Compare commits
208 Commits
xlsx
...
producer_c
Author | SHA1 | Date | |
---|---|---|---|
65a96851ef
|
|||
722da7f781
|
|||
b1833a5feb
|
|||
41a0bd4ddd
|
|||
9ab4fc7d76
|
|||
beadb7465f
|
|||
652e5f623f
|
|||
b7fef9a99d
|
|||
343269d48c
|
|||
21c4c6df51
|
|||
702f086706
|
|||
981bc8f98b
|
|||
e0b7b2d316
|
|||
9b9e91e856 | |||
18e8e84284
|
|||
7de11b0e6d
|
|||
9b8db37a4b
|
|||
49b26bd04b
|
|||
b5b5b48864
|
|||
19586a3a5a
|
|||
ffe6d37436
|
|||
b73f4be146
|
|||
dbf2f35502
|
|||
db9e80a70e
|
|||
40ae4ad7f9
|
|||
234342f2de
|
|||
aa0936abd1
|
|||
f0d6f0cc38
|
|||
cc316bb8d3
|
|||
0723564e66
|
|||
2e95e8999d
|
|||
fb9b395748
|
|||
03e4437fea
|
|||
33cd32c639
|
|||
c460ef46ed
|
|||
dee9c674da
|
|||
e3f6dc1e0b
|
|||
460d20a402
|
|||
8dbbb65a2f
|
|||
d06bf187b2
|
|||
4addaefb47
|
|||
82964190f6
|
|||
4fefe9a1d2
|
|||
7c12dd25e5
|
|||
c713c0b1df
|
|||
64069a6cb7
|
|||
ba2a3f9523 | |||
f94e2d6a27
|
|||
2121ba9b98
|
|||
8b7b59d42b
|
|||
bbe5302ab1
|
|||
c2eb727fc7
|
|||
fb347ed5b9
|
|||
b657762c0c
|
|||
495d8a8528
|
|||
4628e48d3c
|
|||
5876be4b24
|
|||
dc3400197f
|
|||
26d3a57782
|
|||
4f3a04058f
|
|||
89c4613591
|
|||
28f3d87e32 | |||
e8d2c9fc0b
|
|||
d3cb580387
|
|||
f088df14fd
|
|||
e2249eace7
|
|||
64f5a7f14a
|
|||
408db2aad5
|
|||
e03efb5f63
|
|||
f617886133
|
|||
69ad660040
|
|||
431b3a3aa5
|
|||
6a23e2cc26
|
|||
f6e00530be
|
|||
f9258e43b9
|
|||
92820555da
|
|||
5a3af51826
|
|||
a8f9800631
|
|||
84cec0c1e0
|
|||
130139f644
|
|||
651f84b562
|
|||
553ab0fa22
|
|||
4975feabff
|
|||
32293af69f
|
|||
858664be2d
|
|||
1f705f6018
|
|||
7bcd2eed06
|
|||
833acefbb3
|
|||
26b649ebae
|
|||
080eddf9cd
|
|||
04e754b2f5
|
|||
38423048bd
|
|||
64fc97b892
|
|||
2c2159f192
|
|||
6765552a7c
|
|||
f72aa5b9a6 | |||
fa7fe081ad
|
|||
660e783517
|
|||
b35532dd9e
|
|||
6ef49385ea
|
|||
6d5a25cdc8
|
|||
d00b08cbe8
|
|||
977ff6fddb
|
|||
54b8939f35
|
|||
5022a4dc90
|
|||
40d1dad5d8
|
|||
47e2b138c5
|
|||
e7ded68267
|
|||
ca833a34f5
|
|||
df9b4c48d2
|
|||
f288bbd6fa
|
|||
7d8aca4f59
|
|||
8fdad78a8c
|
|||
e3ae073333
|
|||
4b732e76c2
|
|||
fe5fead27e
|
|||
8c3864f3c8
|
|||
1287160c47
|
|||
2f58807322
|
|||
17e079edd5
|
|||
b9e0028e9d
|
|||
e0d39fe631
|
|||
36b0277576
|
|||
da8d018ec4
|
|||
5f0676691c
|
|||
3448fb1299
|
|||
5e938d5cca
|
|||
55e742438f
|
|||
c4ae3fe429
|
|||
93e4ff94db
|
|||
57c27f739c
|
|||
a434d7f1ae
|
|||
294666c516
|
|||
fd04e78ad9
|
|||
66ec1b343b
|
|||
bb423da42f
|
|||
db17c14042
|
|||
a4401cb78f
|
|||
9d3d9cc6c6
|
|||
cfcf3c16df
|
|||
85202260f3
|
|||
82acb3cab5
|
|||
623ceed396 | |||
926de2bebd
|
|||
71704e3547
|
|||
3b06534327
|
|||
ac89a451e3
|
|||
00c6cf663b
|
|||
5043c12be8
|
|||
11320e2cc7
|
|||
ce66483b65
|
|||
cab8e14b2d
|
|||
f0d0abe891
|
|||
dcba146e12
|
|||
3ea0285119
|
|||
e3888e1503 | |||
06de13df98
|
|||
de4fa6a04f
|
|||
3a7bf4e672
|
|||
cd0bc02a74
|
|||
c8597a794e
|
|||
b30416364d
|
|||
3a16589220
|
|||
c4f9187e2a
|
|||
c4d0a5b4e6
|
|||
7bfafe555f
|
|||
337b6f7e79
|
|||
5fa0b957dd
|
|||
67252fc41d
|
|||
94ae9456a0
|
|||
781993e326
|
|||
8257a6ae39
|
|||
fc81730dfc | |||
d8734ff082
|
|||
03533461c8
|
|||
68f22a673d
|
|||
b9bc0088f3
|
|||
c280e254ca
|
|||
3d0f29fda3
|
|||
20a6ebab7c
|
|||
925f71166c
|
|||
f69f415b92
|
|||
1bdfbd1620
|
|||
06fb135526
|
|||
501ea0ab4e
|
|||
847c6761d7
|
|||
6030885fc3
|
|||
89df7f4db0
|
|||
41257ed566
|
|||
506369e46b
|
|||
d908f389f5
|
|||
5a7c8f1818
|
|||
64fc7bd9dd
|
|||
0b7beda78c
|
|||
05b670dfc0
|
|||
de62d42b74
|
|||
edb957d22e
|
|||
4de5cb4c6c | |||
c35030f137
|
|||
182b07ed90
|
