60 att168
|
||||
att60 att156
|
||||
att60 att96
|
||||
att168 att126
|
||||
att168 att156
|
||||
att168 att96
|
||||
att168 att216
|
||||
att178 att20
|
||||
att178 att211
|
||||
att178 att58
|
||||
att178 att142
|
||||
att178 att130
|
||||
att178 att166
|
||||
att206 att74
|
||||
att206 att170
|
||||
att206 att158
|
||||
att89 att77
|
||||
att89 att137
|
||||
att89 att149
|
||||
att89 att173
|
||||
att77 att137
|
||||
att77 att161
|
||||
att77 att149
|
||||
att209 att101
|
||||
att209 att41
|
||||
att73 att61
|
||||
att73 att85
|
||||
att73 att13
|
||||
att73 att157
|
||||
att126 att162
|
||||
att126 att138
|
||||
att126 att18
|
||||
att126 att150
|
||||
att16 att74
|
||||
att16 att76
|
||||
att16 att40
|
||||
att16 att4
|
||||
att16 att196
|
||||
att16 att136
|
||||
att74 att14
|
||||
att74 att62
|
||||
att27 att171
|
||||
att27 att63
|
||||
att61 att85
|
||||
att61 att169
|
||||
att20 att76
|
||||
att20 att211
|
||||
att20 att210
|
||||
att20 att170
|
||||
att20 att164
|
||||
att20 att128
|
||||
att20 att176
|
||||
att20 att80
|
||||
att101 att41
|
||||
att85 att169
|
||||
att85 att13
|
||||
att76 att14
|
||||
att76 att40
|
||||
att76 att160
|
||||
att76 att4
|
||||
att76 att52
|
||||
att137 att161
|
||||
att137 att149
|
||||
att137 att173
|
||||
att137 att125
|
||||
att211 att210
|
||||
att211 att162
|
||||
att211 att164
|
||||
att211 att62
|
||||
att211 att42
|
||||
att211 att171
|
||||
att211 att163
|
||||
att211 att175
|
||||
att211 att79
|
||||
att211 att151
|
||||
att211 att43
|
||||
att143 att155
|
||||
att143 att23
|
||||
att143 att203
|
||||
att143 att71
|
||||
att143 att83
|
||||
att143 att11
|
||||
att14 att98
|
||||
att40 att160
|
||||
att40 att4
|
||||
att40 att196
|
||||
att40 att88
|
||||
att40 att52
|
||||
att210 att162
|
||||
att210 att42
|
||||
att210 att114
|
||||
att155 att23
|
||||
att155 att203
|
||||
att155 att107
|
||||
att155 att11
|
||||
att170 att158
|
||||
att160 att52
|
||||
att160 att124
|
||||
att23 att203
|
||||
att23 att107
|
||||
att23 att71
|
||||
att23 att11
|
||||
att162 att138
|
||||
att162 att18
|
||||
att162 att150
|
||||
att162 att90
|
||||
att162 att102
|
||||
att162 att174
|
||||
att162 att66
|
||||
att203 att107
|
||||
att203 att49
|
||||
att203 att59
|
||||
att203 att47
|
||||
att203 att191
|
||||
att203 att119
|
||||
att164 att62
|
||||
att164 att42
|
||||
att164 att128
|
||||
att164 att171
|
||||
att164 att92
|
||||
att164 att163
|
||||
att164 att158
|
||||
att164 att176
|
||||
att164 att145
|
||||
att164 att172
|
||||
att164 att58
|
||||
att164 att68
|
||||
att164 att80
|
||||
att164 att32
|
||||
att164 att98
|
||||
att164 att156
|
||||
att164 att110
|
||||
att164 att205
|
||||
att164 att21
|
||||
att164 att134
|
||||
att164 att213
|
||||
att164 att112
|
||||
att164 att38
|
||||
att164 att189
|
||||
att164 att56
|
||||
att164 att44
|
||||
att164 att152
|
||||
att164 att8
|
||||
att107 att83
|
||||
att107 att49
|
||||
att107 att59
|
||||
att107 att47
|
||||
att107 att191
|
||||
att42 att138
|
||||
att42 att54
|
||||
att42 att114
|
||||
att71 att83
|
||||
att71 att167
|
||||
att71 att35
|
||||
att71 att179
|
||||
att128 att92
|
||||
att128 att112
|
||||
att138 att18
|
||||
att138 att150
|
||||
att83 att167
|
||||
att83 att35
|
||||
att171 att87
|
||||
att171 att159
|
||||
att171 att63
|
||||
att171 att51
|
||||
att171 att39
|
||||
att171 att75
|
||||
att92 att163
|
||||
att92 att145
|
||||
att92 att56
|
||||
att163 att49
|
||||
att163 att175
|
||||
att163 att87
|
||||
att163 att79
|
||||
att163 att151
|
||||
att163 att139
|
||||
att163 att187
|
||||
att163 att127
|
||||
att163 att103
|
||||
att163 att91
|
||||
att49 att37
|
||||
att161 att173
|
||||
att161 att113
|
||||
att176 att145
|
||||
att176 att172
|
||||
att176 att68
|
||||
att176 att80
|
||||
att176 att32
|
||||
att176 att175
|
||||
att176 att98
|
||||
att176 att110
|
||||
att176 att205
|
||||
att176 att21
|
||||
att176 att134
|
||||
att176 att213
|
||||
att176 att56
|
||||
att4 att196
|
||||
att4 att88
|
||||
att4 att136
|
||||
att4 att100
|
||||
att4 att148
|
||||
att4 att208
|
||||
att172 att112
|
||||
att172 att184
|
||||
att196 att88
|
||||
att196 att136
|
||||
att196 att100
|
||||
att196 att148
|
||||
att196 att208
|
||||
att58 att142
|
||||
att58 att46
|
||||
att58 att34
|
||||
att68 att32
|
||||
att80 att38
|
||||
att32 att110
|
||||
att32 att21
|
||||
att32 att44
|
||||
att32 att200
|
||||
att175 att87
|
||||
att175 att159
|
||||
att175 att79
|
||||
att175 att187
|
||||
att175 att115
|
||||
att87 att159
|
||||
att87 att63
|
||||
att87 att51
|
||||
att87 att75
|
||||
att87 att15
|
||||
att87 att99
|
||||
att159 att75
|
||||
att159 att15
|
||||
att159 att195
|
||||
att18 att90
|
||||
att18 att102
|
||||
att18 att78
|
||||
att18 att198
|
||||
att52 att124
|
||||
att52 att64
|
||||
att98 att86
|
||||
att136 att100
|
||||
att136 att208
|
||||
att150 att90
|
||||
att150 att174
|
||||
att150 att66
|
||||
att156 att205
|
||||
att156 att96
|
||||
att156 att216
|
||||
att156 att204
|
||||
att156 att24
|
||||
att156 att84
|
||||
att156 att36
|
||||
att156 att12
|
||||
att156 att108
|
||||
att100 att148
|
||||
att63 att51
|
||||
att63 att39
|
||||
att63 att3
|
||||
att63 att183
|
||||
att63 att147
|
||||
att90 att102
|
||||
att90 att78
|
||||
att167 att35
|
||||
att167 att179
|
||||
att35 att179
|
||||
att51 att39
|
||||
att51 att3
|
||||
att51 att183
|
||||
att21 att134
|
||||
att21 att213
|
||||
att21 att38
|
||||
att21 att189
|
||||
att21 att129
|
||||
att21 att81
|
||||
att21 att153
|
||||
att21 att117
|
||||
att21 att9
|
||||
att142 att46
|
||||
att142 att130
|
||||
att142 att118
|
||||
att142 att70
|
||||
att142 att10
|
||||
att142 att202
|
||||
att142 att190
|
||||
att142 att106
|
||||
att46 att130
|
||||
att46 att118
|
||||
att46 att70
|
||||
att46 att34
|
||||
att46 att166
|
||||
att46 att82
|
||||
att134 att2
|
||||
att39 att3
|
||||
att102 att78
|
||||
att102 att174
|
||||
att102 att54
|
||||
att102 att198
|
||||
att130 att118
|
||||
att130 att10
|
||||
att130 att202
|
||||
att130 att190
|
||||
att130 att106
|
||||
att149 att125
|
||||
att96 att216
|
||||
att96 att204
|
||||
att96 att24
|
||||
att75 att15
|
||||
att75 att99
|
||||
att118 att70
|
||||
att118 att10
|
||||
att118 att202
|
||||
att78 att198
|
||||
att213 att189
|
||||
att213 att129
|
||||
att213 att69
|
||||
att213 att81
|
||||
att38 att50
|
||||
att38 att26
|
||||
att174 att54
|
||||
att174 att66
|
||||
att174 att30
|
||||
att189 att86
|
||||
att189 att129
|
||||
att189 att69
|
||||
att189 att81
|
||||
att189 att153
|
||||
att189 att117
|
||||
att189 att9
|
||||
att189 att45
|
||||
att189 att141
|
||||
att189 att105
|
||||
att70 att34
|
||||
att70 att154
|
||||
att179 att59
|
||||
att59 att47
|
||||
att59 att191
|
||||
att59 att119
|
||||
att79 att86
|
||||
att79 att151
|
||||
att79 att139
|
||||
att79 att187
|
||||
att79 att127
|
||||
att79 att103
|
||||
att79 att43
|
||||
att79 att193
|
||||
att79 att91
|
||||
att79 att19
|
||||
att124 att64
|
||||
att54 att114
|
||||
att54 att30
|
||||
att54 att6
|
||||
att191 att119
|
||||
att86 att194
|
||||
att56 att44
|
||||
att56 att152
|
||||
att56 att50
|
||||
att56 att188
|
||||
att56 att26
|
||||
att56 att200
|
||||
att56 att104
|
||||
att56 att140
|
||||
att56 att146
|
||||
att56 att194
|
||||
att56 att8
|
||||
att56 att2
|
||||
att56 att133
|
||||
att56 att1
|
||||
att151 att139
|
||||
att66 att30
|
||||
att173 att125
|
||||
att173 att113
|
||||
att173 att185
|
||||
att44 att152
|
||||
att44 att50
|
||||
att44 att188
|
||||
att44 att200
|
||||
att44 att104
|
||||
att44 att140
|
||||
att44 att194
|
||||
att44 att212
|
||||
att44 att1
|
||||
att139 att26
|
||||
att139 att99
|
||||
att139 att103
|
||||
att139 att43
|
||||
att139 att91
|
||||
att139 att31
|
||||
att139 att199
|
||||
att139 att7
|
||||
att216 att204
|
||||
att216 att24
|
||||
att216 att84
|
||||
att216 att36
|
||||
att216 att12
|
||||
att216 att180
|
||||
att216 att108
|
||||
att129 att69
|
||||
att152 att188
|
||||
att152 att140
|
||||
att69 att153
|
||||
att69 att9
|
||||
att69 att177
|
||||
att81 att45
|
||||
att81 att105
|
||||
att153 att117
|
||||
att153 att141
|
||||
att41 att53
|
||||
att204 att12
|
||||
att204 att180
|
||||
att188 att146
|
||||
att188 att212
|
||||
att13 att157
|
||||
att114 att6
|
||||
att114 att186
|
||||
att10 att190
|
||||
att64 att184
|
||||
att200 att104
|
||||
att9 att45
|
||||
att9 att146
|
||||
att9 att141
|
||||
att9 att177
|
||||
att9 att37
|
||||
att9 att133
|
||||
att9 att109
|
||||
att9 att181
|
||||
att3 att183
|
||||
att3 att147
|
||||
att3 att123
|
||||
att3 att135
|
||||
att3 att111
|
||||
att45 att105
|
||||
att45 att177
|
||||
att45 att93
|
||||
att45 att201
|
||||
att45 att165
|
||||
att45 att193
|
||||
att45 att33
|
||||
att45 att37
|
||||
att45 att133
|
||||
att45 att97
|
||||
att140 att8
|
||||
att30 att6
|
||||
att30 att186
|
||||
att183 att147
|
||||
att183 att123
|
||||
att183 att135
|
||||
att146 att2
|
||||
att202 att166
|
||||
att202 att106
|
||||
att202 att82
|
||||
att24 att84
|
||||
att24 att36
|
||||
att24 att132
|
||||
att147 att123
|
||||
att147 att135
|
||||
att147 att111
|
||||
att147 att207
|
||||
att8 att212
|
||||
att166 att82
|
||||
att166 att22
|
||||
att166 att94
|
||||
att187 att127
|
||||
att187 att115
|
||||
att127 att115
|
||||
att105 att184
|
||||
att105 att93
|
||||
att105 att201
|
||||
att106 att154
|
||||
att82 att154
|
||||
att82 att22
|
||||
att135 att111
|
||||
att135 att207
|
||||
att154 att22
|
||||
att154 att94
|
||||
att111 att207
|
||||
att99 att195
|
||||
att22 att94
|
||||
att84 att48
|
||||
att177 att93
|
||||
att177 att165
|
||||
att177 att181
|
||||
att103 att195
|
||||
att103 att97
|
||||
att103 att109
|
||||
att93 att201
|
||||
att93 att165
|
||||
att93 att193
|
||||
att93 att33
|
||||
att93 att57
|
||||
att201 att33
|
||||
att201 att57
|
||||
att43 att31
|
||||
att36 att180
|
||||
att36 att48
|
||||
att36 att72
|
||||
att36 att132
|
||||
att36 att144
|
||||
att125 att113
|
||||
att125 att185
|
||||
att125 att65
|
||||
att125 att29
|
||||
att180 att48
|
||||
att180 att72
|
||||
att180 att192
|
||||
att180 att108
|
||||
att48 att72
|
||||
att6 att186
|
||||
att113 att185
|
||||
att113 att53
|
||||
att113 att65
|
||||
att193 att97
|
||||
att91 att31
|
||||
att91 att199
|
||||
att91 att19
|
||||
att72 att132
|
||||
att72 att144
|
||||
att72 att192
|
||||
att72 att120
|
||||
att31 att199
|
||||
att31 att7
|
||||
att31 att67
|
||||
att31 att55
|
||||
att31 att1
|
||||
att132 att144
|
||||
att132 att120
|
||||
att33 att57
|
||||
att144 att192
|
||||
att144 att120
|
||||
att185 att53
|
||||
att185 att65
|
||||
att185 att29
|
||||
att199 att19
|
||||
att199 att7
|
||||
att199 att67
|
||||
att199 att55
|
||||
att199 att109
|
||||
att65 att29
|
||||
att7 att67
|
||||
att67 att55
|
||||
att109 att181
|
||||
|
@@ -1,859 +0,0 @@
|
||||
class att215
|
||||
class att25
|
||||
class att131
|
||||
class att95
|
||||
class att122
|
||||
class att17
|
||||
class att28
|
||||
class att5
|
||||
class att121
|
||||
class att214
|
||||
class att197
|
||||
class att116
|
||||
class att182
|
||||
class att60
|
||||
class att168
|
||||
class att178
|
||||
class att206
|
||||
class att89
|
||||
class att77
|
||||
class att209
|
||||
class att73
|
||||
class att126
|
||||
class att16
|
||||
class att74
|
||||
class att27
|
||||
class att61
|
||||
class att20
|
||||
class att101
|
||||
class att85
|
||||
class att76
|
||||
class att137
|
||||
class att211
|
||||
class att143
|
||||
class att14
|
||||
class att40
|
||||
class att210
|
||||
class att155
|
||||
class att170
|
||||
class att160
|
||||
class att23
|
||||
class att162
|
||||
class att203
|
||||
class att164
|
||||
class att107
|
||||
class att62
|
||||
class att42
|
||||
class att71
|
||||
class att128
|
||||
class att138
|
||||
class att83
|
||||
class att171
|
||||
class att92
|
||||
class att163
|
||||
class att49
|
||||
class att161
|
||||
class att158
|
||||
class att176
|
||||
class att11
|
||||
class att145
|
||||
class att4
|
||||
class att172
|
||||
class att196
|
||||
class att58
|
||||
class att68
|
||||
class att169
|
||||
class att80
|
||||
class att32
|
||||
class att175
|
||||
class att87
|
||||
class att88
|
||||
class att159
|
||||
class att18
|
||||
class att52
|
||||
class att98
|
||||
class att136
|
||||
class att150
|
||||
class att156
|
||||
class att110
|
||||
class att100
|
||||
class att63
|
||||
class att148
|
||||
class att90
|
||||
class att167
|
||||
class att35
|
||||
class att205
|
||||
class att51
|
||||
class att21
|
||||
class att142
|
||||
class att46
|
||||
class att134
|
||||
class att39
|
||||
class att102
|
||||
class att208
|
||||
class att130
|
||||
class att149
|
||||
class att96
|
||||
class att75
|
||||
class att118
|
||||
class att78
|
||||
class att213
|
||||
class att112
|
||||
class att38
|
||||
class att174
|
||||
class att189
|
||||
class att70
|
||||
class att179
|
||||
class att59
|
||||
class att79
|
||||
class att15
|
||||
class att47
|
||||
class att124
|
||||
class att34
|
||||
class att54
|
||||
class att191
|
||||
class att86
|
||||
class att56
|
||||
class att151
|
||||
class att66
|
||||
class att173
|
||||
class att44
|
||||
class att198
|
||||
class att139
|
||||
class att216
|
||||
class att129
|
||||
class att152
|
||||
class att69
|
||||
class att81
|
||||
class att50
|
||||
class att153
|
||||
class att41
|
||||
class att204
|
||||
class att188
|
||||
class att26
|
||||
class att13
|
||||
class att117
|
||||
class att114
|
||||
class att10
|
||||
class att64
|
||||
class att200
|
||||
class att9
|
||||
class att3
|
||||
class att119
|
||||
class att45
|
||||
class att104
|
||||
class att140
|
||||
class att30
|
||||
class att183
|
||||
class att146
|
||||
class att141
|
||||
class att202
|
||||
class att194
|
||||
class att24
|
||||
class att147
|
||||
class att8
|
||||
class att212
|
||||
class att123
|
||||
class att166
|
||||
class att187
|
||||
class att127
|
||||
class att190
|
||||
class att105
|
||||
class att106
|
||||
class att184
|
||||
class att82
|
||||
class att2
|
||||
class att135
|
||||
class att154
|
||||
class att111
|
||||
class att115
|
||||
class att99
|
||||
class att22
|
||||
class att84
|
||||
class att207
|
||||
class att94
|
||||
class att177
|
||||
class att103
|
||||
class att93
|
||||
class att201
|
||||
class att43
|
||||
class att36
|
||||
class att12
|
||||
class att125
|
||||
class att165
|
||||
class att180
|
||||
class att195
|
||||
class att157
|
||||
class att48
|
||||
class att6
|
||||
class att113
|
||||
class att193
|
||||
class att91
|
||||
class att72
|
||||
class att31
|
||||
class att132
|
||||
class att33
|
||||
class att57
|
||||
class att144
|
||||
class att192
|
||||
class att185
|
||||
class att37
|
||||
class att53
|
||||
class att120
|
||||
class att186
|
||||
class att199
|
||||
class att65
|
||||
class att108
|
||||
class att133
|
||||
class att29
|
||||
class att19
|
||||
class att7
|
||||
class att97
|
||||
class att67
|
||||
class att55
|
||||
class att1
|
||||
class att109
|
||||
class att181
|
||||
att215 att25
|
||||
att215 att131
|
||||
att215 att95
|
||||
att215 att17
|
||||
att215 att214
|
||||
att215 att143
|
||||
att25 att131
|
||||
att25 att95
|
||||
att25 att122
|
||||
att25 att121
|
||||
att25 att73
|
||||
att25 att61
|
||||
att25 att85
|
||||
att25 att169
|
||||
att25 att13
|
||||
att25 att157
|
||||
att131 att95
|
||||
att131 att122
|
||||
att131 att17
|
||||
att131 att28
|
||||
att131 att5
|
||||
att131 att121
|
||||
att131 att214
|
||||
att131 att116
|
||||
att131 att182
|
||||
att131 att60
|
||||
att131 att126
|
||||
att131 att16
|
||||
att131 att27
|
||||
att131 att20
|
||||
att131 att143
|
||||
att131 att155
|
||||
att95 att122
|
||||
att95 att17
|
||||
att95 att28
|
||||
att95 att5
|
||||
att95 att121
|
||||
att95 att214
|
||||
att95 att197
|
||||
att95 att116
|
||||
att95 att60
|
||||
att95 att168
|
||||
att95 att178
|
||||
att95 att143
|
||||
att95 att155
|
||||
att95 att23
|
||||
att95 att71
|
||||
att95 att167
|
||||
att122 att28
|
||||
att122 att182
|
||||
att122 att170
|
||||
att17 att5
|
||||
att17 att197
|
||||
att17 att89
|
||||
att17 att77
|
||||
att17 att209
|
||||
att17 att137
|
||||
att17 att161
|
||||
att17 att41
|
||||
att28 att206
|
||||
att28 att16
|
||||
att28 att76
|
||||
att28 att40
|
||||
att28 att210
|
||||
att28 att160
|
||||
att28 att172
|
||||
att28 att124
|
||||
att28 att64
|
||||
att5 att197
|
||||
att5 att89
|
||||
att5 att77
|
||||
att5 att209
|
||||
att5 att101
|
||||
att121 att73
|
||||
att121 att61
|
||||
att214 att116
|
||||
att214 att178
|
||||
att214 att206
|
||||
att214 att58
|
||||
att214 att142
|
||||
att214 att46
|
||||
att197 att89
|
||||
att197 att209
|
||||
att197 att101
|
||||
att116 att182
|
||||
att116 att60
|
||||
att116 att168
|
||||
att116 att178
|
||||
att116 att206
|
||||
att116 att73
|
||||
att116 att126
|
||||
att116 att16
|
||||
att116 att74
|
||||
att116 att27
|
||||
att116 att20
|
||||
att116 att211
|
||||
att116 att164
|
||||
att116 att128
|
||||
att116 att92
|
||||
att116 att176
|
||||
att116 att68
|
||||
att182 att27
|
||||
att182 att14
|
||||
att60 att168
|
||||
att60 att156
|
||||
att60 att96
|
||||
att168 att126
|
||||
att168 att156
|
||||
att168 att96
|
||||
att168 att216
|
||||
att178 att20
|
||||
att178 att211
|
||||
att178 att58
|
||||
att178 att142
|
||||
att178 att130
|
||||
att178 att166
|
||||
att206 att74
|
||||
att206 att170
|
||||
att206 att158
|
||||
att89 att77
|
||||
att89 att137
|
||||
att89 att149
|
||||
att89 att173
|
||||
att77 att137
|
||||
att77 att161
|
||||
att77 att149
|
||||
att209 att101
|
||||
att209 att41
|
||||
att73 att61
|
||||
att73 att85
|
||||
att73 att13
|
||||
att73 att157
|
||||
att126 att162
|
||||
att126 att138
|
||||
att126 att18
|
||||
att126 att150
|
||||
att16 att74
|
||||
att16 att76
|
||||
att16 att40
|
||||
att16 att4
|
||||
att16 att196
|
||||
att16 att136
|
||||
att74 att14
|
||||
att74 att62
|
||||
att27 att171
|
||||
att27 att63
|
||||
att61 att85
|
||||
att61 att169
|
||||
att20 att76
|
||||
att20 att211
|
||||
att20 att210
|
||||
att20 att170
|
||||
att20 att164
|
||||
att20 att128
|
||||
att20 att176
|
||||
att20 att80
|
||||
att101 att41
|
||||
att85 att169
|
||||
att85 att13
|
||||
att76 att14
|
||||
att76 att40
|
||||
att76 att160
|
||||
att76 att4
|
||||
att76 att52
|
||||
att137 att161
|
||||
att137 att149
|
||||
att137 att173
|
||||
att137 att125
|
||||
att211 att210
|
||||
att211 att162
|
||||
att211 att164
|
||||
att211 att62
|
||||
att211 att42
|
||||
att211 att171
|
||||
att211 att163
|
||||
att211 att175
|
||||
att211 att79
|
||||
att211 att151
|
||||
att211 att43
|
||||
att143 att155
|
||||
att143 att23
|
||||
att143 att203
|
||||
att143 att71
|
||||
att143 att83
|
||||
att143 att11
|
||||
att14 att98
|
||||
att40 att160
|
||||
att40 att4
|
||||
att40 att196
|
||||
att40 att88
|
||||
att40 att52
|
||||
att210 att162
|
||||
att210 att42
|
||||
att210 att114
|
||||
att155 att23
|
||||
att155 att203
|
||||
att155 att107
|
||||
att155 att11
|
||||
att170 att158
|
||||
att160 att52
|
||||
att160 att124
|
||||
att23 att203
|
||||
att23 att107
|
||||
att23 att71
|
||||
att23 att11
|
||||
att162 att138
|
||||
att162 att18
|
||||
att162 att150
|
||||
att162 att90
|
||||
att162 att102
|
||||
att162 att174
|
||||
att162 att66
|
||||
att203 att107
|
||||
att203 att49
|
||||
att203 att59
|
||||
att203 att47
|
||||
att203 att191
|
||||
att203 att119
|
||||
att164 att62
|
||||
att164 att42
|
||||
att164 att128
|
||||
att164 att171
|
||||
att164 att92
|
||||
att164 att163
|
||||
att164 att158
|
||||
att164 att176
|
||||
att164 att145
|
||||
att164 att172
|
||||
att164 att58
|
||||
att164 att68
|
||||
att164 att80
|
||||
att164 att32
|
||||
att164 att98
|
||||
att164 att156
|
||||
att164 att110
|
||||
att164 att205
|
||||
att164 att21
|
||||
att164 att134
|
||||
att164 att213
|
||||
att164 att112
|
||||
att164 att38
|
||||
att164 att189
|
||||
att164 att56
|
||||
att164 att44
|
||||
att164 att152
|
||||
att164 att8
|
||||
att107 att83
|
||||
att107 att49
|
||||
att107 att59
|
||||
att107 att47
|
||||
att107 att191
|
||||
att42 att138
|
||||
att42 att54
|
||||
att42 att114
|
||||
att71 att83
|
||||
att71 att167
|
||||
att71 att35
|
||||
att71 att179
|
||||
att128 att92
|
||||
att128 att112
|
||||
att138 att18
|
||||
att138 att150
|
||||
att83 att167
|
||||
att83 att35
|
||||
att171 att87
|
||||
att171 att159
|
||||
att171 att63
|
||||
att171 att51
|
||||
att171 att39
|
||||
att171 att75
|
||||
att92 att163
|
||||
att92 att145
|
||||
att92 att56
|
||||
att163 att49
|
||||
att163 att175
|
||||
att163 att87
|
||||
att163 att79
|
||||
att163 att151
|
||||
att163 att139
|
||||
att163 att187
|
||||
att163 att127
|
||||
att163 att103
|
||||
att163 att91
|
||||
att49 att37
|
||||
att161 att173
|
||||
att161 att113
|
||||
att176 att145
|
||||
att176 att172
|
||||
att176 att68
|
||||
att176 att80
|
||||
att176 att32
|
||||
att176 att175
|
||||
att176 att98
|
||||
att176 att110
|
||||
att176 att205
|
||||
att176 att21
|
||||
att176 att134
|
||||
att176 att213
|
||||
att176 att56
|
||||
att4 att196
|
||||
att4 att88
|
||||
att4 att136
|
||||
att4 att100
|
||||
att4 att148
|
||||
att4 att208
|
||||
att172 att112
|
||||
att172 att184
|
||||
att196 att88
|
||||
att196 att136
|
||||
att196 att100
|
||||
att196 att148
|
||||
att196 att208
|
||||
att58 att142
|
||||
att58 att46
|
||||
att58 att34
|
||||
att68 att32
|
||||
att80 att38
|
||||
att32 att110
|
||||
att32 att21
|
||||
att32 att44
|
||||
att32 att200
|
||||
att175 att87
|
||||
att175 att159
|
||||
att175 att79
|
||||
att175 att187
|
||||
att175 att115
|
||||
att87 att159
|
||||
att87 att63
|
||||
att87 att51
|
||||
att87 att75
|
||||
att87 att15
|
||||
att87 att99
|
||||
att159 att75
|
||||
att159 att15
|
||||
att159 att195
|
||||
att18 att90
|
||||
att18 att102
|
||||
att18 att78
|
||||
att18 att198
|
||||
att52 att124
|
||||
att52 att64
|
||||
att98 att86
|
||||
att136 att100
|
||||
att136 att208
|
||||
att150 att90
|
||||
att150 att174
|
||||
att150 att66
|
||||
att156 att205
|
||||
att156 att96
|
||||
att156 att216
|
||||
att156 att204
|
||||
att156 att24
|
||||
att156 att84
|
||||
att156 att36
|
||||
att156 att12
|
||||
att156 att108
|
||||
att100 att148
|
||||
att63 att51
|
||||
att63 att39
|
||||
att63 att3
|
||||
att63 att183
|
||||
att63 att147
|
||||
att90 att102
|
||||
att90 att78
|
||||
att167 att35
|
||||
att167 att179
|
||||
att35 att179
|
||||
att51 att39
|
||||
att51 att3
|
||||
att51 att183
|
||||
att21 att134
|
||||
att21 att213
|
||||
att21 att38
|
||||
att21 att189
|
||||
att21 att129
|
||||
att21 att81
|
||||
att21 att153
|
||||
att21 att117
|
||||
att21 att9
|
||||
att142 att46
|
||||
att142 att130
|
||||
att142 att118
|
||||
att142 att70
|
||||
att142 att10
|
||||
att142 att202
|
||||
att142 att190
|
||||
att142 att106
|
||||
att46 att130
|
||||
att46 att118
|
||||
att46 att70
|
||||
att46 att34
|
||||
att46 att166
|
||||
att46 att82
|
||||
att134 att2
|
||||
att39 att3
|
||||
att102 att78
|
||||
att102 att174
|
||||
att102 att54
|
||||
att102 att198
|
||||
att130 att118
|
||||
att130 att10
|
||||
att130 att202
|
||||
att130 att190
|
||||
att130 att106
|
||||
att149 att125
|
||||
att96 att216
|
||||
att96 att204
|
||||
att96 att24
|
||||
att75 att15
|
||||
att75 att99
|
||||
att118 att70
|
||||
att118 att10
|
||||
att118 att202
|
||||
att78 att198
|
||||
att213 att189
|
||||
att213 att129
|
||||
att213 att69
|
||||
att213 att81
|
||||
att38 att50
|
||||
att38 att26
|
||||
att174 att54
|
||||
att174 att66
|
||||
att174 att30
|
||||
att189 att86
|
||||
att189 att129
|
||||
att189 att69
|
||||
att189 att81
|
||||
att189 att153
|
||||
att189 att117
|
||||
att189 att9
|
||||
att189 att45
|
||||
att189 att141
|
||||
att189 att105
|
||||
att70 att34
|
||||
att70 att154
|
||||
att179 att59
|
||||
att59 att47
|
||||
att59 att191
|
||||
att59 att119
|
||||
att79 att86
|
||||
att79 att151
|
||||
att79 att139
|
||||
att79 att187
|
||||
att79 att127
|
||||
att79 att103
|
||||
att79 att43
|
||||
att79 att193
|
||||
att79 att91
|
||||
att79 att19
|
||||
att124 att64
|
||||
att54 att114
|
||||
att54 att30
|
||||
att54 att6
|
||||
att191 att119
|
||||
att86 att194
|
||||
att56 att44
|
||||
att56 att152
|
||||
att56 att50
|
||||
att56 att188
|
||||
att56 att26
|
||||
att56 att200
|
||||
att56 att104
|
||||
att56 att140
|
||||
att56 att146
|
||||
att56 att194
|
||||
att56 att8
|
||||
att56 att2
|
||||
att56 att133
|
||||
att56 att1
|
||||
att151 att139
|
||||
att66 att30
|
||||
att173 att125
|
||||
att173 att113
|
||||
att173 att185
|
||||
att44 att152
|
||||
att44 att50
|
||||
att44 att188
|
||||
att44 att200
|
||||
att44 att104
|
||||
att44 att140
|
||||
att44 att194
|
||||
att44 att212
|
||||
att44 att1
|
||||
att139 att26
|
||||
att139 att99
|
||||
att139 att103
|
||||
att139 att43
|
||||
att139 att91
|
||||
att139 att31
|
||||
att139 att199
|
||||
att139 att7
|
||||
att216 att204
|
||||
att216 att24
|
||||
att216 att84
|
||||
att216 att36
|
||||
att216 att12
|
||||
att216 att180
|
||||
att216 att108
|
||||
att129 att69
|
||||
att152 att188
|
||||
att152 att140
|
||||
att69 att153
|
||||
att69 att9
|
||||
att69 att177
|
||||
att81 att45
|
||||
att81 att105
|
||||
att153 att117
|
||||
att153 att141
|
||||
att41 att53
|
||||
att204 att12
|
||||
att204 att180
|
||||
att188 att146
|
||||
att188 att212
|
||||
att13 att157
|
||||
att114 att6
|
||||
att114 att186
|
||||
att10 att190
|
||||
att64 att184
|
||||
att200 att104
|
||||
att9 att45
|
||||
att9 att146
|
||||
att9 att141
|
||||
att9 att177
|
||||
att9 att37
|
||||
att9 att133
|
||||
att9 att109
|
||||
att9 att181
|
||||
att3 att183
|
||||
att3 att147
|
||||
att3 att123
|
||||
att3 att135
|
||||
att3 att111
|
||||
att45 att105
|
||||
att45 att177
|
||||
att45 att93
|
||||
att45 att201
|
||||
att45 att165
|
||||
att45 att193
|
||||
att45 att33
|
||||
att45 att37
|
||||
att45 att133
|
||||
att45 att97
|
||||
att140 att8
|
||||
att30 att6
|
||||
att30 att186
|
||||
att183 att147
|
||||
att183 att123
|
||||
att183 att135
|
||||
att146 att2
|
||||
att202 att166
|
||||
att202 att106
|
||||
att202 att82
|
||||
att24 att84
|
||||
att24 att36
|
||||
att24 att132
|
||||
att147 att123
|
||||
att147 att135
|
||||
att147 att111
|
||||
att147 att207
|
||||
att8 att212
|
||||
att166 att82
|
||||
att166 att22
|
||||
att166 att94
|
||||
att187 att127
|
||||
att187 att115
|
||||
att127 att115
|
||||
att105 att184
|
||||
att105 att93
|
||||
att105 att201
|
||||
att106 att154
|
||||
att82 att154
|
||||
att82 att22
|
||||
att135 att111
|
||||
att135 att207
|
||||
att154 att22
|
||||
att154 att94
|
||||
att111 att207
|
||||
att99 att195
|
||||
att22 att94
|
||||
att84 att48
|
||||
att177 att93
|
||||
att177 att165
|
||||
att177 att181
|
||||
att103 att195
|
||||
att103 att97
|
||||
att103 att109
|
||||
att93 att201
|
||||
att93 att165
|
||||
att93 att193
|
||||
att93 att33
|
||||
att93 att57
|
||||
att201 att33
|
||||
att201 att57
|
||||
att43 att31
|
||||
att36 att180
|
||||
att36 att48
|
||||
att36 att72
|
||||
att36 att132
|
||||
att36 att144
|
||||
att125 att113
|
||||
att125 att185
|
||||
att125 att65
|
||||
att125 att29
|
||||
att180 att48
|
||||
att180 att72
|
||||
att180 att192
|
||||
att180 att108
|
||||
att48 att72
|
||||
att6 att186
|
||||
att113 att185
|
||||
att113 att53
|
||||
att113 att65
|
||||
att193 att97
|
||||
att91 att31
|
||||
att91 att199
|
||||
att91 att19
|
||||
att72 att132
|
||||
att72 att144
|
||||
att72 att192
|
||||
att72 att120
|
||||
att31 att199
|
||||
att31 att7
|
||||
att31 att67
|
||||
att31 att55
|
||||
att31 att1
|
||||
att132 att144
|
||||
att132 att120
|
||||
att33 att57
|
||||
att144 att192
|
||||
att144 att120
|
||||
att185 att53
|
||||
att185 att65
|
||||
att185 att29
|
||||
att199 att19
|
||||
att199 att7
|
||||
att199 att67
|
||||
att199 att55
|
||||
att199 att109
|
||||
att65 att29
|
||||
att7 att67
|
||||
att67 att55
|
||||
att109 att181
|
||||
|
BIN
diagrams/BayesNet.pdf
Executable file
BIN
diagrams/BayesNet.pdf
Executable file
Binary file not shown.