|||
7806f961e2
|
|||
7c3e315ae7
|
|||
284ef6dfd1
|
|||
1c6af619b5
|
|||
86ffdfd6f3
|
|||
d82148079d
|
|||
067430fd1b
|
|||
f5d0d16365 |
31
.clang-uml
Normal file
31
.clang-uml
Normal file
@@ -0,0 +1,31 @@
|
||||
compilation_database_dir: build
|
||||
output_directory: puml
|
||||
diagrams:
|
||||
BayesNet:
|
||||
type: class
|
||||
glob:
|
||||
- src/BayesNet/*.cc
|
||||
- src/Platform/*.cc
|
||||
using_namespace: bayesnet
|
||||
include:
|
||||
namespaces:
|
||||
- bayesnet
|
||||
- platform
|
||||
plantuml:
|
||||
after:
|
||||
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
|
||||
sequence:
|
||||
type: sequence
|
||||
glob:
|
||||
- src/Platform/main.cc
|
||||
combine_free_functions_into_file_participants: true
|
||||
using_namespace:
|
||||
- std
|
||||
- bayesnet
|
||||
- platform
|
||||
include:
|
||||
paths:
|
||||
- src/BayesNet
|
||||
- src/Platform
|
||||
start_from:
|
||||
- function: main(int,const char **)
|
5
.gitignore
vendored
5
.gitignore
vendored
@@ -31,7 +31,10 @@
|
||||
*.exe
|
||||
*.out
|
||||
*.app
|
||||
build/
|
||||
build/**
|
||||
build_*/**
|
||||
*.dSYM/**
|
||||
cmake-build*/**
|
||||
.idea
|
||||
puml/**
|
||||
.vscode/settings.json
|
||||
|
13
.gitmodules
vendored
13
.gitmodules
vendored
@@ -1,12 +1,25 @@
|
||||
[submodule "lib/mdlp"]
|
||||
path = lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/argparse"]
|
||||
path = lib/argparse
|
||||
url = https://github.com/p-ranav/argparse
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/libxlsxwriter"]
|
||||
path = lib/libxlsxwriter
|
||||
url = https://github.com/jmcnamara/libxlsxwriter.git
|
||||
main = main
|
||||
update = merge
|
||||
|
18
.vscode/c_cpp_properties.json
vendored
Normal file
18
.vscode/c_cpp_properties.json
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Mac",
|
||||
"includePath": [
|
||||
"${workspaceFolder}/**"
|
||||
],
|
||||
"defines": [],
|
||||
"macFrameworkPath": [
|
||||
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
|
||||
],
|
||||
"cStandard": "c17",
|
||||
"cppStandard": "c++17",
|
||||
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
|
||||
}
|
||||
],
|
||||
"version": 4
|
||||
}
|
85
.vscode/launch.json
vendored
85
.vscode/launch.json
vendored
@@ -5,12 +5,12 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "sample",
|
||||
"program": "${workspaceFolder}/build/sample/BayesNetSample",
|
||||
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
|
||||
"args": [
|
||||
"-d",
|
||||
"iris",
|
||||
"-m",
|
||||
"KDB",
|
||||
"TANLd",
|
||||
"-s",
|
||||
"271",
|
||||
"-p",
|
||||
@@ -21,46 +21,103 @@
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experiment",
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"name": "experimentPy",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"BoostAODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--discretize",
|
||||
"STree",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris",
|
||||
//"--discretize"
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "gridsearch",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
|
||||
"args": [
|
||||
"-m",
|
||||
"KDB",
|
||||
"--discretize",
|
||||
"--continue",
|
||||
"glass",
|
||||
"--only",
|
||||
"--compute"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experimentBayes",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"TAN",
|
||||
"--stratified",
|
||||
"--discretize",
|
||||
"-d",
|
||||
"iris",
|
||||
"--hyperparameters",
|
||||