@@ -1,4 +1,4 @@
|
||||
filter = src/
|
||||
exclude-directories = build/lib/
|
||||
exclude-directories = build_debug/lib/
|
||||
print-summary = yes
|
||||
sort-percentage = yes
|
||||
|
@@ -4,11 +4,9 @@
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
vector<string> ArffFiles::getLines() const
|
||||
std::vector<std::string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
@@ -18,48 +16,48 @@ unsigned long int ArffFiles::getSize() const
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
vector<pair<string, string>> ArffFiles::getAttributes() const
|
||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassName() const
|
||||
std::string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassType() const
|
||||
std::string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
vector<vector<float>>& ArffFiles::getX()
|
||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
vector<int>& ArffFiles::getY()
|
||||
std::vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::loadCommon(string fileName)
|
||||
void ArffFiles::loadCommon(std::string fileName)
|
||||
{
|
||||
ifstream file(fileName);
|
||||
std::ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw invalid_argument("Unable to open file");
|
||||
throw std::invalid_argument("Unable to open file");
|
||||
}
|
||||
string line;
|
||||
string keyword;
|
||||
string attribute;
|
||||
string type;
|
||||
string type_w;
|
||||
std::string line;
|
||||
std::string keyword;
|
||||
std::string attribute;
|
||||
std::string type;
|
||||
std::string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
||||
stringstream ss(line);
|
||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||
std::stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
@@ -74,35 +72,35 @@ void ArffFiles::loadCommon(string fileName)
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw invalid_argument("No attributes found");
|
||||
throw std::invalid_argument("No attributes found");
|
||||
}
|
||||
|
||||
void ArffFiles::load(const string& fileName, bool classLast)
|
||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
if (classLast) {
|
||||
className = get<0>(attributes.back());
|
||||
classType = get<1>(attributes.back());
|
||||
className = std::get<0>(attributes.back());
|
||||
classType = std::get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
labelIndex = static_cast<int>(attributes.size());
|
||||
} else {
|
||||
className = get<0>(attributes.front());
|
||||
classType = get<1>(attributes.front());
|
||||
className = std::get<0>(attributes.front());
|
||||
classType = std::get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
labelIndex = 0;
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
void ArffFiles::load(const string& fileName, const string& name)
|
||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
bool found = false;
|
||||
for (int i = 0; i < attributes.size(); ++i) {
|
||||
if (attributes[i].first == name) {
|
||||
className = get<0>(attributes[i]);
|
||||
classType = get<1>(attributes[i]);
|
||||
className = std::get<0>(attributes[i]);
|
||||
classType = std::get<1>(attributes[i]);
|
||||
attributes.erase(attributes.begin() + i);
|
||||
labelIndex = i;
|
||||
found = true;
|
||||
@@ -110,19 +108,19 @@ void ArffFiles::load(const string& fileName, const string& name)
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
throw invalid_argument("Class name not found");
|
||||
throw std::invalid_argument("Class name not found");
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(int labelIndex)
|
||||
{
|
||||
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
|
||||
auto yy = vector<string>(lines.size(), "");
|
||||
auto removeLines = vector<int>(); // Lines with missing values
|
||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||
auto yy = std::vector<std::string>(lines.size(), "");
|
||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
stringstream ss(lines[i]);
|
||||
string value;
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
@@ -146,21 +144,21 @@ void ArffFiles::generateDataset(int labelIndex)
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
string ArffFiles::trim(const string& source)
|
||||
std::string ArffFiles::trim(const std::string& source)
|
||||
{
|
||||
string s(source);
|
||||
std::string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const string& label : labels_t) {
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
|
@@ -4,31 +4,29 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
vector<string> lines;
|
||||
vector<pair<string, string>> attributes;
|
||||
string className;
|
||||
string classType;
|
||||
vector<vector<float>> X;
|
||||
vector<int> y;
|
||||
std::vector<std::string> lines;
|
||||
std::vector<std::pair<std::string, std::string>> attributes;
|
||||
std::string className;
|
||||
std::string classType;
|
||||
std::vector<std::vector<float>> X;
|
||||
std::vector<int> y;
|
||||
void generateDataset(int);
|
||||
void loadCommon(string);
|
||||
void loadCommon(std::string);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const string&, bool = true);
|
||||
void load(const string&, const string&);
|
||||
vector<string> getLines() const;
|
||||
void load(const std::string&, bool = true);
|
||||
void load(const std::string&, const std::string&);
|
||||
std::vector<std::string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
string getClassName() const;
|
||||
string getClassType() const;
|
||||
static string trim(const string&);
|
||||
vector<vector<float>>& getX();
|
||||
vector<int>& getY();
|
||||
vector<pair<string, string>> getAttributes() const;
|
||||
static vector<int> factorize(const vector<string>& labels_t);
|
||||
std::string getClassName() const;
|
||||
std::string getClassType() const;
|
||||
static std::string trim(const std::string&);
|
||||
std::vector<std::vector<float>>& getX();
|
||||
std::vector<int>& getY();
|
||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
Submodule lib/argparse deleted from b0930ab028
Submodule lib/catch2 updated: 4acc51828f...863c662c0e
1
lib/folding
Submodule
1
lib/folding
Submodule
Submodule lib/folding added at 37316a54e0
2
lib/json
2
lib/json
Submodule lib/json updated: 5d2754306d...a259ecc51e
Submodule lib/openXLSX deleted from b80da42d14
@@ -1,8 +0,0 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
237
sample/sample.cc
237
sample/sample.cc
@@ -1,237 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <torch/torch.h>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "ArffFiles.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Folding.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
|
||||
|
||||
using namespace std;
|
||||
|
||||
const string PATH = "../../data/";
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
vector<mdlp::labels_t>Xd;
|
||||
map<string, int> maxes;
|
||||
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
bool file_exists(const std::string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
|
||||
{
|
||||
vector<vector<int>> Xr; // nxm
|
||||
vector<int> yr;
|
||||
for (int col = 0; col < X.size(); ++col) {
|
||||
Xr.push_back(vector<int>());
|
||||
}
|
||||
for (auto index : indices) {
|
||||
for (int col = 0; col < X.size(); ++col) {
|
||||
Xr[col].push_back(X[col][index]);
|
||||
}
|
||||
yr.push_back(y[index]);
|
||||
}
|
||||
return { Xr, yr };
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<string, bool> datasets = {
|
||||
{"diabetes", true},
|
||||
{"ecoli", true},
|
||||
{"glass", true},
|
||||
{"iris", true},
|
||||
{"kdd_JapaneseVowels", false},
|
||||
{"letter", true},
|
||||
{"liver-disorders", true},
|
||||
{"mfeat-factors", true},
|
||||
};
|
||||
auto valid_datasets = vector<string>();
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
[](const pair<string, bool>& pair) { return pair.first; });
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
.action([valid_datasets](const std::string& value) {
|
||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
||||
}
|
||||
);
|
||||
program.add_argument("-p", "--path")
|
||||
.help(" folder where the data files are located, default")
|
||||
.default_value(string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
bool class_last, stratified, tensors, dump_cpt;
|
||||
string model_name, file_name, path, complete_file_name;
|
||||
int nFolds, seed;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<string>("dataset");
|
||||
path = program.get<string>("path");
|
||||
model_name = program.get<string>("model");
|
||||
complete_file_name = path + file_name + ".arff";
|
||||
stratified = program.get<bool>("stratified");
|
||||
tensors = program.get<bool>("tensors");
|
||||
nFolds = program.get<int>("folds");
|
||||
seed = program.get<int>("seed");
|
||||
dump_cpt = program.get<bool>("dumpcpt");
|
||||
class_last = datasets[file_name];
|
||||
if (!file_exists(complete_file_name)) {
|
||||
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto handler = ArffFiles();
|
||||
handler.load(complete_file_name, class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
[](const pair<string, string>& item) { return item.first; });
|
||||
// Discretize Dataset
|
||||
auto [Xd, maxes] = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
auto clf = platform::Models::instance()->create(model_name);
|
||||
clf->fit(Xd, y, features, className, states);
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
auto lines = clf->show();
|
||||
for (auto line : lines) {
|
||||
cout << line << endl;
|
||||
}
|
||||
cout << "--- Topological Order ---" << endl;
|
||||
auto order = clf->topological_order();
|
||||
for (auto name : order) {
|
||||
cout << name << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
cout << "Score: " << score << endl;
|
||||
auto graph = clf->graph();
|
||||
auto dot_file = model_name + "_" + file_name;
|
||||
ofstream file(dot_file + ".dot");
|
||||
file << graph;
|
||||
file.close();
|
||||
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||
string stratified_string = stratified ? " Stratified" : "";
|
||||
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||
cout << "==========================================" << endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
}
|
||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nFolds, y, seed);
|
||||
else
|
||||
fold = new KFold(nFolds, y.size(), seed);
|
||||
for (auto i = 0; i < nFolds; ++i) {
|
||||
auto [train, test] = fold->getFold(i);
|
||||
cout << "Fold: " << i + 1 << endl;
|
||||
if (tensors) {
|
||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
auto ttest = torch::tensor(test, torch::kInt64);
|
||||
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
torch::Tensor ytraint = yt.index({ ttrain });
|
||||
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
torch::Tensor ytestt = yt.index({ ttest });
|
||||
clf->fit(Xtraint, ytraint, features, className, states);
|
||||
auto temp = clf->predict(Xtraint);
|
||||
score_train = clf->score(Xtraint, ytraint);
|
||||
score_test = clf->score(Xtestt, ytestt);
|
||||
} else {
|
||||
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
clf->fit(Xtrain, ytrain, features, className, states);
|
||||
score_train = clf->score(Xtrain, ytrain);
|
||||
score_test = clf->score(Xtest, ytest);
|
||||
}
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
total_score_train += score_train;
|
||||
total_score += score_test;
|
||||
cout << "Score Train: " << score_train << endl;
|
||||
cout << "Score Test : " << score_test << endl;
|
||||
cout << "-------------------------------------------------------------------------------" << endl;
|
||||
}
|
||||
cout << "**********************************************************************************" << endl;
|
||||
cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||
}
|
@@ -9,9 +9,9 @@ namespace bayesnet {
|
||||
models.push_back(std::make_unique<SPODE>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = vector<double>(n_models, 1.0);
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
vector<string> AODE::graph(const string& title) const
|
||||
std::vector<std::string> AODE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
|
@@ -9,8 +9,7 @@ namespace bayesnet {
|
||||
public:
|
||||
AODE();
|
||||
virtual ~AODE() {};
|
||||
vector<string> graph(const string& title = "AODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
std::vector<std::string> graph(const std::string& title = "AODE") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,17 +1,15 @@
|
||||
#include "AODELd.h"
|
||||
#include "Models.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
@@ -26,6 +24,7 @@ namespace bayesnet {
|
||||
models.push_back(std::make_unique<SPODELd>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
@@ -33,7 +32,7 @@ namespace bayesnet {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
}
|
||||
}
|
||||
vector<string> AODELd::graph(const string& name) const
|
||||
std::vector<std::string> AODELd::graph(const std::string& name) const
|
||||
{
|
||||
return Ensemble::graph(name);
|
||||
}
|
||||
|
@@ -5,18 +5,16 @@
|
||||
#include "SPODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class AODELd : public Ensemble, public Proposal {
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODELd();
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
|
||||
virtual ~AODELd() = default;
|
||||
vector<string> graph(const string& name = "AODE") const override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !AODELD_H
|
@@ -4,31 +4,35 @@
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
public:
|
||||
// X is nxm vector, y is nx1 vector
|
||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||
status_t virtual getStatus() const = 0;
|
||||
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
|
||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
int virtual getNumberOfNodes()const = 0;
|
||||
int virtual getNumberOfEdges()const = 0;
|
||||
int virtual getNumberOfStates() const = 0;
|
||||
vector<string> virtual show() const = 0;
|
||||
vector<string> virtual graph(const string& title = "") const = 0;
|
||||
const string inline getVersion() const { return "0.1.0"; };
|
||||
vector<string> virtual topological_order() = 0;
|
||||
std::vector<std::string> virtual show() const = 0;
|
||||
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
|
||||
virtual std::string getVersion() = 0;
|
||||
std::vector<std::string> virtual topological_order() = 0;
|
||||
std::vector<std::string> virtual getNotes() const = 0;
|
||||
void virtual dump_cpt()const = 0;
|
||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,16 @@
|
||||
#include "BayesMetrics.h"
|
||||
#include "Mst.h"
|
||||
namespace bayesnet {
|
||||
//samples is nxm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
}
|
||||
//samples is nxm vector used to fit the model
|
||||
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
|
||||
//samples is nxm std::vector used to fit the model
|
||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
@@ -21,7 +21,7 @@ namespace bayesnet {
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = samples.size(0) - 1;
|
||||
@@ -56,28 +56,17 @@ namespace bayesnet {
|
||||
}
|
||||
return featuresKBest;
|
||||
}
|
||||
vector<double> Metrics::getScoresKBest() const
|
||||
std::vector<double> Metrics::getScoresKBest() const
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
string temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = vector<double>();
|
||||
auto source = vector<string>(features);
|
||||
auto result = std::vector<double>();
|
||||
auto source = std::vector<std::string>(features);
|
||||
source.push_back(className);
|
||||
auto combinations = doCombinations(source);
|
||||
double totalWeight = weights.sum().item<double>();
|
||||
// Compute class prior
|
||||
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
@@ -111,7 +100,7 @@ namespace bayesnet {
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
|
||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
@@ -132,7 +121,7 @@ namespace bayesnet {
|
||||
{
|
||||
int numSamples = firstFeature.sizes()[0];
|
||||
torch::Tensor featureCounts = secondFeature.bincount(weights);
|
||||
unordered_map<int, unordered_map<int, double>> jointCounts;
|
||||
std::unordered_map<int, std::unordered_map<int, double>> jointCounts;
|
||||
double totalWeight = 0;
|
||||
for (auto i = 0; i < numSamples; i++) {
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
|
||||
@@ -166,7 +155,7 @@ namespace bayesnet {
|
||||
and the indices of the weights as nodes of this square matrix using
|
||||
Kruskal algorithm
|
||||
*/
|
||||
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
|
||||
std::vector<std::pair<int, int>> Metrics::maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root)
|
||||
{
|
||||
auto mst = MST(features, weights, root);
|
||||
return mst.maximumSpanningTree();
|
||||
|
@@ -4,29 +4,46 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class Metrics {
|
||||
private:
|
||||
Tensor samples; // nxm tensor used to fit the model
|
||||
vector<string> features;
|
||||
string className;
|
||||
int classNumStates = 0;
|
||||
vector<double> scoresKBest;
|
||||
vector<int> featuresKBest; // sorted indices of the features
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
std::vector<double> scoresKBest;
|
||||
std::vector<int> featuresKBest; // sorted indices of the features
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
protected:
|
||||
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
||||
std::string className;
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
std::vector<std::string> features;
|
||||
template <class T>
|
||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||
{
|
||||
std::vector<std::pair<T, T>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
T temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
template <class T>
|
||||
T pop_first(std::vector<T>& v)
|
||||
{
|
||||
T temp = v[0];
|
||||
v.erase(v.begin());
|
||||
return temp;
|
||||
}
|
||||
public:
|
||||
Metrics() = default;
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
|
||||
vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
|
||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
|
||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,90 +1,209 @@
|
||||
#include "BoostAODE.h"
|
||||
#include <set>
|
||||
#include "BayesMetrics.h"
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include "BoostAODE.h"
|
||||
#include "CFS.h"
|
||||
#include "FCBF.h"
|
||||
#include "IWSS.h"
|
||||
#include "folding.hpp"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
BoostAODE::BoostAODE() : Ensemble()
|
||||
{
|
||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
|
||||
|
||||
}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
dataset_ = torch::clone(dataset);
|
||||
// save input dataset
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
hyperparameters.erase("repeatSparent");
|
||||
}
|
||||
if (hyperparameters.contains("maxModels")) {
|
||||
maxModels = hyperparameters["maxModels"];
|
||||
hyperparameters.erase("maxModels");
|
||||
}
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
hyperparameters.erase("ascending");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("tolerance")) {
|
||||
tolerance = hyperparameters["tolerance"];
|
||||
hyperparameters.erase("tolerance");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = { "IWSS", "FCBF", "CFS" };
|
||||
selectFeatures = true;
|
||||
algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
std::unordered_set<int> BoostAODE::initializeModels()
|
||||
{
|
||||
std::unordered_set<int> featuresUsed;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
int maxFeatures = 0;
|
||||
if (algorithm == "CFS") {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (algorithm == "IWSS") {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (algorithm == "FCBF") {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto cfsFeatures = featureSelector->getFeatures();
|
||||
for (const int& feature : cfsFeatures) {
|
||||
// std::cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << std::endl;
|
||||
featuresUsed.insert(feature);
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0);
|
||||
n_models++;
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + algorithm);
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
std::unordered_set<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
}
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool exitCondition = false;
|
||||
unordered_set<int> featuresUsed;
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double delta = 1.0;
|
||||
double threshold = 1e-4;
|
||||
int count = 0; // number of times the accuracy is lower than the threshold
|
||||
fitted = true; // to enable predict
|
||||
// Step 0: Set the finish condition
|
||||
// if not repeatSparent a finish condition is run out of features
|
||||
// n_models == maxModels
|
||||
int numClasses = states[className].size();
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
while (!exitCondition) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
unique_ptr<Classifier> model;
|
||||
std::unique_ptr<Classifier> model;
|
||||
auto feature = featureSelection[0];
|
||||
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
||||
bool found = false;
|
||||
for (auto feat : featureSelection) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
bool used = true;
|
||||
for (const auto& feat : featureSelection) {
|
||||
if (std::find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
continue;
|
||||
}
|
||||
found = true;
|
||||
used = false;
|
||||
feature = feat;
|
||||
break;
|
||||
}
|
||||
if (!found) {
|
||||
if (used) {
|
||||
exitCondition = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
featuresUsed.insert(feature);
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
n_models++;
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_);
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_wrong = ypred != y_train;
|
||||
auto mask_right = ypred == y_train;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
exitCondition = n_models == maxModels && repeatSparent;
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
if (convergence) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
delta = accuracy - priorAccuracy;
|
||||
}
|
||||
if (delta < threshold) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
cout << "Warning: BoostAODE did not use all the features" << endl;
|
||||
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
vector<string> BoostAODE::graph(const string& title) const
|
||||
std::vector<std::string> BoostAODE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
|
@@ -1,21 +1,33 @@
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include "Ensemble.h"
|
||||
#include <map>
|
||||
#include "SPODE.h"
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
public:
|
||||
BoostAODE();
|
||||
virtual ~BoostAODE() {};
|
||||
vector<string> graph(const string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
bool repeatSparent=false;
|
||||
int maxModels=0;
|
||||
bool ascending=false; //Process KBest features ascending or descending order
|
||||
torch::Tensor dataset_;
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
std::unordered_set<int> initializeModels();
|
||||
// Hyperparameters
|
||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||
int maxModels = 0;
|
||||
int tolerance = 0;
|
||||
bool ascending = false; //Process KBest features ascending or descending order
|
||||
bool convergence = false; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string algorithm = ""; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
72
src/BayesNet/CFS.cc
Normal file
72
src/BayesNet/CFS.cc
Normal file
@@ -0,0 +1,72 @@
|
||||
#include "CFS.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
void CFS::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto continueCondition = true;
|
||||
auto feature = featureOrder[0];
|
||||
selectedFeatures.push_back(feature);
|
||||
selectedScores.push_back(suLabels[feature]);
|
||||
selectedFeatures.erase(selectedFeatures.begin());
|
||||
while (continueCondition) {
|
||||
double merit = std::numeric_limits<double>::lowest();
|
||||
int bestFeature = -1;
|
||||
for (auto feature : featureOrder) {
|
||||
selectedFeatures.push_back(feature);
|
||||
// Compute merit with selectedFeatures
|
||||
auto meritNew = computeMeritCFS();
|
||||
if (meritNew > merit) {
|
||||
merit = meritNew;
|
||||
bestFeature = feature;
|
||||
}
|
||||
selectedFeatures.pop_back();
|
||||
}
|
||||
if (bestFeature == -1) {
|
||||
// meritNew has to be nan due to constant features
|
||||
break;
|
||||
}
|
||||
selectedFeatures.push_back(bestFeature);
|
||||
selectedScores.push_back(merit);
|
||||
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
|
||||
continueCondition = computeContinueCondition(featureOrder);
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
bool CFS::computeContinueCondition(const std::vector<int>& featureOrder)
|
||||
{
|
||||
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
|
||||
return false;
|
||||
}
|
||||
if (selectedScores.size() >= 5) {
|
||||
/*
|
||||
"To prevent the best first search from exploring the entire
|
||||
feature subset search space, a stopping criterion is imposed.