"{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "best",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
|
||||
"args": [
|
||||
"-m",
|
||||
"BoostAODE",
|
||||
"-s",
|
||||
"accuracy",
|
||||
"--build",
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/manage",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
|
||||
"args": [
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/list",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
||||
"args": [],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
|
||||
"args": [
|
||||
"-c=\"Metrics Test\"",
|
||||
// "-s",
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build/tests",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
"type": "cppdbg",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/build/bayesnet",
|
||||
"program": "${workspaceFolder}/build_debug/bayesnet",
|
||||
"args": [],
|
||||
"stopAtEntry": false,
|
||||
"cwd": "${workspaceFolder}",
|
||||
|
109
.vscode/settings.json
vendored
109
.vscode/settings.json
vendored
@@ -1,109 +0,0 @@
|
||||
{
|
||||
"files.associations": {
|
||||
"*.rmd": "markdown",
|
||||
"*.py": "python",
|
||||
"vector": "cpp",
|
||||
"__bit_reference": "cpp",
|
||||
"__bits": "cpp",
|
||||
"__config": "cpp",
|
||||
"__debug": "cpp",
|
||||
"__errc": "cpp",
|
||||
"__hash_table": "cpp",
|
||||
"__locale": "cpp",
|
||||
"__mutex_base": "cpp",
|
||||
"__node_handle": "cpp",
|
||||
"__nullptr": "cpp",
|
||||
"__split_buffer": "cpp",
|
||||
"__string": "cpp",
|
||||
"__threading_support": "cpp",
|
||||
"__tuple": "cpp",
|
||||
"array": "cpp",
|
||||
"atomic": "cpp",
|
||||
"bitset": "cpp",
|
||||
"cctype": "cpp",
|
||||
"chrono": "cpp",
|
||||
"clocale": "cpp",
|
||||
"cmath": "cpp",
|
||||
"compare": "cpp",
|
||||
"complex": "cpp",
|
||||
"concepts": "cpp",
|
||||
"cstdarg": "cpp",
|
||||
"cstddef": "cpp",
|
||||
"cstdint": "cpp",
|
||||
"cstdio": "cpp",
|
||||
"cstdlib": "cpp",
|
||||
"cstring": "cpp",
|
||||
"ctime": "cpp",
|
||||
"cwchar": "cpp",
|
||||
"cwctype": "cpp",
|
||||
"exception": "cpp",
|
||||
"initializer_list": "cpp",
|
||||
"ios": "cpp",
|
||||
"iosfwd": "cpp",
|
||||
"istream": "cpp",
|
||||
"limits": "cpp",
|
||||
"locale": "cpp",
|
||||
"memory": "cpp",
|
||||
"mutex": "cpp",
|
||||
"new": "cpp",
|
||||
"optional": "cpp",
|
||||
"ostream": "cpp",
|
||||
"ratio": "cpp",
|
||||
"sstream": "cpp",
|
||||
"stdexcept": "cpp",
|
||||
"streambuf": "cpp",
|
||||
"string": "cpp",
|
||||
"string_view": "cpp",
|
||||
"system_error": "cpp",
|
||||
"tuple": "cpp",
|
||||
"type_traits": "cpp",
|
||||
"typeinfo": "cpp",
|
||||
"unordered_map": "cpp",
|
||||
"variant": "cpp",
|
||||
"algorithm": "cpp",
|
||||
"iostream": "cpp",
|
||||
"iomanip": "cpp",
|
||||
"numeric": "cpp",
|
||||
"set": "cpp",
|
||||
"__tree": "cpp",
|
||||
"deque": "cpp",
|
||||
"list": "cpp",
|
||||
"map": "cpp",
|
||||
"unordered_set": "cpp",
|
||||
"any": "cpp",
|
||||
"condition_variable": "cpp",
|
||||
"forward_list": "cpp",
|
||||
"fstream": "cpp",
|
||||
"stack": "cpp",
|
||||
"thread": "cpp",
|
||||
"__memory": "cpp",
|
||||
"filesystem": "cpp",
|
||||
"*.toml": "toml",
|
||||
"utility": "cpp",
|
||||
"__verbose_abort": "cpp",
|
||||
"bit": "cpp",
|
||||
"random": "cpp",
|
||||
"*.tcc": "cpp",
|
||||
"functional": "cpp",
|
||||
"iterator": "cpp",
|
||||
"memory_resource": "cpp",
|
||||
"format": "cpp",
|
||||
"valarray": "cpp",
|
||||
"regex": "cpp",
|
||||
"span": "cpp",
|
||||
"cfenv": "cpp",
|
||||
"cinttypes": "cpp",
|
||||
"csetjmp": "cpp",
|
||||