|
||||
The search will terminate if five consecutive fully expanded
|
||||
subsets show no improvement over the current best subset."
|
||||
as stated in Mark A.Hall Thesis
|
||||
*/
|
||||
double item_ant = std::numeric_limits<double>::lowest();
|
||||
int num = 0;
|
||||
std::vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
|
||||
for (auto item : lastFive) {
|
||||
if (item_ant == std::numeric_limits<double>::lowest()) {
|
||||
item_ant = item;
|
||||
}
|
||||
if (item > item_ant) {
|
||||
break;
|
||||
} else {
|
||||
num++;
|
||||
item_ant = item;
|
||||
}
|
||||
}
|
||||
if (num == 5) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
20
src/BayesNet/CFS.h
Normal file
20
src/BayesNet/CFS.h
Normal file
@@ -0,0 +1,20 @@
|
||||
#ifndef CFS_H
|
||||
#define CFS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class CFS : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
CFS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
|
||||
{
|
||||
}
|
||||
virtual ~CFS() {};
|
||||
void fit() override;
|
||||
private:
|
||||
bool computeContinueCondition(const std::vector<int>& featureOrder);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,9 +1,13 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc )
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
@@ -2,10 +2,8 @@
|
||||
#include "bayesnetUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@@ -13,7 +11,7 @@ namespace bayesnet {
|
||||
m = dataset.size(1);
|
||||
n = dataset.size(0) - 1;
|
||||
checkFitParameters();
|
||||
auto n_classes = states[className].size();
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel(weights);
|
||||
@@ -21,7 +19,7 @@ namespace bayesnet {
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
void Classifier::buildDataset(Tensor& ytmp)
|
||||
void Classifier::buildDataset(torch::Tensor& ytmp)
|
||||
{
|
||||
try {
|
||||
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||
@@ -29,8 +27,8 @@ namespace bayesnet {
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
cout << "X dimensions: " << dataset.sizes() << "\n";
|
||||
cout << "y dimensions: " << ytmp.sizes() << "\n";
|
||||
std::cout << "X dimensions: " << dataset.sizes() << "\n";
|
||||
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@@ -39,7 +37,7 @@ namespace bayesnet {
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
@@ -47,79 +45,82 @@ namespace bayesnet {
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
|
||||
dataset.index_put_({ i, "..." }, torch::tensor(X[i], torch::kInt32));
|
||||
}
|
||||
auto ytmp = torch::tensor(y, kInt32);
|
||||
auto ytmp = torch::tensor(y, torch::kInt32);
|
||||
buildDataset(ytmp);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
if (torch::is_floating_point(dataset)) {
|
||||
throw std::invalid_argument("dataset (X, y) must be of type Integer");
|
||||
}
|
||||
if (n != features.size()) {
|
||||
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
|
||||
}
|
||||
if (states.find(className) == states.end()) {
|
||||
throw invalid_argument("className not found in states");
|
||||
throw std::invalid_argument("className not found in states");
|
||||
}
|
||||
for (auto feature : features) {
|
||||
if (states.find(feature) == states.end()) {
|
||||
throw invalid_argument("feature [" + feature + "] not found in states");
|
||||
throw std::invalid_argument("feature [" + feature + "] not found in states");
|
||||
}
|
||||
}
|
||||
}
|
||||
Tensor Classifier::predict(Tensor& X)
|
||||
torch::Tensor Classifier::predict(torch::Tensor& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
return model.predict(X);
|
||||
}
|
||||
vector<int> Classifier::predict(vector<vector<int>>& X)
|
||||
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
auto m_ = X[0].size();
|
||||
auto n_ = X.size();
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
||||
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
auto yp = model.predict(Xd);
|
||||
return yp;
|
||||
}
|
||||
float Classifier::score(Tensor& X, Tensor& y)
|
||||
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
Tensor y_pred = predict(X);
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
|
||||
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
return model.score(X, y);
|
||||
}
|
||||
vector<string> Classifier::show() const
|
||||
std::vector<std::string> Classifier::show() const
|
||||
{
|
||||
return model.show();
|
||||
}
|
||||
@@ -134,7 +135,7 @@ namespace bayesnet {
|
||||
int Classifier::getNumberOfNodes() const
|
||||
{
|
||||
// Features does not include class
|
||||
return fitted ? model.getFeatures().size() + 1 : 0;
|
||||
return fitted ? model.getFeatures().size() : 0;
|
||||
}
|
||||
int Classifier::getNumberOfEdges() const
|
||||
{
|
||||
@@ -144,7 +145,7 @@ namespace bayesnet {
|
||||
{
|
||||
return fitted ? model.getStates() : 0;
|
||||
}
|
||||
vector<string> Classifier::topological_order()
|
||||
std::vector<std::string> Classifier::topological_order()
|
||||
{
|
||||
return model.topological_sort();
|
||||
}
|
||||
@@ -152,12 +153,8 @@ namespace bayesnet {
|
||||
{
|
||||
model.dump_cpt();
|
||||
}
|
||||
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
|
||||
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
for (const auto& item : hyperparameters.items()) {
|
||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
||||
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
||||
}
|
||||
}
|
||||
//For classifiers that don't have hyperparameters
|
||||
}
|
||||
}
|
@@ -4,45 +4,48 @@
|
||||
#include "BaseClassifier.h"
|
||||
#include "Network.h"
|
||||
#include "BayesMetrics.h"
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
namespace bayesnet {
|
||||
class Classifier : public BaseClassifier {
|
||||
private:
|
||||
void buildDataset(torch::Tensor& y);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
protected:
|
||||
bool fitted;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Network model;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
std::vector<std::string> features;
|
||||
std::string className;
|
||||
std::map<std::string, std::vector<int>> states;
|
||||
torch::Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
|
||||
void buildDataset(torch::Tensor& y);
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
vector<string> show() const override;
|
||||
vector<string> topological_order() override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
status_t getStatus() const override { return status; }
|
||||
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
std::vector<std::string> show() const override;
|
||||
std::vector<std::string> topological_order() override;
|
||||
std::vector<std::string> getNotes() const override { return notes; }
|
||||
void dump_cpt() const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -1,26 +1,29 @@
|
||||
#include "Ensemble.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble() : Classifier(Network()) {}
|
||||
Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
|
||||
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with vectors
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
}
|
||||
}
|
||||
vector<int> Ensemble::voting(Tensor& y_pred)
|
||||
std::vector<int> Ensemble::voting(torch::Tensor& y_pred)
|
||||
{
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
vector<int> y_pred_final;
|
||||
std::vector<int> y_pred_final;
|
||||
int numClasses = states.at(className).size();
|
||||
// y_pred is m x n_models with the prediction of every model for each sample
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<double> votes(y_pred.size(1), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels[j];
|
||||
// votes store in each index (value of class) the significance added by each model
|
||||
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
std::vector<double> votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
@@ -28,19 +31,18 @@ namespace bayesnet {
|
||||
}
|
||||
return y_pred_final;
|
||||
}
|
||||
Tensor Ensemble::predict(Tensor& X)
|
||||
torch::Tensor Ensemble::predict(torch::Tensor& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||
//Create a threadpool
|
||||
auto threads{ vector<thread>() };
|
||||
mutex mtx;
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(thread([&, i]() {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
lock_guard<mutex> lock(mtx);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
@@ -49,27 +51,27 @@ namespace bayesnet {
|
||||
}
|
||||
return torch::tensor(voting(y_pred));
|
||||
}
|
||||
vector<int> Ensemble::predict(vector<vector<int>>& X)
|
||||
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
long m_ = X[0].size();
|
||||
long n_ = X.size();
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
||||
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ m_, n_models }, kInt32);
|
||||
torch::Tensor y_pred = torch::zeros({ m_, n_models }, torch::kInt32);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt32));
|
||||
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), torch::kInt32));
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
float Ensemble::score(Tensor& X, Tensor& y)
|
||||
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
@@ -80,10 +82,10 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size(0);
|
||||
}
|
||||
float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
|
||||
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
@@ -94,20 +96,20 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
vector<string> Ensemble::show() const
|
||||
std::vector<std::string> Ensemble::show() const
|
||||
{
|
||||
auto result = vector<string>();
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->show();
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
vector<string> Ensemble::graph(const string& title) const
|
||||
std::vector<std::string> Ensemble::graph(const std::string& title) const
|
||||
{
|
||||
auto result = vector<string>();
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->graph(title + "_" + to_string(i));
|
||||
auto res = models[i]->graph(title + "_" + std::to_string(i));
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
|
@@ -4,34 +4,32 @@
|
||||
#include "Classifier.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "bayesnetUtils.h"
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
namespace bayesnet {
|
||||
class Ensemble : public Classifier {
|
||||
private:
|
||||
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
Ensemble& build(std::vector<std::string>& features, std::string className, std::map<std::string, std::vector<int>>& states);
|
||||
protected:
|
||||
unsigned n_models;
|
||||
vector<unique_ptr<Classifier>> models;
|
||||
vector<double> significanceModels;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
vector<int> voting(Tensor& y_pred);
|
||||
std::vector<int> voting(torch::Tensor& y_pred);
|
||||
public:
|
||||
Ensemble();
|
||||
virtual ~Ensemble() = default;
|
||||
Tensor predict(Tensor& X) override;
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
vector<string> show() const override;
|
||||
vector<string> graph(const string& title) const override;
|
||||
vector<string> topological_order() override
|
||||
std::vector<std::string> show() const override;
|
||||
std::vector<std::string> graph(const std::string& title) const override;
|
||||
std::vector<std::string> topological_order() override
|
||||
{
|
||||
return vector<string>();
|
||||
return std::vector<std::string>();
|
||||
}
|
||||
void dump_cpt() const override
|
||||
{
|
||||
|
44
src/BayesNet/FCBF.cc
Normal file
44
src/BayesNet/FCBF.cc
Normal file
@@ -0,0 +1,44 @@
|
||||
#include "bayesnetUtils.h"
|
||||
#include "FCBF.h"
|
||||
namespace bayesnet {
|
||||
|
||||
FCBF::FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||
{
|
||||
if (threshold < 1e-7) {
|
||||
throw std::invalid_argument("Threshold cannot be less than 1e-7");
|
||||
}
|
||||
}
|
||||
void FCBF::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto featureOrderCopy = featureOrder;
|
||||
for (const auto& feature : featureOrder) {
|
||||
// Don't self compare
|
||||
featureOrderCopy.erase(featureOrderCopy.begin());
|
||||
if (suLabels.at(feature) == 0.0) {
|
||||
// The feature has been removed from the list
|
||||
continue;
|
||||
}
|
||||
if (suLabels.at(feature) < threshold) {
|
||||
break;
|
||||
}
|
||||
// Remove redundant features
|
||||
for (const auto& featureCopy : featureOrderCopy) {
|
||||
double value = computeSuFeatures(feature, featureCopy);
|
||||
if (value >= suLabels.at(featureCopy)) {
|
||||
// Remove feature from list
|
||||
suLabels[featureCopy] = 0.0;
|
||||
}
|
||||
}
|
||||
selectedFeatures.push_back(feature);
|
||||
selectedScores.push_back(suLabels[feature]);
|
||||
if (selectedFeatures.size() == maxFeatures) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
}
|
17
src/BayesNet/FCBF.h
Normal file
17
src/BayesNet/FCBF.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#ifndef FCBF_H
|
||||
#define FCBF_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class FCBF : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
|
||||
virtual ~FCBF() {};
|
||||
void fit() override;
|
||||
private:
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
79
src/BayesNet/FeatureSelect.cc
Normal file
79
src/BayesNet/FeatureSelect.cc
Normal file
@@ -0,0 +1,79 @@
|
||||
#include "FeatureSelect.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
|
||||
|
||||
{
|
||||
}
|
||||
void FeatureSelect::initialize()
|
||||
{
|
||||
selectedFeatures.clear();
|
||||
selectedScores.clear();
|
||||
}
|
||||
double FeatureSelect::symmetricalUncertainty(int a, int b)
|
||||
{
|
||||
/*
|
||||
Compute symmetrical uncertainty. Normalize* information gain (mutual
|
||||
information) with the entropies of the features in order to compensate
|
||||
the bias due to high cardinality features. *Range [0, 1]
|
||||
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
|
||||
*/
|
||||
auto x = samples.index({ a, "..." });
|
||||
auto y = samples.index({ b, "..." });
|
||||
auto mu = mutualInformation(x, y, weights);
|
||||
auto hx = entropy(x, weights);
|
||||
auto hy = entropy(y, weights);
|
||||
return 2.0 * mu / (hx + hy);
|
||||
}
|
||||
void FeatureSelect::computeSuLabels()
|
||||
{
|
||||
// Compute Simmetrical Uncertainty between features and labels
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
suLabels.push_back(symmetricalUncertainty(i, -1));
|
||||
}
|
||||
}
|
||||
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
|
||||
{
|
||||
// Compute Simmetrical Uncertainty between features
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
try {
|
||||
return suFeatures.at({ firstFeature, secondFeature });
|
||||
}
|
||||
catch (const std::out_of_range& e) {
|
||||
double result = symmetricalUncertainty(firstFeature, secondFeature);
|
||||
suFeatures[{firstFeature, secondFeature}] = result;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
double FeatureSelect::computeMeritCFS()
|
||||
{
|
||||
double result;
|
||||
double rcf = 0;
|
||||
for (auto feature : selectedFeatures) {
|
||||
rcf += suLabels[feature];
|
||||
}
|
||||
double rff = 0;
|
||||
int n = selectedFeatures.size();
|
||||
for (const auto& item : doCombinations(selectedFeatures)) {
|
||||
rff += computeSuFeatures(item.first, item.second);
|
||||
}
|
||||
return rcf / sqrt(n + (n * n - n) * rff);
|
||||
}
|
||||
std::vector<int> FeatureSelect::getFeatures() const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedFeatures;
|
||||
}
|
||||
std::vector<double> FeatureSelect::getScores() const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedScores;
|
||||
}
|
||||
}
|
30
src/BayesNet/FeatureSelect.h
Normal file
30
src/BayesNet/FeatureSelect.h
Normal file
@@ -0,0 +1,30 @@
|
||||
#ifndef FEATURE_SELECT_H
|
||||
#define FEATURE_SELECT_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "BayesMetrics.h"
|
||||
namespace bayesnet {
|
||||
class FeatureSelect : public Metrics {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
|
||||
virtual ~FeatureSelect() {};
|
||||
virtual void fit() = 0;
|
||||
std::vector<int> getFeatures() const;
|
||||
std::vector<double> getScores() const;
|
||||
protected:
|
||||
void initialize();
|
||||
void computeSuLabels();
|
||||
double computeSuFeatures(const int a, const int b);
|
||||
double symmetricalUncertainty(int a, int b);
|
||||
double computeMeritCFS();
|
||||
const torch::Tensor& weights;
|
||||
int maxFeatures;
|
||||
std::vector<int> selectedFeatures;
|
||||
std::vector<double> selectedScores;
|
||||
std::vector<double> suLabels;
|
||||
std::map<std::pair<int, int>, double> suFeatures;
|
||||
bool fitted = false;
|
||||
};
|
||||
}
|
||||
#endif
|
47
src/BayesNet/IWSS.cc
Normal file
47
src/BayesNet/IWSS.cc
Normal file
@@ -0,0 +1,47 @@
|
||||
#include "IWSS.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||
{
|
||||
if (threshold < 0 || threshold > .5) {
|
||||
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
|
||||
}
|
||||
}
|
||||
void IWSS::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto featureOrderCopy = featureOrder;
|
||||
// Add first and second features to result
|
||||
// First with its own score
|
||||
auto first_feature = pop_first(featureOrderCopy);
|
||||
selectedFeatures.push_back(first_feature);
|
||||
selectedScores.push_back(suLabels.at(first_feature));
|
||||
// Second with the score of the candidates
|
||||
selectedFeatures.push_back(pop_first(featureOrderCopy));
|
||||
auto merit = computeMeritCFS();
|
||||
selectedScores.push_back(merit);
|
||||
for (const auto feature : featureOrderCopy) {
|
||||
selectedFeatures.push_back(feature);
|
||||
// Compute merit with selectedFeatures
|
||||
auto meritNew = computeMeritCFS();
|
||||
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
|
||||
if (meritNew > merit || delta < threshold) {
|
||||
if (meritNew > merit) {
|
||||
merit = meritNew;
|
||||
}
|
||||
selectedScores.push_back(meritNew);
|
||||
} else {
|
||||
selectedFeatures.pop_back();
|
||||
break;
|
||||
}
|
||||
if (selectedFeatures.size() == maxFeatures) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
}
|
17
src/BayesNet/IWSS.h
Normal file
17
src/BayesNet/IWSS.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#ifndef IWSS_H
|
||||
#define IWSS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class IWSS : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
|
||||
virtual ~IWSS() {};
|
||||
void fit() override;
|
||||
private:
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,9 +1,20 @@
|
||||
#include "KDB.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
|
||||
{
|
||||
validHyperparameters = { "k", "theta" };
|
||||
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||
}
|
||||
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
if (hyperparameters.contains("k")) {
|
||||
k = hyperparameters["k"];
|
||||
}
|
||||
if (hyperparameters.contains("theta")) {
|
||||
theta = hyperparameters["theta"];
|
||||
}
|
||||
}
|
||||
void KDB::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
/*
|
||||
@@ -28,16 +39,16 @@ namespace bayesnet {
|
||||
// 1. For each feature Xi, compute mutual information, I(X;C),
|
||||
// where C is the class.
|
||||
addNodes();
|
||||
const Tensor& y = dataset.index({ -1, "..." });
|
||||
vector<double> mi;
|
||||
const torch::Tensor& y = dataset.index({ -1, "..." });
|
||||
std::vector<double> mi;
|
||||
for (auto i = 0; i < features.size(); i++) {
|
||||
Tensor firstFeature = dataset.index({ i, "..." });
|
||||
torch::Tensor firstFeature = dataset.index({ i, "..." });
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
|
||||
}
|
||||
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
|
||||
// 3. Let the used variable list, S, be empty.
|
||||
vector<int> S;
|
||||
std::vector<int> S;
|
||||
// 4. Let the DAG network being constructed, BN, begin with a single
|
||||
// class node, C.