"future": "cpp",
|
||||
"queue": "cpp",
|
||||
"typeindex": "cpp",
|
||||
"shared_mutex": "cpp",
|
||||
"*.ipp": "cpp",
|
||||
"cassert": "cpp",
|
||||
"charconv": "cpp",
|
||||
"source_location": "cpp",
|
||||
"ranges": "cpp"
|
||||
},
|
||||
"cmake.configureOnOpen": false,
|
||||
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"
|
||||
}
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 0.1.0
|
||||
VERSION 0.2.0
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@@ -24,24 +24,44 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
option(MPI_ENABLED "Enable MPI options" ON)
|
||||
|
||||
if (MPI_ENABLED)
|
||||
find_package(MPI REQUIRED)
|
||||
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
|
||||
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
|
||||
endif (MPI_ENABLED)
|
||||
|
||||
# Boost Library
|
||||
set(Boost_USE_STATIC_LIBS OFF)
|
||||
set(Boost_USE_MULTITHREADED ON)
|
||||
set(Boost_USE_STATIC_RUNTIME OFF)
|
||||
find_package(Boost 1.66.0 REQUIRED COMPONENTS python3 numpy3)
|
||||
if(Boost_FOUND)
|
||||
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
|
||||
include_directories(${Boost_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
# Python
|
||||
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
|
||||
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
|
||||
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
|
||||
include(AddGitSubmodule)
|
||||
|
||||
if (CODE_COVERAGE)
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
@@ -55,7 +75,11 @@ endif (ENABLE_CLANG_TIDY)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/argparse")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/openXLSX")
|
||||
|
||||
|
||||
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
|
||||
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
|
||||
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
@@ -63,9 +87,10 @@ add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(src/BayesNet)
|
||||
add_subdirectory(src/Platform)
|
||||
add_subdirectory(src/PyClassifiers)
|
||||
add_subdirectory(sample)
|
||||
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
|
||||
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
|
||||
|
||||
@@ -74,8 +99,7 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
|
||||
add_git_submodule("lib/catch2")
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
|
124
Makefile
124
Makefile
@@ -1,6 +1,26 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: coverage setup help build test
|
||||
.PHONY: coverage setup help build test clean debug release
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
app_targets = b_best b_list b_main b_manage b_grid
|
||||
test_targets = unit_tests_bayesnet unit_tests_platform
|
||||
n_procs = -j 16
|
||||
|
||||
define ClearTests
|
||||
@for t in $(test_targets); do \
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
echo ">>> Cleaning $$t..." ; \
|
||||
rm -f $(f_debug)/tests/$$t ; \
|
||||
fi ; \
|
||||
done
|
||||
@nfiles="$(find . -name "*.gcda" -print0)" ; \
|
||||
if test "${nfiles}" != "" ; then \
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
|
||||
fi ;
|
||||
endef
|
||||
|
||||
|
||||
setup: ## Install dependencies for tests and coverage
|
||||
@if [ "$(shell uname)" = "Darwin" ]; then \
|
||||
@@ -11,59 +31,87 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
fi
|
||||
|
||||
dest ?= ../discretizbench
|
||||
copy: ## Copy binary files to selected folder
|
||||
dest ?= ${HOME}/bin
|