|
||||
// 5. Repeat until S includes all domain features
|
||||
@@ -55,9 +66,9 @@ namespace bayesnet {
|
||||
S.push_back(idx);
|
||||
}
|
||||
}
|
||||
void KDB::add_m_edges(int idx, vector<int>& S, Tensor& weights)
|
||||
void KDB::add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights)
|
||||
{
|
||||
auto n_edges = min(k, static_cast<int>(S.size()));
|
||||
auto n_edges = std::min(k, static_cast<int>(S.size()));
|
||||
auto cond_w = clone(weights);
|
||||
bool exit_cond = k == 0;
|
||||
int num = 0;
|
||||
@@ -69,7 +80,7 @@ namespace bayesnet {
|
||||
model.addEdge(features[max_minfo], features[idx]);
|
||||
num++;
|
||||
}
|
||||
catch (const invalid_argument& e) {
|
||||
catch (const std::invalid_argument& e) {
|
||||
// Loops are not allowed
|
||||
}
|
||||
}
|
||||
@@ -79,11 +90,11 @@ namespace bayesnet {
|
||||
exit_cond = num == n_edges || candidates.size(0) == 0;
|
||||
}
|
||||
}
|
||||
vector<string> KDB::graph(const string& title) const
|
||||
std::vector<std::string> KDB::graph(const std::string& title) const
|
||||
{
|
||||
string header{ title };
|
||||
std::string header{ title };
|
||||
if (title == "KDB") {
|
||||
header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
|
||||
header += " (k=" + std::to_string(k) + ", theta=" + std::to_string(theta) + ")";
|
||||
}
|
||||
return model.graph(header);
|
||||
}
|
||||
|
@@ -4,20 +4,18 @@
|
||||
#include "Classifier.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class KDB : public Classifier {
|
||||
private:
|
||||
int k;
|
||||
float theta;
|
||||
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
|
||||
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
virtual ~KDB() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,15 @@
|
||||
#include "KDBLd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
@@ -18,12 +17,12 @@ namespace bayesnet {
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
Tensor KDBLd::predict(Tensor& X)
|
||||
torch::Tensor KDBLd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return KDB::predict(Xt);
|
||||
}
|
||||
vector<string> KDBLd::graph(const string& name) const
|
||||
std::vector<std::string> KDBLd::graph(const std::string& name) const
|
||||
{
|
||||
return KDB::graph(name);
|
||||
}
|
||||
|
@@ -4,17 +4,15 @@
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class KDBLd : public KDB, public Proposal {
|
||||
private:
|
||||
public:
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
static inline string version() { return "0.0.1"; };
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !KDBLD_H
|
@@ -1,13 +1,13 @@
|
||||
#include "Mst.h"
|
||||
#include <vector>
|
||||
#include <list>
|
||||
/*
|
||||
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
|
||||
|
||||
*/
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
Graph::Graph(int V) : V(V), parent(vector<int>(V))
|
||||
Graph::Graph(int V) : V(V), parent(std::vector<int>(V))
|
||||
{
|
||||
for (int i = 0; i < V; i++)
|
||||
parent[i] = i;
|
||||
@@ -34,36 +34,45 @@ namespace bayesnet {
|
||||
void Graph::kruskal_algorithm()
|
||||
{
|
||||
// sort the edges ordered on decreasing weight
|
||||
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
|
||||
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
|
||||
for (int i = 0; i < G.size(); i++) {
|
||||
int uSt, vEd;
|
||||
uSt = find_set(G[i].second.first);
|
||||
vEd = find_set(G[i].second.second);
|
||||
if (uSt != vEd) {
|
||||
T.push_back(G[i]); // add to mst vector
|
||||
T.push_back(G[i]); // add to mst std::vector
|
||||
union_set(uSt, vEd);
|
||||
}
|
||||
}
|
||||
}
|
||||
void Graph::display_mst()
|
||||
{
|
||||
cout << "Edge :" << " Weight" << endl;
|
||||
std::cout << "Edge :" << " Weight" << std::endl;
|
||||
for (int i = 0; i < T.size(); i++) {
|
||||
cout << T[i].second.first << " - " << T[i].second.second << " : "
|
||||
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
|
||||
<< T[i].first;
|
||||
cout << endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
|
||||
void insertElement(std::list<int>& variables, int variable)
|
||||
{
|
||||
auto result = vector<pair<int, int>>();
|
||||
auto visited = vector<int>();
|
||||
auto nextVariables = unordered_set<int>();
|
||||
nextVariables.emplace(root_original);
|
||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||
variables.push_front(variable);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
{
|
||||
// Create the edges of a DAG from the MST
|
||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||
auto result = std::vector<std::pair<int, int>>();
|
||||
auto visited = std::vector<int>();
|
||||
auto nextVariables = std::list<int>();
|
||||
nextVariables.push_front(root_original);
|
||||
while (nextVariables.size() > 0) {
|
||||
int root = *nextVariables.begin();
|
||||
nextVariables.erase(nextVariables.begin());
|
||||
int root = nextVariables.front();
|
||||
nextVariables.pop_front();
|
||||
for (int i = 0; i < T.size(); ++i) {
|
||||
auto [weight, edge] = T[i];
|
||||
auto [from, to] = edge;
|
||||
@@ -71,10 +80,10 @@ namespace bayesnet {
|
||||
visited.insert(visited.begin(), i);
|
||||
if (from == root) {
|
||||
result.push_back({ from, to });
|
||||
nextVariables.emplace(to);
|
||||
insertElement(nextVariables, to);
|
||||
} else {
|
||||
result.push_back({ to, from });
|
||||
nextVariables.emplace(from);
|
||||
insertElement(nextVariables, from);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -94,12 +103,11 @@ namespace bayesnet {
|
||||
return result;
|
||||
}
|
||||
|
||||
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
|
||||
vector<pair<int, int>> MST::maximumSpanningTree()
|
||||
MST::MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
|
||||
std::vector<std::pair<int, int>> MST::maximumSpanningTree()
|
||||
{
|
||||
auto num_features = features.size();
|
||||
Graph g(num_features);
|
||||
|
||||
// Make a complete graph
|
||||
for (int i = 0; i < num_features - 1; ++i) {
|
||||
for (int j = i + 1; j < num_features; ++j) {
|
||||
|
@@ -4,24 +4,22 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class MST {
|
||||
private:
|
||||
Tensor weights;
|
||||
vector<string> features;
|
||||
torch::Tensor weights;
|
||||
std::vector<std::string> features;
|
||||
int root = 0;
|
||||
public:
|
||||
MST() = default;
|
||||
MST(const vector<string>& features, const Tensor& weights, const int root);
|
||||
vector<pair<int, int>> maximumSpanningTree();
|
||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||
};
|
||||
class Graph {
|
||||
private:
|
||||
int V; // number of nodes in graph
|
||||
vector <pair<float, pair<int, int>>> G; // vector for graph
|
||||
vector <pair<float, pair<int, int>>> T; // vector for mst
|
||||
vector<int> parent;
|
||||
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
|
||||
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
|
||||
std::vector<int> parent;
|
||||
public:
|
||||
explicit Graph(int V);
|
||||
void addEdge(int u, int v, float wt);
|
||||
@@ -29,7 +27,7 @@ namespace bayesnet {
|
||||
void union_set(int u, int v);
|
||||
void kruskal_algorithm();
|
||||
void display_mst();
|
||||
vector <pair<float, pair<int, int>>> get_mst() { return T; }
|
||||
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,18 +3,18 @@
|
||||
#include "Network.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
|
||||
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
|
||||
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
|
||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
||||
getmaxThreads()), fitted(other.fitted)
|
||||
{
|
||||
for (const auto& pair : other.nodes) {
|
||||
nodes[pair.first] = std::make_unique<Node>(*pair.second);
|
||||
for (const auto& node : other.nodes) {
|
||||
nodes[node.first] = std::make_unique<Node>(*node.second);
|
||||
}
|
||||
}
|
||||
void Network::initialize()
|
||||
{
|
||||
features = vector<string>();
|
||||
features = std::vector<std::string>();
|
||||
className = "";
|
||||
classNumStates = 0;
|
||||
fitted = false;
|
||||
@@ -29,10 +29,10 @@ namespace bayesnet {
|
||||
{
|
||||
return samples;
|
||||
}
|
||||
void Network::addNode(const string& name)
|
||||
void Network::addNode(const std::string& name)
|
||||
{
|
||||
if (name == "") {
|
||||
throw invalid_argument("Node name cannot be empty");
|
||||
throw std::invalid_argument("Node name cannot be empty");
|
||||
}
|
||||
if (nodes.find(name) != nodes.end()) {
|
||||
return;
|
||||
@@ -42,7 +42,7 @@ namespace bayesnet {
|
||||
}
|
||||
nodes[name] = std::make_unique<Node>(name);
|
||||
}
|
||||
vector<string> Network::getFeatures() const
|
||||
std::vector<std::string> Network::getFeatures() const
|
||||
{
|
||||
return features;
|
||||
}
|
||||
@@ -58,11 +58,11 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
string Network::getClassName() const
|
||||
std::string Network::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
|
||||
bool Network::isCyclic(const std::string& nodeId, std::unordered_set<std::string>& visited, std::unordered_set<std::string>& recStack)
|
||||
{
|
||||
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
|
||||
{
|
||||
@@ -78,78 +78,78 @@ namespace bayesnet {
|
||||
recStack.erase(nodeId); // remove node from recursion stack before function ends
|
||||
return false;
|
||||
}
|
||||
void Network::addEdge(const string& parent, const string& child)
|
||||
void Network::addEdge(const std::string& parent, const std::string& child)
|
||||
{
|
||||
if (nodes.find(parent) == nodes.end()) {
|
||||
throw invalid_argument("Parent node " + parent + " does not exist");
|
||||
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
||||
}
|
||||
if (nodes.find(child) == nodes.end()) {
|
||||
throw invalid_argument("Child node " + child + " does not exist");
|
||||
throw std::invalid_argument("Child node " + child + " does not exist");
|
||||
}
|
||||
// Temporarily add edge to check for cycles
|
||||
nodes[parent]->addChild(nodes[child].get());
|
||||
nodes[child]->addParent(nodes[parent].get());
|
||||
unordered_set<string> visited;
|
||||
unordered_set<string> recStack;
|
||||
std::unordered_set<std::string> visited;
|
||||
std::unordered_set<std::string> recStack;
|
||||
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
|
||||
{
|
||||
// remove problematic edge
|
||||
nodes[parent]->removeChild(nodes[child].get());
|
||||
nodes[child]->removeParent(nodes[parent].get());
|
||||
throw invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||
throw std::invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||
}
|
||||
}
|
||||
map<string, std::unique_ptr<Node>>& Network::getNodes()
|
||||
std::map<std::string, std::unique_ptr<Node>>& Network::getNodes()
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
if (weights.size(0) != n_samples) {
|
||||
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
|
||||
throw std::invalid_argument("Weights (" + std::to_string(weights.size(0)) + ") must have the same number of elements as samples (" + std::to_string(n_samples) + ") in Network::fit");
|
||||
}
|
||||
if (n_samples != n_samples_y) {
|
||||
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||
throw std::invalid_argument("X and y must have the same number of samples in Network::fit (" + std::to_string(n_samples) + " != " + std::to_string(n_samples_y) + ")");
|
||||
}
|
||||
if (n_features != featureNames.size()) {
|
||||
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
|
||||
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
|
||||
}
|
||||
if (n_features != features.size() - 1) {
|
||||
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
|
||||
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
if (find(features.begin(), features.end(), className) == features.end()) {
|
||||
throw invalid_argument("className not found in Network::features");
|
||||
throw std::invalid_argument("className not found in Network::features");
|
||||
}
|
||||
for (auto& feature : featureNames) {
|
||||
if (find(features.begin(), features.end(), feature) == features.end()) {
|
||||
throw invalid_argument("Feature " + feature + " not found in Network::features");
|
||||
throw std::invalid_argument("Feature " + feature + " not found in Network::features");
|
||||
}
|
||||
if (states.find(feature) == states.end()) {
|
||||
throw invalid_argument("Feature " + feature + " not found in states");
|
||||
throw std::invalid_argument("Feature " + feature + " not found in states");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Network::setStates(const map<string, vector<int>>& states)
|
||||
void Network::setStates(const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
// Set states to every Node in the network
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
nodes[features[i]]->setNumStates(states.at(features[i]).size());
|
||||
}
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
for_each(features.begin(), features.end(), [this, &states](const std::string& feature) {
|
||||
nodes.at(feature)->setNumStates(states.at(feature).size());
|
||||
});
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
torch::Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X , ytmp }, 0);
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
@@ -157,7 +157,7 @@ namespace bayesnet {
|
||||
completeFit(states, weights);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
@@ -170,41 +170,15 @@ namespace bayesnet {
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
}
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
condition_variable cv;
|
||||
int activeThreads = 0;
|
||||
int nextNodeIndex = 0;
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
break; // No more work remaining
|
||||
}
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
}
|
||||
lock_guard<mutex> lock(mtx);
|
||||
--activeThreads;
|
||||
cv.notify_one();
|
||||
std::vector<std::thread> threads;
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
++activeThreads;
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
@@ -214,12 +188,12 @@ namespace bayesnet {
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("You must call fit() before calling predict()");
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
torch::Tensor result;
|
||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
const Tensor sample = samples.index({ "...", i });
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
auto psample = predict_sample(sample);
|
||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||
@@ -227,36 +201,35 @@ namespace bayesnet {
|
||||
}
|
||||
if (proba)
|
||||
return result;
|
||||
else
|
||||
return result.argmax(1);
|
||||
return result.argmax(1);
|
||||
}
|
||||
// Return mxn tensor of probabilities
|
||||
Tensor Network::predict_proba(const Tensor& samples)
|
||||
torch::Tensor Network::predict_proba(const torch::Tensor& samples)
|
||||
{
|
||||
return predict_tensor(samples, true);
|
||||
}
|
||||
|
||||
// Return mxn tensor of probabilities
|
||||
Tensor Network::predict(const Tensor& samples)
|
||||
torch::Tensor Network::predict(const torch::Tensor& samples)
|
||||
{
|
||||
return predict_tensor(samples, false);
|
||||
}
|
||||
|
||||
// Return mx1 vector of predictions
|
||||
// tsamples is nxm vector of samples
|
||||
vector<int> Network::predict(const vector<vector<int>>& tsamples)
|
||||
// Return mx1 std::vector of predictions
|
||||
// tsamples is nxm std::vector of samples
|
||||
std::vector<int> Network::predict(const std::vector<std::vector<int>>& tsamples)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("You must call fit() before calling predict()");
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
vector<int> predictions;
|
||||
vector<int> sample;
|
||||
std::vector<int> predictions;
|
||||
std::vector<int> sample;
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
vector<double> classProbabilities = predict_sample(sample);
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
@@ -264,14 +237,14 @@ namespace bayesnet {
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
// Return mxn vector of probabilities
|
||||
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
|
||||
// Return mxn std::vector of probabilities
|
||||
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("You must call fit() before calling predict_proba()");
|
||||
throw std::logic_error("You must call fit() before calling predict_proba()");
|
||||
}
|
||||
vector<vector<double>> predictions;
|
||||
vector<int> sample;
|
||||
std::vector<std::vector<double>> predictions;
|
||||
std::vector<int> sample;
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
@@ -281,9 +254,9 @@ namespace bayesnet {
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
|
||||
double Network::score(const std::vector<std::vector<int>>& tsamples, const std::vector<int>& labels)
|
||||
{
|
||||
vector<int> y_pred = predict(tsamples);
|
||||
std::vector<int> y_pred = predict(tsamples);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == labels[i]) {
|
||||
@@ -292,35 +265,35 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
// Return 1xn vector of probabilities
|
||||
vector<double> Network::predict_sample(const vector<int>& sample)
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size() - 1) {
|
||||
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||
") does not match the number of features (" + to_string(features.size() - 1) + ")");
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
map<string, int> evidence;
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(); ++i) {
|
||||
evidence[features[i]] = sample[i];
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
// Return 1xn vector of probabilities
|
||||
vector<double> Network::predict_sample(const Tensor& sample)
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size(0) != features.size() - 1) {
|
||||
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + to_string(features.size() - 1) + ")");
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
map<string, int> evidence;
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(0); ++i) {
|
||||
evidence[features[i]] = sample[i].item<int>();
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
double Network::computeFactor(map<string, int>& completeEvidence)
|
||||
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
|
||||
{
|
||||
double result = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
@@ -328,17 +301,17 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
vector<double> Network::exactInference(map<string, int>& evidence)
|
||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||
{
|
||||
vector<double> result(classNumStates, 0.0);
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
std::vector<double> result(classNumStates, 0.0);
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
auto completeEvidence = map<string, int>(evidence);
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
lock_guard<mutex> lock(mtx);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result[i] = factor;
|
||||
});
|
||||
}
|
||||
@@ -350,12 +323,12 @@ namespace bayesnet {
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Network::show() const
|
||||
std::vector<std::string> Network::show() const
|
||||
{
|
||||
vector<string> result;
|
||||
std::vector<std::string> result;
|
||||
// Draw the network
|
||||
for (auto& node : nodes) {
|
||||
string line = node.first + " -> ";
|
||||
std::string line = node.first + " -> ";
|
||||
for (auto child : node.second->getChildren()) {
|
||||
line += child->getName() + ", ";
|
||||
}
|
||||
@@ -363,12 +336,12 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
vector<string> Network::graph(const string& title) const
|
||||
std::vector<std::string> Network::graph(const std::string& title) const
|
||||
{
|
||||
auto output = vector<string>();
|
||||
auto output = std::vector<std::string>();
|
||||
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
|
||||
auto suffix = ">\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n";
|
||||
string header = prefix + title + suffix;
|
||||
std::string header = prefix + title + suffix;
|
||||
output.push_back(header);
|
||||
for (auto& node : nodes) {
|
||||
auto result = node.second->graph(className);
|
||||
@@ -377,9 +350,9 @@ namespace bayesnet {
|
||||
output.push_back("}\n");
|
||||
return output;
|
||||
}
|
||||
vector<pair<string, string>> Network::getEdges() const
|
||||
std::vector<std::pair<std::string, std::string>> Network::getEdges() const
|
||||
{
|
||||
auto edges = vector<pair<string, string>>();
|
||||
auto edges = std::vector<std::pair<std::string, std::string>>();
|
||||
for (const auto& node : nodes) {
|
||||
auto head = node.first;
|
||||
for (const auto& child : node.second->getChildren()) {
|
||||
@@ -393,13 +366,12 @@ namespace bayesnet {
|
||||
{
|
||||
return getEdges().size();
|
||||
}
|
||||
vector<string> Network::topological_sort()
|
||||
std::vector<std::string> Network::topological_sort()
|
||||
{
|
||||
/* Check if al the fathers of every node are before the node */
|
||||
auto result = features;