||||
install: ## Copy binary files to bin folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make build
|
||||
make buildr
|
||||
@echo "*******************************************"
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@cp build/src/Platform/main $(dest)
|
||||
@cp build/src/Platform/list $(dest)
|
||||
@cp build/src/Platform/manage $(dest)
|
||||
@echo ">>> Done"
|
||||
@echo "*******************************************"
|
||||
@for item in $(app_targets); do \
|
||||
echo ">>> Copying $$item" ; \
|
||||
cp $(f_release)/src/Platform/$$item $(dest) ; \
|
||||
done
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
@echo ">>> Creating dependency graph diagram of the project...";
|
||||
$(MAKE) debug
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
build: ## Build the main and BayesNetSample
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
|
||||
clean: ## Clean the debug info
|
||||
@echo ">>> Cleaning Debug BayesNet ...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
$(call ClearTests)
|
||||
@echo ">>> Done";
|
||||
|
||||
clang-uml: ## Create uml class and sequence diagrams
|
||||
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
|
||||
cmake --build build -j 32;
|
||||
@echo ">>> Building Debug BayesNet...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@mkdir $(f_debug);
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
@echo ">>> Building Release BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
|
||||
@echo ">>> Building Release BayesNet...";
|
||||
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
|
||||
@mkdir $(f_release);
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||
@echo ">>> Done";
|
||||
|
||||
test: ## Run tests
|
||||
@echo "* Running tests...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@cd build; \
|
||||
cmake --build . --target unit_tests ;
|
||||
@cd build/tests; \
|
||||
./unit_tests;
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet & Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@for t in $(test_targets); do \
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
cd $(f_debug)/tests ; \
|
||||
./$$t $(opt) ; \
|
||||
fi ; \
|
||||
done
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
|
||||
@echo ">>> Running Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
|
||||
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
|
||||
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
|
||||
@echo ">>> Done";
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo "*Building tests...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@cd build; \
|
||||
cmake --build . --target unit_tests ;
|
||||
@cd build/tests; \
|
||||
./unit_tests;
|
||||
gcovr ;
|
||||
@echo ">>> Building tests with coverage...";
|
||||
@$(MAKE) test
|
||||
@cd $(f_debug) ; \
|
||||
gcovr --config ../gcovr.cfg tests ;
|
||||
@echo ">>> Done";
|
||||
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
|
86
README.md
86
README.md
@@ -1,5 +1,91 @@
|
||||
# BayesNet
|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
Bayesian Network Classifier with libtorch from scratch
|
||||
|
||||
## 0. Setup
|
||||
|
||||
Before compiling BayesNet.
|
||||
|
||||
### Miniconda
|
||||
|
||||
To be able to run Python Classifiers such as STree, ODTE, SVC, etc. it is needed to install Miniconda. To do so, download the installer from [Miniconda](https://docs.conda.io/en/latest/miniconda.html) and run it. It is recommended to install it in the home folder.