|
||||
result.erase(remove(result.begin(), result.end(), className), result.end());
|
||||
bool ending{ false };
|
||||
int idx = 0;
|
||||
while (!ending) {
|
||||
ending = true;
|
||||
for (auto feature : features) {
|
||||
@@ -421,10 +393,10 @@ namespace bayesnet {
|
||||
ending = false;
|
||||
}
|
||||
} else {
|
||||
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
}
|
||||
} else {
|
||||
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -434,8 +406,8 @@ namespace bayesnet {
|
||||
void Network::dump_cpt() const
|
||||
{
|
||||
for (auto& node : nodes) {
|
||||
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
|
||||
cout << node.second->getCPT() << endl;
|
||||
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
|
||||
std::cout << node.second->getCPT() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -3,56 +3,61 @@
|
||||
#include "Node.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "config.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class Network {
|
||||
private:
|
||||
map<string, unique_ptr<Node>> nodes;
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
float maxThreads = 0.95;
|
||||
int classNumStates;
|
||||
vector<string> features; // Including classname
|
||||
string className;
|
||||
std::vector<std::string> features; // Including classname
|
||||
std::string className;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // nxm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
vector<double> predict_sample(const vector<int>&);
|
||||
vector<double> predict_sample(const torch::Tensor&);
|
||||
vector<double> exactInference(map<string, int>&);
|
||||
double computeFactor(map<string, int>&);
|
||||
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const map<string, vector<int>>&);
|
||||
std::vector<double> predict_sample(const std::vector<int>&);
|
||||
std::vector<double> predict_sample(const torch::Tensor&);
|
||||
std::vector<double> exactInference(std::map<std::string, int>&);
|
||||
double computeFactor(std::map<std::string, int>&);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const std::map<std::string, std::vector<int>>&);
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getmaxThreads();
|
||||
void addNode(const string&);
|
||||
void addEdge(const string&, const string&);
|
||||
map<string, std::unique_ptr<Node>>& getNodes();
|
||||
vector<string> getFeatures() const;
|
||||
void addNode(const std::string&);
|
||||
void addEdge(const std::string&, const std::string&);
|
||||
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
||||
std::vector<std::string> getFeatures() const;
|
||||
int getStates() const;
|
||||
vector<pair<string, string>> getEdges() const;
|
||||
std::vector<std::pair<std::string, std::string>> getEdges() const;
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
std::string getClassName() const;
|
||||
/*
|
||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||
*/
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
|
||||
std::vector<std::vector<double>> predict_proba(const std::vector<std::vector<int>>&); // Return mxn std::vector of probabilities
|
||||
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
|
||||
double score(const vector<vector<int>>&, const vector<int>&);
|
||||
vector<string> topological_sort();
|
||||
vector<string> show() const;
|
||||
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
|
||||
double score(const std::vector<std::vector<int>>&, const std::vector<int>&);
|
||||
std::vector<std::string> topological_sort();
|
||||
std::vector<std::string> show() const;
|
||||
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
void initialize();
|
||||
void dump_cpt() const;
|
||||
inline string version() { return "0.1.0"; }
|
||||
inline std::string version() { return { project_version.begin(), project_version.end() }; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,7 +3,7 @@
|
||||
namespace bayesnet {
|
||||
|
||||
Node::Node(const std::string& name)
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
|
||||
{
|
||||
}
|
||||
void Node::clear()
|
||||
@@ -14,7 +14,7 @@ namespace bayesnet {
|
||||
dimensions.clear();
|
||||
numStates = 0;
|
||||
}
|
||||
string Node::getName() const
|
||||
std::string Node::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
@@ -34,11 +34,11 @@ namespace bayesnet {
|
||||
{
|
||||
children.push_back(child);
|
||||
}
|
||||
vector<Node*>& Node::getParents()
|
||||
std::vector<Node*>& Node::getParents()
|
||||
{
|
||||
return parents;
|
||||
}
|
||||
vector<Node*>& Node::getChildren()
|
||||
std::vector<Node*>& Node::getChildren()
|
||||
{
|
||||
return children;
|
||||
}
|
||||
@@ -63,28 +63,28 @@ namespace bayesnet {
|
||||
*/
|
||||
unsigned Node::minFill()
|
||||
{
|
||||
unordered_set<string> neighbors;
|
||||
std::unordered_set<std::string> neighbors;
|
||||
for (auto child : children) {
|
||||
neighbors.emplace(child->getName());
|
||||
}
|
||||
for (auto parent : parents) {
|
||||
neighbors.emplace(parent->getName());
|
||||
}
|
||||
auto source = vector<string>(neighbors.begin(), neighbors.end());
|
||||
auto source = std::vector<std::string>(neighbors.begin(), neighbors.end());
|
||||
return combinations(source).size();
|
||||
}
|
||||
vector<pair<string, string>> Node::combinations(const vector<string>& source)
|
||||
std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
std::vector<std::pair<std::string, std::string>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
string temp = source[i];
|
||||
std::string temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
@@ -96,16 +96,16 @@ namespace bayesnet {
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
throw logic_error("Feature " + name + " not found in dataset");
|
||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||
}
|
||||
int name_index = pos - features.begin();
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
if (pos == features.end()) {
|
||||
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
}
|
||||
int parent_index = pos - features.begin();
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
@@ -116,17 +116,17 @@ namespace bayesnet {
|
||||
// Normalize the counts
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
}
|
||||
float Node::getFactorValue(map<string, int>& evidence)
|
||||
float Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
// following predetermined order of indices in the cpTable (see Node.h)
|
||||
coordinates.push_back(torch::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
|
||||
coordinates.push_back(at::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||
return cpTable.index({ coordinates }).item<float>();
|
||||
}
|
||||
vector<string> Node::graph(const string& className)
|
||||
std::vector<std::string> Node::graph(const std::string& className)
|
||||
{
|
||||
auto output = vector<string>();
|
||||
auto output = std::vector<std::string>();
|
||||
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
||||
output.push_back(name + " [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
|
||||
|
@@ -5,33 +5,32 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class Node {
|
||||
private:
|
||||
string name;
|
||||
vector<Node*> parents;
|
||||
vector<Node*> children;
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
public:
|
||||
vector<pair<string, string>> combinations(const vector<string>&);
|
||||
explicit Node(const string&);
|
||||
explicit Node(const std::string&);
|
||||
void clear();
|
||||
void addParent(Node*);
|
||||
void addChild(Node*);
|
||||
void removeParent(Node*);
|
||||
void removeChild(Node*);
|
||||
string getName() const;
|
||||
vector<Node*>& getParents();
|
||||
vector<Node*>& getChildren();
|
||||
std::string getName() const;
|
||||
std::vector<Node*>& getParents();
|
||||
std::vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
|
||||
float getFactorValue(map<string, int>&);
|
||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
float getFactorValue(std::map<std::string, int>&);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -2,21 +2,30 @@
|
||||
#include "ArffFiles.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
||||
Proposal::~Proposal()
|
||||
{
|
||||
for (auto& [key, value] : discretizers) {
|
||||
delete value;
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
|
||||
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
|
||||
{
|
||||
if (!torch::is_floating_point(X)) {
|
||||
throw std::invalid_argument("X must be a floating point tensor");
|
||||
}
|
||||
if (torch::is_floating_point(y)) {
|
||||
throw std::invalid_argument("y must be an integer tensor");
|
||||
}
|
||||
}
|
||||
map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)
|
||||
{
|
||||
// order of local discretization is important. no good 0, 1, 2...
|
||||
// although we rediscretize features after the local discretization of every feature
|
||||
auto order = model.topological_sort();
|
||||
auto& nodes = model.getNodes();
|
||||
map<string, vector<int>> states = oldStates;
|
||||
vector<int> indicesToReDiscretize;
|
||||
map<std::string, std::vector<int>> states = oldStates;
|
||||
std::vector<int> indicesToReDiscretize;
|
||||
bool upgrade = false; // Flag to check if we need to upgrade the model
|
||||
for (auto feature : order) {
|
||||
auto nodeParents = nodes[feature]->getParents();
|
||||
@@ -24,16 +33,16 @@ namespace bayesnet {
|
||||
upgrade = true;
|
||||
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
|
||||
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
|
||||
vector<string> parents;
|
||||
std::vector<std::string> parents;
|
||||
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
||||
// Remove class as parent as it will be added later
|
||||
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
|
||||
// Get the indices of the parents
|
||||
vector<int> indices;
|
||||
std::vector<int> indices;
|
||||
indices.push_back(-1); // Add class index
|
||||
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
|
||||
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
|
||||
vector<string> yJoinParents(Xf.size(1));
|
||||
std::vector<std::string> yJoinParents(Xf.size(1));
|
||||
for (auto idx : indices) {
|
||||
for (int i = 0; i < Xf.size(1); ++i) {
|
||||
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||
@@ -42,25 +51,16 @@ namespace bayesnet {
|
||||
auto arff = ArffFiles();
|
||||
auto yxv = arff.factorize(yJoinParents);
|
||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
discretizers[feature]->fit(xvf, yxv);
|
||||
//
|
||||
//
|
||||
//
|
||||
// auto tmp = discretizers[feature]->transform(xvf);
|
||||
// Xv[index] = tmp;
|
||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
// iota(xStates.begin(), xStates.end(), 0);
|
||||
// //Update new states of the feature/node
|
||||
// states[feature] = xStates;
|
||||
}
|
||||
if (upgrade) {
|
||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||
for (auto index : indicesToReDiscretize) {
|
||||
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
|
||||
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
auto xStates = std::vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
iota(xStates.begin(), xStates.end(), 0);
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
@@ -70,28 +70,28 @@ namespace bayesnet {
|
||||
}
|
||||
return states;
|
||||
}
|
||||
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
|
||||
map<std::string, std::vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
|
||||
{
|
||||
// Discretize the continuous input data and build pDataset (Classifier::dataset)
|
||||
int m = Xf.size(1);
|
||||
int n = Xf.size(0);
|
||||
map<string, vector<int>> states;
|
||||
pDataset = torch::zeros({ n + 1, m }, kInt32);
|
||||
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
||||
map<std::string, std::vector<int>> states;
|
||||
pDataset = torch::zeros({ n + 1, m }, torch::kInt32);
|
||||
auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
||||
// discretize input data by feature(row)
|
||||
for (auto i = 0; i < pFeatures.size(); ++i) {
|
||||
auto* discretizer = new mdlp::CPPFImdlp();
|
||||
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
|
||||
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
discretizer->fit(Xt, yv);
|
||||
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
|
||||
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
|
||||
auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);
|
||||
iota(xStates.begin(), xStates.end(), 0);
|
||||
states[pFeatures[i]] = xStates;
|
||||
discretizers[pFeatures[i]] = discretizer;
|
||||
}
|
||||
int n_classes = torch::max(y).item<int>() + 1;
|
||||
auto yStates = vector<int>(n_classes);
|
||||
auto yStates = std::vector<int>(n_classes);
|
||||
iota(yStates.begin(), yStates.end(), 0);
|
||||
states[pClassName] = yStates;
|
||||
pDataset.index_put_({ n, "..." }, y);
|
||||
@@ -101,7 +101,7 @@ namespace bayesnet {
|
||||
{
|
||||
auto Xtd = torch::zeros_like(X, torch::kInt32);
|
||||
for (int i = 0; i < X.size(0); ++i) {
|
||||
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xt = std::vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
|
||||
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
|
||||
}
|
||||
|
@@ -10,19 +10,20 @@
|
||||
namespace bayesnet {
|
||||
class Proposal {
|
||||
public:
|
||||
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
|
||||
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
|
||||
virtual ~Proposal();
|
||||
protected:
|
||||
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
|
||||
torch::Tensor prepareX(torch::Tensor& X);
|
||||
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
|
||||
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||
map<std::string, std::vector<int>> localDiscretizationProposal(const map<std::string, std::vector<int>>& states, Network& model);
|
||||
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||
torch::Tensor Xf; // X continuous nxm tensor
|
||||
torch::Tensor y; // y discrete nx1 tensor
|
||||
map<string, mdlp::CPPFImdlp*> discretizers;
|
||||
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
||||
private:
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
vector<string>& pFeatures;
|
||||
string& pClassName;
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
};
|
||||
}
|
||||
|
||||
|
@@ -17,7 +17,7 @@ namespace bayesnet {
|
||||
}
|
||||
}
|
||||
}
|
||||
vector<string> SPODE::graph(const string& name) const
|
||||
std::vector<std::string> SPODE::graph(const std::string& name) const
|
||||
{
|
||||
return model.graph(name);
|
||||
}
|
||||
|
@@ -10,9 +10,8 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() {};
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
virtual ~SPODE() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,15 @@
|
||||
#include "SPODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
@@ -18,14 +17,16 @@ namespace bayesnet {
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone();
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
features = features_;
|
||||
className = className_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
@@ -34,12 +35,12 @@ namespace bayesnet {
|
||||
return *this;
|
||||
}
|
||||
|
||||
Tensor SPODELd::predict(Tensor& X)
|
||||
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return SPODE::predict(Xt);
|
||||
}
|
||||
vector<string> SPODELd::graph(const string& name) const
|
||||
std::vector<std::string> SPODELd::graph(const std::string& name) const
|
||||
{
|
||||
return SPODE::graph(name);
|
||||
}
|
||||
|
@@ -4,17 +4,15 @@
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class SPODELd : public SPODE, public Proposal {
|
||||
public:
|
||||
explicit SPODELd(int root);
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
static inline string version() { return "0.0.1"; };
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !SPODELD_H
|
@@ -1,8 +1,6 @@
|
||||
#include "TAN.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
@@ -11,10 +9,10 @@ namespace bayesnet {
|
||||
addNodes();
|
||||
// 1. Compute mutual information between each feature and the class and set the root node
|
||||
// as the highest mutual information with the class
|
||||
auto mi = vector <pair<int, float >>();
|
||||
Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
auto mi = std::vector <std::pair<int, float >>();
|
||||
torch::Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
torch::Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
@@ -34,7 +32,7 @@ namespace bayesnet {
|
||||
model.addEdge(className, feature);
|
||||
}
|
||||
}
|
||||
vector<string> TAN::graph(const string& title) const
|
||||
std::vector<std::string> TAN::graph(const std::string& title) const
|
||||
{
|
||||
return model.graph(title);
|
||||
}
|
||||
|
@@ -2,16 +2,14 @@
|
||||
#define TAN_H
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() {};
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
virtual ~TAN() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,15 @@
|
||||
#include "TANLd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
@@ -19,12 +18,12 @@ namespace bayesnet {
|
||||
return *this;
|
||||
|
||||
}
|
||||
Tensor TANLd::predict(Tensor& X)
|
||||
torch::Tensor TANLd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict(Xt);
|
||||
}
|
||||
vector<string> TANLd::graph(const string& name) const
|
||||
std::vector<std::string> TANLd::graph(const std::string& name) const
|
||||
{
|
||||
return TAN::graph(name);
|
||||
}
|
||||
|
@@ -4,17 +4,15 @@
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class TANLd : public TAN, public Proposal {
|
||||
private:
|
||||
public:
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
@@ -1,25 +1,23 @@
|
||||
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
// Return the indices in descending order
|
||||
vector<int> argsort(vector<double>& nums)
|
||||
std::vector<int> argsort(std::vector<double>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
vector<int> indices(n);
|
||||
std::vector<int> indices(n);
|
||||
iota(indices.begin(), indices.end(), 0);
|
||||
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
||||
return indices;
|
||||
}
|
||||
vector<vector<int>> tensorToVector(Tensor& tensor)
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor)
|
||||
{
|
||||
// convert mxn tensor to nxm vector
|
||||
vector<vector<int>> result;
|
||||
// convert mxn tensor to nxm std::vector
|
||||
std::vector<std::vector<int>> result;
|
||||
// Iterate over cols
|
||||
for (int i = 0; i < tensor.size(1); ++i) {
|
||||
auto col_tensor = tensor.index({ "...", i });
|
||||
auto col = vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
|
||||
auto col = std::vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
|
||||
result.push_back(col);
|
||||
}
|
||||
return result;
|
||||
|
@@ -3,9 +3,7 @@
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
vector<int> argsort(vector<double>& nums);
|
||||
vector<vector<int>> tensorToVector(Tensor& tensor);
|
||||
std::vector<int> argsort(std::vector<double>& nums);
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor);
|
||||
}
|
||||
#endif //BAYESNET_UTILS_H
|
@@ -1,10 +0,0 @@
|
||||
#ifndef BESTRESULT_H
|
||||
#define BESTRESULT_H
|
||||
#include <string>
|
||||
class BestResult {
|
||||
public:
|
||||
static std::string title() { return "STree_default (linear-ovo)"; }
|
||||
static double score() { return 22.109799; }
|
||||
static std::string scoreName() { return "accuracy"; }
|
||||
};
|
||||
#endif
|
@@ -1,12 +0,0 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
|
||||
add_executable(list list.cc platformUtils Datasets.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
|
||||
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -1,14 +0,0 @@
|
||||
#ifndef COLORS_H
|
||||
#define COLORS_H
|
||||
class Colors {
|
||||
public:
|
||||
static std::string MAGENTA() { return "\033[1;35m"; }
|
||||
static std::string BLUE() { return "\033[1;34m"; }
|
||||
static std::string CYAN() { return "\033[1;36m"; }
|
||||
static std::string GREEN() { return "\033[1;32m"; }
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
@@ -1,266 +0,0 @@
|
||||
#include "Datasets.h"
|
||||
#include "platformUtils.h"
|
||||
#include "ArffFiles.h"
|
||||
namespace platform {
|
||||
void Datasets::load()
|
||||
{
|
||||
ifstream catalog(path + "/all.txt");
|
||||
if (catalog.is_open()) {
|
||||
string line;
|
||||
while (getline(catalog, line)) {
|
||||
vector<string> tokens = split(line, ',');
|
||||
string name = tokens[0];
|
||||
string className = tokens[1];
|
||||
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
|
||||
}
|
||||
catalog.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open catalog file. [" + path + "/all.txt" + "]");
|
||||
}
|
||||
}
|
||||
vector<string> Datasets::getNames()
|
||||
{
|
||||
vector<string> result;
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Datasets::getFeatures(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getFeatures();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Datasets::getStates(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getStates();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Datasets::loadDataset(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return;
|
||||
} else {
|
||||
datasets.at(name)->load();
|
||||
}
|
||||
}
|
||||
string Datasets::getClassName(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getClassName();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNSamples(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getNSamples();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNClasses(const string& name)
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto className = datasets.at(name)->getClassName();
|
||||
if (discretize) {
|
||||
auto states = getStates(name);
|
||||
return states.at(className).size();
|
||||
}
|
||||
auto [Xv, yv] = getVectors(name);
|
||||
return *max_element(yv.begin(), yv.end()) + 1;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
vector<int> Datasets::getClassesCounts(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto [Xv, yv] = datasets.at(name)->getVectors();
|
||||
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
|
||||
for (auto y : yv) {
|
||||
counts[y]++;
|
||||
}
|
||||
return counts;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectors();
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectorsDiscretized();
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getTensors();
|
||||
}
|
||||
bool Datasets::isDataset(const string& name) const
|
||||
{
|
||||
return datasets.find(name) != datasets.end();
|
||||
}
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
vector<string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xv, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xd, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
|
||||
{
|
||||
if (loaded) {
|
||||
buildTensors();
|
||||
return { X, y };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Dataset::load_csv()
|
||||
{
|
||||
ifstream file(path + "/" + name + ".csv");
|
||||
if (file.is_open()) {
|
||||
string line;
|
||||
getline(file, line);
|
||||
vector<string> tokens = split(line, ',');
|
||||
features = vector<string>(tokens.begin(), tokens.end() - 1);
|
||||
className = tokens.back();
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = split(line, ',');
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv[i].push_back(stof(tokens[i]));
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::computeStates()
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
||||
}
|
||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states[className]), end(states[className]), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
auto arff = ArffFiles();
|
||||
arff.load(path + "/" + name + ".arff", className);
|
||||
// Get Dataset X, y
|
||||
Xv = arff.getX();
|
||||
yv = arff.getY();
|
||||
// Get className & Features
|
||||
className = arff.getClassName();
|
||||
auto attributes = arff.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
|
||||
}
|
||||
void Dataset::load()
|
||||
{
|
||||
if (loaded) {
|
||||
return;
|
||||
}
|
||||
if (fileType == CSV) {
|
||||
load_csv();
|
||||
} else if (fileType == ARFF) {
|
||||
load_arff();
|
||||
}
|
||||
if (discretize) {
|
||||
Xd = discretizeDataset(Xv, yv);
|
||||
computeStates();
|
||||
}
|
||||
n_samples = Xv[0].size();
|
||||
n_features = Xv.size();
|
||||
loaded = true;
|
||||
}
|
||||
void Dataset::buildTensors()
|
||||
{
|
||||
if (discretize) {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
|
||||
} else {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
|
||||
}
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
if (discretize) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
} else {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
|
||||
}
|
||||
}
|
||||
y = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
}
|
@@ -1,68 +0,0 @@
|
||||
#ifndef DATASETS_H
|
||||
#define DATASETS_H
|
||||
#include <torch/torch.h>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
enum fileType_t { CSV, ARFF };
|
||||
class Dataset {
|
||||
private:
|
||||
string path;
|
||||
string name;
|
||||
fileType_t fileType;
|
||||
string className;
|
||||
int n_samples{ 0 }, n_features{ 0 };
|
||||
vector<string> features;
|
||||
map<string, vector<int>> states;
|
||||
bool loaded;
|
||||
bool discretize;
|
||||
torch::Tensor X, y;
|
||||
vector<vector<float>> Xv;
|
||||
vector<vector<int>> Xd;
|
||||
vector<int> yv;
|
||||
void buildTensors();
|
||||
void load_csv();
|
||||
void load_arff();
|
||||
void computeStates();
|
||||
public:
|
||||
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
string getName() const;
|
||||
string getClassName() const;
|
||||
vector<string> getFeatures() const;
|
||||
map<string, vector<int>> getStates() const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors();
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
class Datasets {
|
||||
private:
|
||||
string path;
|
||||
fileType_t fileType;
|
||||
map<string, unique_ptr<Dataset>> datasets;
|
||||
bool discretize;
|
||||
void load(); // Loads the list of datasets
|
||||
public:
|
||||
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
|
||||
vector<string> getNames();
|
||||
vector<string> getFeatures(const string& name) const;
|
||||
int getNSamples(const string& name) const;
|
||||
string getClassName(const string& name) const;
|
||||
int getNClasses(const string& name);
|
||||
vector<int> getClassesCounts(const string& name) const;
|
||||
map<string, vector<int>> getStates(const string& name) const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
|
||||
bool isDataset(const string& name) const;
|
||||
void loadDataset(const string& name) const;
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -1,62 +0,0 @@
|
||||
#ifndef DOTENV_H
|
||||
#define DOTENV_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "platformUtils.h"
|
||||
namespace platform {
|
||||
class DotEnv {
|
||||
private:
|
||||
std::map<std::string, std::string> env;
|
||||
std::string trim(const std::string& str)
|
||||
{
|
||||
std::string result = str;
|
||||
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}));
|
||||
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}).base(), result.end());
|
||||
return result;
|
||||
}
|
||||
public:
|
||||
DotEnv()
|
||||
{
|
||||
std::ifstream file(".env");
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "File .env not found" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(file, line)) {
|
||||
line = trim(line);
|
||||
if (line.empty() || line[0] == '#') {
|
||||
continue;
|
||||
}
|
||||
std::istringstream iss(line);
|
||||
std::string key, value;
|
||||
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
|
||||
env[key] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::string get(const std::string& key)
|
||||
{
|
||||
return env[key];
|
||||
}
|
||||
std::vector<int> getSeeds()
|
||||
{
|
||||
auto seeds = std::vector<int>();
|
||||
auto seeds_str = env["seeds"];
|
||||
seeds_str = trim(seeds_str);
|
||||
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
|
||||
auto seeds_str_split = split(seeds_str, ',');
|
||||
transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
|
||||
return stoi(str);
|
||||
});
|
||||
return seeds;
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,193 +0,0 @@
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
#include "ReportConsole.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
|
||||
string Experiment::get_file_name()
|
||||
{
|
||||
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
return result;
|
||||
}
|
||||
|
||||
json Experiment::build_json()
|
||||
{
|
||||
json result;
|
||||
result["title"] = title;
|
||||
result["date"] = get_date();
|
||||
result["time"] = get_time();
|
||||
result["model"] = model;
|
||||
result["version"] = model_version;
|
||||
result["platform"] = platform;
|
||||
result["score_name"] = score_name;
|
||||
result["language"] = language;
|
||||
result["language_version"] = language_version;
|
||||
result["discretized"] = discretized;
|
||||
result["stratified"] = stratified;
|
||||
result["folds"] = nfolds;
|
||||
result["seeds"] = randomSeeds;
|
||||
result["duration"] = duration;
|
||||
result["results"] = json::array();
|
||||
for (const auto& r : results) {
|
||||
json j;
|
||||
j["dataset"] = r.getDataset();
|
||||
j["hyperparameters"] = r.getHyperparameters();
|
||||
j["samples"] = r.getSamples();
|
||||
j["features"] = r.getFeatures();
|
||||
j["classes"] = r.getClasses();
|
||||
j["score_train"] = r.getScoreTrain();
|
||||
j["score_test"] = r.getScoreTest();
|
||||
j["score"] = r.getScoreTest();
|
||||
j["score_std"] = r.getScoreTestStd();
|
||||
j["score_train_std"] = r.getScoreTrainStd();
|
||||
j["score_test_std"] = r.getScoreTestStd();
|
||||
j["train_time"] = r.getTrainTime();
|
||||
j["train_time_std"] = r.getTrainTimeStd();
|
||||
j["test_time"] = r.getTestTime();
|
||||
j["test_time_std"] = r.getTestTimeStd();
|
||||
j["time"] = r.getTestTime() + r.getTrainTime();
|
||||
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
|
||||
j["scores_train"] = r.getScoresTrain();
|
||||
j["scores_test"] = r.getScoresTest();
|
||||
j["times_train"] = r.getTimesTrain();
|
||||
j["times_test"] = r.getTimesTest();
|
||||
j["nodes"] = r.getNodes();
|
||||
j["leaves"] = r.getLeaves();
|
||||
j["depth"] = r.getDepth();
|
||||
result["results"].push_back(j);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Experiment::save(const string& path)
|
||||
{
|
||||
json data = build_json();
|
||||
ofstream file(path + "/" + get_file_name());
|
||||
file << data;
|
||||
file.close();
|
||||
}
|
||||
|
||||
void Experiment::report()
|
||||
{
|
||||
json data = build_json();
|
||||
ReportConsole report(data);
|
||||
report.show();
|
||||
}
|
||||
|
||||
void Experiment::show()
|
||||
{
|
||||
json data = build_json();
|
||||
cout << data.dump(4) << endl;
|
||||
}
|
||||
|
||||
void Experiment::go(vector<string> filesToProcess, const string& path)
|
||||
{
|
||||
cout << "*** Starting experiment: " << title << " ***" << endl;
|
||||
for (auto fileName : filesToProcess) {
|
||||
cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
cross_validation(path, fileName);
|
||||
cout << endl;
|
||||
}
|
||||
}
|
||||
|
||||
void Experiment::cross_validation(const string& path, const string& fileName)
|
||||
{
|
||||
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
// Prepare Result
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
result.setHyperparameters(hyperparameters);
|
||||
// Initialize results vectors
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto edges = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
|
||||
Timer train_timer, test_timer;
|
||||
int item = 0;
|
||||
for (auto seed : randomSeeds) {
|
||||
cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nfolds, y, seed);
|
||||
else
|
||||
fold = new KFold(nfolds, y.size(0), seed);
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
if (hyperparameters.size() != 0) {
|
||||
clf->setHyperparameters(hyperparameters);
|
||||
}
|
||||
// Split train - test dataset
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
// Store results and times in vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
}
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
|
||||
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
|
||||
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
|
||||
result.setDataset(fileName);
|
||||
addResult(result);
|
||||
}
|
||||
}
|
@@ -1,117 +0,0 @@
|
||||
#ifndef EXPERIMENT_H
|
||||
#define EXPERIMENT_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <chrono>
|
||||
#include "Folding.h"
|
||||
#include "BaseClassifier.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "AODE.h"
|
||||
|
||||
using namespace std;
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class Timer {
|
||||
private:
|
||||
chrono::high_resolution_clock::time_point begin;
|
||||
public:
|
||||
Timer() = default;
|
||||
~Timer() = default;
|
||||
void start() { begin = chrono::high_resolution_clock::now(); }
|
||||
double getDuration()
|
||||
{
|
||||
chrono::high_resolution_clock::time_point end = chrono::high_resolution_clock::now();
|
||||
chrono::duration<double> time_span = chrono::duration_cast<chrono::duration<double>>(end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
};
|
||||
class Result {
|
||||
private:
|
||||
string dataset, model_version;
|
||||
json hyperparameters;
|
||||
int samples{ 0 }, features{ 0 }, classes{ 0 };
|
||||
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
|
||||
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
|
||||
vector<double> scores_train, scores_test, times_train, times_test;
|
||||
public:
|
||||
Result() = default;
|
||||
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
|
||||
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setSamples(int samples) { this->samples = samples; return *this; }
|
||||
Result& setFeatures(int features) { this->features = features; return *this; }
|
||||
Result& setClasses(int classes) { this->classes = classes; return *this; }
|
||||
Result& setScoreTrain(double score) { this->score_train = score; return *this; }
|
||||
Result& setScoreTest(double score) { this->score_test = score; return *this; }
|
||||
Result& setScoreTrainStd(double score_std) { this->score_train_std = score_std; return *this; }
|
||||
Result& setScoreTestStd(double score_std) { this->score_test_std = score_std; return *this; }
|
||||
Result& setTrainTime(double train_time) { this->train_time = train_time; return *this; }
|
||||
Result& setTrainTimeStd(double train_time_std) { this->train_time_std = train_time_std; return *this; }
|
||||
Result& setTestTime(double test_time) { this->test_time = test_time; return *this; }
|
||||
Result& setTestTimeStd(double test_time_std) { this->test_time_std = test_time_std; return *this; }
|
||||
Result& setNodes(float nodes) { this->nodes = nodes; return *this; }
|
||||
Result& setLeaves(float leaves) { this->leaves = leaves; return *this; }
|
||||
Result& setDepth(float depth) { this->depth = depth; return *this; }
|
||||
Result& addScoreTrain(double score) { scores_train.push_back(score); return *this; }
|
||||
Result& addScoreTest(double score) { scores_test.push_back(score); return *this; }
|
||||
Result& addTimeTrain(double time) { times_train.push_back(time); return *this; }
|
||||
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
|
||||
const float get_score_train() const { return score_train; }
|
||||
float get_score_test() { return score_test; }
|
||||
const string& getDataset() const { return dataset; }
|
||||
const json& getHyperparameters() const { return hyperparameters; }
|
||||
const int getSamples() const { return samples; }
|
||||
const int getFeatures() const { return features; }
|
||||
const int getClasses() const { return classes; }
|
||||
const double getScoreTrain() const { return score_train; }
|
||||
const double getScoreTest() const { return score_test; }
|
||||
const double getScoreTrainStd() const { return score_train_std; }
|
||||
const double getScoreTestStd() const { return score_test_std; }
|
||||
const double getTrainTime() const { return train_time; }
|
||||
const double getTrainTimeStd() const { return train_time_std; }
|
||||
const double getTestTime() const { return test_time; }
|
||||
const double getTestTimeStd() const { return test_time_std; }
|
||||
const float getNodes() const { return nodes; }
|
||||
const float getLeaves() const { return leaves; }
|
||||
const float getDepth() const { return depth; }
|
||||
const vector<double>& getScoresTrain() const { return scores_train; }
|
||||
const vector<double>& getScoresTest() const { return scores_test; }
|
||||
const vector<double>& getTimesTrain() const { return times_train; }
|
||||
const vector<double>& getTimesTest() const { return times_test; }
|
||||
};
|
||||
class Experiment {
|
||||
private:
|
||||
string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized{ false }, stratified{ false };
|
||||
vector<Result> results;
|
||||
vector<int> randomSeeds;
|
||||
json hyperparameters = "{}";
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
public:
|
||||
Experiment();
|
||||
Experiment& setTitle(const string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
|
||||
Experiment& setScoreName(const string& score_name) { this->score_name = score_name; return *this; }
|
||||
Experiment& setModelVersion(const string& model_version) { this->model_version = model_version; return *this; }
|
||||
Experiment& setLanguage(const string& language) { this->language = language; return *this; }
|
||||
Experiment& setLanguageVersion(const string& language_version) { this->language_version = language_version; return *this; }
|
||||
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
|
||||
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
|
||||
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
string get_file_name();
|
||||
void save(const string& path);
|
||||
void cross_validation(const string& path, const string& fileName);
|
||||
void go(vector<string> filesToProcess, const string& path);
|
||||
void show();
|
||||
void report();
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,95 +0,0 @@
|
||||
#include "Folding.h"
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
|
||||
{
|
||||
random_device rd;
|
||||
random_seed = default_random_engine(seed == -1 ? rd() : seed);
|
||||
srand(seed == -1 ? time(0) : seed);
|
||||
}
|
||||
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
|
||||
{
|
||||
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
}
|
||||
int nTest = n / k;
|
||||
auto train = vector<int>();
|
||||
auto test = vector<int>();
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
||||
test.push_back(indices[i]);
|
||||
} else {
|
||||
train.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
return { train, test };
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
|
||||
{
|
||||
n = y.numel();
|
||||
this->y = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
||||
build();
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
|
||||
: Fold(k, y.size(), seed)
|
||||
{
|
||||
this->y = y;
|
||||
n = y.size();
|
||||
build();
|
||||
}
|
||||
void StratifiedKFold::build()
|
||||
{
|
||||
stratified_indices = vector<vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
// Compute class counts and indices
|
||||
auto class_indices = map<int, vector<int>>();
|
||||
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
for (auto i = 0; i < n; ++i) {
|
||||
class_counts[y[i]]++;
|
||||
class_indices[y[i]].push_back(i);
|
||||
}
|
||||
// Shuffle class indices
|
||||
for (auto& [cls, indices] : class_indices) {
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts[label] / k;
|
||||
if (num_samples_to_take == 0)
|
||||
continue;
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
}
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (stratified_indices[fold].size() == fold_size + 1) {
|
||||
continue;
|
||||
}
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
remainder_samples_to_take--;
|
||||
}
|
||||
}
|
||||
}
|
||||
pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
}
|
||||
vector<int> test_indices = stratified_indices[nFold];
|
||||
vector<int> train_indices;
|
||||
for (int i = 0; i < k; ++i) {
|
||||
if (i == nFold) continue;
|
||||
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
@@ -1,37 +0,0 @@
|
||||
#ifndef FOLDING_H
|
||||
#define FOLDING_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
using namespace std;
|
||||
|
||||
class Fold {
|
||||
protected:
|
||||
int k;
|
||||
int n;
|
||||
int seed;
|
||||
default_random_engine random_seed;
|
||||
public:
|
||||
Fold(int k, int n, int seed = -1);
|
||||
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
|
||||
virtual ~Fold() = default;
|
||||
int getNumberOfFolds() { return k; }
|
||||
};
|
||||
class KFold : public Fold {
|
||||
private:
|
||||
vector<int> indices;
|
||||
public:
|
||||
KFold(int k, int n, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
class StratifiedKFold : public Fold {
|
||||
private:
|
||||
vector<int> y;
|
||||
vector<vector<int>> stratified_indices;
|
||||
void build();
|
||||
public:
|
||||
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
#endif
|
@@ -1,54 +0,0 @@
|
||||
#include "Models.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
Models* Models::factory = nullptr;;
|
||||
Models* Models::instance()
|
||||
{
|
||||
//manages singleton
|
||||
if (factory == nullptr)
|
||||
factory = new Models();
|
||||
return factory;
|
||||
}
|
||||
void Models::registerFactoryFunction(const string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
functionRegistry[name] = classFactoryFunction;
|
||||
}
|
||||
shared_ptr<bayesnet::BaseClassifier> Models::create(const string& name)
|
||||
{
|
||||
bayesnet::BaseClassifier* instance = nullptr;
|
||||
|
||||
// find name in the registry and call factory method.
|
||||
auto it = functionRegistry.find(name);
|
||||
if (it != functionRegistry.end())
|
||||
instance = it->second();
|
||||
// wrap instance in a shared ptr and return
|
||||
if (instance != nullptr)
|
||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
vector<string> Models::getNames()
|
||||
{
|
||||
vector<string> names;
|
||||
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
|
||||
[](const pair<string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
|
||||
return names;
|
||||
}
|
||||
string Models::toString()
|
||||
{
|
||||
string result = "";
|
||||
for (const auto& pair : functionRegistry) {
|
||||
result += pair.first + ", ";
|
||||
}
|
||||
return "{" + result.substr(0, result.size() - 2) + "}";
|
||||
}
|
||||
|
||||
Registrar::Registrar(const string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
|
||||
}
|
||||
}
|
@@ -1,37 +0,0 @@
|
||||
#ifndef MODELS_H
|
||||
#define MODELS_H
|
||||
#include <map>
|
||||
#include "BaseClassifier.h"
|
||||
#include "AODE.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "SPODE.h"
|
||||
#include "TANLd.h"
|
||||
#include "KDBLd.h"
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "BoostAODE.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
map<string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
|
||||
static Models* factory; //singleton
|
||||
Models() {};
|
||||
public:
|
||||
Models(Models&) = delete;
|
||||
void operator=(const Models&) = delete;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
static Models* instance();
|
||||
shared_ptr<bayesnet::BaseClassifier> create(const string& name);
|
||||
void registerFactoryFunction(const string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
vector<string> getNames();
|
||||
string toString();
|
||||
|
||||
};
|
||||
class Registrar {
|
||||
public:
|
||||
Registrar(const string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,12 +0,0 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,37 +0,0 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportBase.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
string ReportBase::fromVector(const string& key)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
oss << sep << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
void ReportBase::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
}
|
||||
}
|
@@ -1,23 +0,0 @@
|
||||
#ifndef REPORTBASE_H
|
||||
#define REPORTBASE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
class ReportBase {
|
||||
public:
|
||||
explicit ReportBase(json data_) { data = data_; };
|
||||
virtual ~ReportBase() = default;
|
||||
void show();
|
||||
protected:
|
||||
json data;
|
||||
string fromVector(const string& key);
|
||||
string fVector(const string& title, const json& data, const int width, const int precision);
|
||||
virtual void header() = 0;
|
||||
virtual void body() = 0;
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,88 +0,0 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportConsole.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
string ReportConsole::headerLine(const string& text)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + string(n, ' ') + "*\n";
|
||||
}
|
||||
|
||||
void ReportConsole::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
cout << headerLine(data["title"].get<string>());
|
||||
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
cout << headerLine(oss.str());
|
||||
cout << headerLine("Score is " + data["score_name"].get<string>());
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << endl;
|
||||
}
|
||||
void ReportConsole::body()
|
||||
{
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
bool odd = true;
|
||||
for (const auto& r : data["results"]) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
|
||||
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
|
||||
try {
|
||||
cout << r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cout << r["hyperparameters"];
|
||||
}
|
||||
cout << endl;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
odd = !odd;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
|
||||
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
|
||||
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
|
||||
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
|
||||
cout << string(MAXL, '*') << endl;
|
||||
} else {
|
||||
footer(totalScore);
|
||||
}
|
||||
}
|
||||
void ReportConsole::footer(double totalScore)
|
||||
{
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
stringstream oss;
|
||||
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
|
||||
cout << headerLine(oss.str());
|
||||
}
|
||||
cout << string(MAXL, '*') << endl << Colors::RESET();
|
||||
}
|
||||
}
|
@@ -1,22 +0,0 @@
|
||||
#ifndef REPORTCONSOLE_H
|
||||
#define REPORTCONSOLE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "ReportBase.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
const int MAXL = 128;
|
||||
class ReportConsole : public ReportBase{
|
||||
public:
|
||||
explicit ReportConsole(json data_) : ReportBase(data_) {};
|
||||
virtual ~ReportConsole() = default;
|
||||
private:
|
||||
string headerLine(const string& text);
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore);
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,109 +0,0 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void ReportExcel::createFile()
|
||||
{
|
||||
doc.create(Paths::excel() + "some_results.xlsx");
|
||||
wks = doc.workbook().worksheet("Sheet1");
|
||||
wks.setName(data["model"].get<string>());
|
||||
}
|
||||
|
||||
void ReportExcel::closeFile()
|
||||
{
|
||||
doc.save();
|
||||
doc.close();
|
||||
}
|
||||
|
||||
void ReportExcel::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
wks.cell("A1").value().set(
|
||||
"Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " +
|
||||
to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
|
||||
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
wks.cell("A2").value() = data["title"].get<string>();
|
||||
wks.cell("A3").value() = "Random seeds: " + fromVector("seeds") + " Stratified: " +
|
||||
(data["stratified"].get<bool>() ? "True" : "False");
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, "
|
||||
<< data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
wks.cell("A4").value() = oss.str();
|
||||
wks.cell("A5").value() = "Score is " + data["score_name"].get<string>();
|
||||
}
|
||||
|
||||
void ReportExcel::body()
|
||||
{
|
||||
auto header = vector<string>(
|
||||
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
|
||||
"Time Std.", "Hyperparameters" });
|
||||
int col = 1;
|
||||
for (const auto& item : header) {
|
||||
wks.cell(8, col++).value() = item;
|
||||
}
|
||||
int row = 9;
|
||||
col = 1;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
string hyperparameters;
|
||||
for (const auto& r : data["results"]) {
|
||||
wks.cell(row, col).value() = r["dataset"].get<string>();
|
||||
wks.cell(row, col + 1).value() = r["samples"].get<int>();
|
||||
wks.cell(row, col + 2).value() = r["features"].get<int>();
|
||||
wks.cell(row, col + 3).value() = r["classes"].get<int>();
|
||||
wks.cell(row, col + 4).value() = r["nodes"].get<float>();
|
||||
wks.cell(row, col + 5).value() = r["leaves"].get<float>();
|
||||
wks.cell(row, col + 6).value() = r["depth"].get<float>();
|
||||
wks.cell(row, col + 7).value() = r["score"].get<double>();
|
||||
wks.cell(row, col + 8).value() = r["score_std"].get<double>();
|
||||
wks.cell(row, col + 9).value() = r["time"].get<double>();
|
||||
wks.cell(row, col + 10).value() = r["time_std"].get<double>();
|
||||
try {
|
||||
hyperparameters = r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
stringstream oss;
|
||||
oss << r["hyperparameters"];
|
||||
hyperparameters = oss.str();
|
||||
}
|
||||
wks.cell(row, col + 11).value() = hyperparameters;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
row++;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
|
||||
row++;
|
||||
col = 1;
|
||||
wks.cell(row, col).value() = group;
|
||||
for (double item : lastResult[group]) {
|
||||
wks.cell(row, ++col).value() = item;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
footer(totalScore, row);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::footer(double totalScore, int row)
|
||||
{
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
wks.cell(row + 2, 1).value() = score + " compared to " + BestResult::title() + " .: ";
|
||||
wks.cell(row + 2, 5).value() = totalScore / BestResult::score();
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,25 +0,0 @@
|
||||
#ifndef REPORTEXCEL_H
|
||||
#define REPORTEXCEL_H
|
||||
#include <OpenXLSX.hpp>
|
||||
#include "ReportBase.h"
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using namespace OpenXLSX;
|
||||
const int MAXLL = 128;
|
||||
class ReportExcel : public ReportBase{
|
||||
public:
|
||||
explicit ReportExcel(json data_) : ReportBase(data_) {createFile();};
|
||||
virtual ~ReportExcel() {closeFile();};
|
||||
private:
|
||||
void createFile();
|
||||
void closeFile();
|
||||
XLDocument doc;
|
||||
XLWorksheet wks;
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore, int row);
|
||||
};
|
||||
};
|
||||
#endif // !REPORTEXCEL_H
|
@@ -1,254 +0,0 @@
|
||||
#include <filesystem>
|
||||
#include "platformUtils.h"
|
||||
#include "Results.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
Result::Result(const string& path, const string& filename)
|
||||
: path(path)
|
||||
, filename(filename)
|
||||
{
|
||||
auto data = load();
|
||||
date = data["date"];
|
||||
score = 0;
|
||||
for (const auto& result : data["results"]) {
|
||||
score += result["score"].get<double>();
|
||||
}
|
||||
scoreName = data["score_name"];
|
||||
if (scoreName == BestResult::scoreName()) {
|
||||
score /= BestResult::score();
|
||||
}
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
}
|
||||
json Result::load() const
|
||||
{
|
||||
ifstream resultData(path + "/" + filename);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
|
||||
}
|
||||
void Results::load()
|
||||
{
|
||||
using std::filesystem::directory_iterator;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto filename = file.path().filename().string();
|
||||
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
|
||||
auto result = Result(path, filename);
|
||||
bool addResult = true;
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
|
||||
addResult = false;
|
||||
if (addResult)
|
||||
files.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
string Result::to_string() const
|
||||
{
|
||||
stringstream oss;
|
||||
oss << date << " ";
|
||||
oss << setw(12) << left << model << " ";
|
||||
oss << setw(11) << left << scoreName << " ";
|
||||
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
|
||||
oss << setw(9) << setprecision(3) << fixed << duration << " ";
|
||||
oss << setw(50) << left << title << " ";
|
||||
return oss.str();
|
||||
}
|
||||
void Results::show() const
|
||||
{
|
||||
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
|
||||
cout << "-------------------" << endl;
|
||||
auto i = 0;
|
||||
cout << " # Date Model Score Name Score Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
|
||||
bool odd = true;
|
||||
for (const auto& result : files) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
cout << color << setw(3) << fixed << right << i++ << " ";
|
||||
cout << result.to_string() << endl;
|
||||
if (i == max && max != 0) {
|
||||
break;
|
||||
}
|
||||
odd = !odd;
|
||||
}
|
||||
}
|
||||
int Results::getIndex(const string& intent) const
|
||||
{
|
||||
string color;
|
||||
if (intent == "delete") {
|
||||
color = Colors::RED();
|
||||
} else {
|
||||
color = Colors::YELLOW();
|
||||
}
|
||||
cout << color << "Choose result to " << intent << " (cancel=-1): ";
|
||||
string line;
|
||||
getline(cin, line);
|
||||
int index = stoi(line);
|
||||
if (index >= -1 && index < static_cast<int>(files.size())) {
|
||||
return index;
|
||||
}
|
||||
cout << "Invalid index" << endl;
|
||||
return -1;
|
||||
}
|
||||
void Results::report(const int index, const bool excelReport) const
|
||||
{
|
||||
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
|
||||
auto data = files.at(index).load();
|
||||
if (excelReport) {
|
||||
ReportExcel report(data);
|
||||
report.show();
|
||||
} else {
|
||||
ReportConsole report(data);
|
||||
report.show();
|
||||
}
|
||||
}
|
||||
void Results::menu()
|
||||
{
|
||||
char option;
|
||||
int index;
|
||||
bool finished = false;
|
||||
string filename, line, options = "qldhsre";
|
||||
while (!finished) {
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
if (options.find(line[0]) != string::npos) {
|
||||
if (line.size() > 1) {
|
||||
cout << "Invalid option" << endl;
|
||||
continue;
|
||||
}
|
||||
option = line[0];
|
||||
} else {
|
||||
if (all_of(line.begin(), line.end(), ::isdigit)) {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index, false);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
cout << "Invalid option" << endl;
|
||||
continue;
|
||||
}
|
||||
switch (option) {
|
||||
case 'q':
|
||||
finished = true;
|
||||
break;
|
||||
case 'l':
|
||||
show();
|
||||
break;
|
||||
case 'd':
|
||||
index = getIndex("delete");
|
||||
if (index == -1)
|
||||
break;
|
||||
filename = files[index].getFilename();
|
||||
cout << "Deleting " << filename << endl;
|
||||
remove((path + "/" + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
cout << "File: " + filename + " deleted!" << endl;
|
||||
show();
|
||||
break;
|
||||
case 'h':
|
||||
index = getIndex("hide");
|
||||
if (index == -1)
|
||||
break;
|
||||
filename = files[index].getFilename();
|
||||
cout << "Hiding " << filename << endl;
|
||||
rename((path + "/" + filename).c_str(), (path + "/." + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
show();
|
||||
menu();
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
show();
|
||||
break;
|
||||
case 'r':
|
||||
index = getIndex("report");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index, false);
|
||||
break;
|
||||
case 'e':
|
||||
index = getIndex("excel");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index, true);
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
void Results::sortList()
|
||||
{
|
||||
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
|
||||
string line;
|
||||
char option;
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
return;
|
||||
if (line.size() > 1) {
|
||||
cout << "Invalid option" << endl;
|
||||
return;
|
||||
}
|
||||
option = line[0];
|
||||
switch (option) {
|
||||
case 'd':
|
||||
sortDate();
|
||||
break;
|
||||
case 's':
|
||||
sortScore();
|
||||
break;
|
||||
case 'u':
|
||||
sortDuration();
|
||||
break;
|
||||
case 'm':
|
||||
sortModel();
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
}
|
||||
void Results::sortDate()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDate() > b.getDate();
|
||||
});
|
||||
}
|
||||
void Results::sortModel()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getModel() > b.getModel();
|
||||
});
|
||||
}
|
||||
void Results::sortDuration()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDuration() > b.getDuration();
|
||||
});
|
||||
}
|
||||
void Results::sortScore()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getScore() > b.getScore();
|
||||
});
|
||||
}
|
||||
void Results::manage()
|
||||
{
|
||||
if (files.size() == 0) {
|
||||
cout << "No results found!" << endl;
|
||||
exit(0);
|
||||
}
|
||||
sortDate();
|
||||
show();
|
||||
menu();
|
||||
cout << "Done!" << endl;
|
||||
}
|
||||
|
||||
}
|
@@ -1,56 +0,0 @@
|
||||
#ifndef RESULTS_H
|
||||
#define RESULTS_H
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Result {
|
||||
public:
|
||||
Result(const string& path, const string& filename);
|
||||
json load() const;
|
||||
string to_string() const;
|
||||
string getFilename() const { return filename; };
|
||||
string getDate() const { return date; };
|
||||
double getScore() const { return score; };
|
||||
string getTitle() const { return title; };
|
||||
double getDuration() const { return duration; };
|
||||
string getModel() const { return model; };
|
||||
string getScoreName() const { return scoreName; };
|
||||
private:
|
||||
string path;
|
||||
string filename;
|
||||
string date;
|
||||
double score;
|
||||
string title;
|
||||
double duration;
|
||||
string model;
|
||||
string scoreName;
|
||||
};
|
||||
class Results {
|
||||
public:
|
||||
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
|
||||
void manage();
|
||||
private:
|
||||
string path;
|
||||
int max;
|
||||
string model;
|
||||
string scoreName;
|
||||
vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
void show() const;
|
||||
void report(const int index, const bool excelReport) const;
|
||||
int getIndex(const string& intent) const;
|
||||
void menu();
|
||||
void sortList();
|
||||
void sortDate();
|
||||
void sortScore();
|
||||
void sortModel();
|
||||
void sortDuration();
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -1,57 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <locale>
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
#include "Datasets.h"
|
||||
|
||||
using namespace std;
|
||||
const int BALANCE_LENGTH = 75;
|
||||
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void outputBalance(const string& balance)
|
||||
{
|
||||
auto temp = string(balance);
|
||||
while (temp.size() > BALANCE_LENGTH - 1) {
|
||||
auto part = temp.substr(0, BALANCE_LENGTH);
|
||||
cout << part << endl;
|
||||
cout << setw(48) << " ";
|
||||
temp = temp.substr(BALANCE_LENGTH);
|
||||
}
|
||||
cout << temp << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto data = platform::Datasets(platform::Paths().datasets(), false);
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << endl;
|
||||
string balanceBars = string(BALANCE_LENGTH, '=');
|
||||
cout << "============================== ====== ===== === " << balanceBars << endl;
|
||||
bool odd = true;
|
||||
for (const auto& dataset : data.getNames()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << dataset << " ";
|
||||
data.loadDataset(dataset);
|
||||
auto nSamples = data.getNSamples(dataset);
|
||||
cout << setw(6) << right << nSamples << " ";
|
||||
cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
|
||||
cout << setw(3) << right << data.getNClasses(dataset) << " ";
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
for (auto number : data.getClassesCounts(dataset)) {
|
||||
oss << sep << setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
|
||||
sep = " / ";
|
||||
}
|
||||
outputBalance(oss.str());
|
||||
odd = !odd;
|
||||
}
|
||||
cout << Colors::RESET() << endl;
|
||||
return 0;
|
||||
}
|
@@ -1,130 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "Paths.h"
|
||||
|
||||
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ platform::Paths::datasets() });
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
}
|
||||
);
|
||||
program.add_argument("--title").default_value("").help("Experiment title");
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
auto discretize_dataset = program.get<bool>("discretize");
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto complete_file_name = path + file_name + ".arff";
|
||||
auto title = program.get<string>("title");
|
||||
auto hyperparameters = program.get<string>("hyperparameters");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
auto discretize_dataset = program.get<bool>("discretize");
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto hyperparameters =program.get<string>("hyperparameters");
|
||||
vector<string> filesToTest;
|
||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
||||
auto title = program.get<string>("title");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
if (file_name != "") {
|
||||
if (!datasets.isDataset(file_name)) {
|
||||
cerr << "Dataset " << file_name << " not found" << endl;
|
||||
exit(1);
|
||||
}
|
||||
if (title == "") {
|
||||
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
|
||||
}
|
||||
filesToTest.push_back(file_name);
|
||||
} else {
|
||||
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
|
||||
saveResults = true;
|
||||
}
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
auto experiment = platform::Experiment();
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
experiment.setHyperparameters(json::parse(hyperparameters));
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
experiment.go(filesToTest, path);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults) {
|
||||
experiment.save(platform::Paths::results());
|
||||
}
|
||||
experiment.report();
|
||||
cout << "Done!" << endl;
|
||||
return 0;
|
||||
}
|
@@ -1,41 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
#include "Results.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("manage");
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
if (number < 0) {
|
||||
throw runtime_error("Number of results must be greater than or equal to 0");
|
||||
}
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score);
|
||||
results.manage();
|
||||
return 0;
|
||||
}
|
@@ -1,21 +0,0 @@
|
||||
#ifndef MODEL_REGISTER_H
|
||||
#define MODEL_REGISTER_H
|
||||
static platform::Registrar registrarT("TAN",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||
static platform::Registrar registrarTLD("TANLd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
|
||||
static platform::Registrar registrarS("SPODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
||||
static platform::Registrar registrarSLD("SPODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
|
||||
static platform::Registrar registrarK("KDB",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
||||
static platform::Registrar registrarKLD("KDBLd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
|
||||
static platform::Registrar registrarA("AODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||
static platform::Registrar registrarALD("AODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||
static platform::Registrar registrarBA("BoostAODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
||||
#endif
|
@@ -1,109 +0,0 @@
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
|
||||
using namespace torch;
|
||||
|
||||
vector<string> split(const string& text, char delimiter)
|
||||
{
|
||||
vector<string> result;
|
||||
stringstream ss(text);
|
||||
string token;
|
||||
while (getline(ss, token, delimiter)) {
|
||||
result.push_back(token);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
|
||||
bool file_exists(const string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(path + static_cast<string>(name) + ".arff", class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
Tensor Xd;
|
||||
auto states = map<string, vector<int>>();
|
||||
if (discretize_dataset) {
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
||||
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
||||
}
|
||||
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states[className]), end(states[className]), 0);
|
||||
} else {
|
||||
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xd.index_put_({ "...", i }, torch::tensor(X[i]));
|
||||
}
|
||||
}
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
}
|
||||
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
// Discretize Dataset
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
tie(Xd, maxes) = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
return { Xd, y, features, className, states };
|
||||
}
|
@@ -1,21 +0,0 @@
|
||||
#ifndef PLATFORM_UTILS_H
|
||||
#define PLATFORM_UTILS_H
|
||||
#include <torch/torch.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include "ArffFiles.h"
|
||||
#include "CPPFImdlp.h"
|
||||
using namespace std;
|
||||
const string PATH = "../../data/";
|
||||
|
||||
bool file_exists(const std::string& name);
|
||||
vector<string> split(const string& text, char delimiter);
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, const string& className);
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
|
||||
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset);
|
||||
map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes);
|
||||
#endif //PLATFORM_UTILS_H
|
@@ -1,88 +0,0 @@
|
||||
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "TAN.h"
|
||||
#include "SPODE.h"
|
||||
#include "AODE.h"
|
||||
#include "platformUtils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
map <pair<string, string>, float> scores = {
|
||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}
|
||||
};
|
||||
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto [Xd, y, features, className, states] = loadFile(file_name);
|
||||
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
//scores[{file_name, "TAN"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test KDB classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
//scores[{file_name, "KDB"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODE(1);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
// scores[{file_name, "SPODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test AODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODE();
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
// scores[{file_name, "AODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(1e-6));
|
||||
}
|
||||
// for (auto scores : scores) {
|
||||
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// }
|
||||
}
|
||||
TEST_CASE("Models features")
|
||||
{
|
||||
auto graph = vector<string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
||||
"class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
|
||||
"class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n",
|
||||
"petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n",
|
||||
"sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n"
|
||||
}
|
||||
);
|
||||
|
||||
auto clf = bayesnet::TAN();
|
||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.show() == vector<string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
}
|
||||
TEST_CASE("Get num features & num edges")
|
||||
{
|
||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
@@ -1,33 +0,0 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "platformUtils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Network")
|
||||
{
|
||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||
|
||||
SECTION("Test get features")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
||||
net.addNode("C");
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
||||
}
|
||||
SECTION("Test get edges")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
net.addEdge("A", "B");
|
||||
net.addEdge("B", "C");
|
||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
|
||||
net.addEdge("A", "C");
|
||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user