|
||||
|
||||
In Linux sometimes the library libstdc++ is mistaken from the miniconda installation and produces the next message when running the b_xxxx executables:
|
||||
|
||||
```bash
|
||||
libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by b_xxxx)
|
||||
```
|
||||
|
||||
The solution is to erase the libstdc++ library from the miniconda installation:
|
||||
|
||||
### MPI
|
||||
|
||||
In Linux just install openmpi & openmpi-devel packages. Only if cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
|
||||
|
||||
```bash
|
||||
export MPI_HOME="/usr/lib64/openmpi"
|
||||
```
|
||||
|
||||
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
|
||||
|
||||
```bash
|
||||
vi /opt/homebrew/bin/mpicx
|
||||
```
|
||||
|
||||
### boost library
|
||||
|
||||
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
||||
|
||||
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
|
||||
|
||||
```bash
|
||||
sudo dnf install boost-devel
|
||||
```
|
||||
|
||||
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
|
||||
|
||||
```bash
|
||||
export BOOST_ROOT=/path/to/library/
|
||||
```
|
||||
|
||||
In some cases, it is needed to build the library, to do so:
|
||||
|
||||
```bash
|
||||
cd /path/to/library
|
||||
mkdir own
|
||||
./bootstrap.sh --prefix=/path/to/library/own
|
||||
./b2 install
|
||||
export BOOST_ROOT=/path/to/library/own/
|
||||
```
|
||||
|
||||
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
|
||||
|
||||
### libxlswriter
|
||||
|
||||
```bash
|
||||
cd lib/libxlsxwriter
|
||||
make
|
||||
make install DESTDIR=/home/rmontanana/Code PREFIX=
|
||||
```
|
||||
|
||||
Environment variable has to be set:
|
||||
|
||||
```bash
|
||||
export LD_LIBRARY_PATH=/usr/local/lib
|
||||
```
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
make release
|
||||
```
|
||||
|
||||
### Debug & Tests
|
||||
|
||||
```bash
|
||||
make debug
|
||||
```
|
||||
|
||||
## 1. Introduction
|
||||
|
12
TAN_iris.dot
12
TAN_iris.dot
@@ -1,12 +0,0 @@
|
||||
digraph BayesNet {
|
||||
label=<BayesNet >
|
||||
fontsize=30
|
||||
fontcolor=blue
|
||||
labelloc=t
|
||||
layout=circo
|
||||
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
|
||||
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
|
||||
petallength -> sepallength petalwidth [shape=circle]
|
||||
sepallength [shape=circle]
|
||||
sepallength -> sepalwidth sepalwidth [shape=circle]
|
||||
sepalwidth -> petalwidth }
|
@@ -1 +0,0 @@
|
||||
null
|
BIN
diagrams/BayesNet.pdf
Executable file
BIN
diagrams/BayesNet.pdf
Executable file
Binary file not shown.
162
grid_stree.json
Normal file
162
grid_stree.json
Normal file
@@ -0,0 +1,162 @@
|
||||
{
|
||||
"balance-scale": {
|
||||
"C": 10000.0,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"balloons": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc-diag": {
|
||||
"C": 0.2,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc-prog": {
|
||||
"C": 0.2,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc": {},
|
||||
"breast-cancer": {},
|
||||
"cardiotocography-10clases": {},
|
||||
"cardiotocography-3clases": {},
|
||||
"conn-bench-sonar-mines-rocks": {},
|
||||
"cylinder-bands": {},
|
||||
"dermatology": {
|
||||
"C": 55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"echocardiogram": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"fertility": {
|
||||
"C": 0.05,
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"haberman-survival": {},
|
||||
"heart-hungarian": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"hepatitis": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"ilpd-indian-liver": {},
|
||||
"ionosphere": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"iris": {},
|
||||
"led-display": {},
|
||||
"libras": {
|
||||
"C": 0.08,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"low-res-spect": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"lymphography": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"mammographic": {},
|
||||
"molec-biol-promoter": {
|
||||
"C": 0.05,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"musk-1": {
|
||||
"C": 0.05,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"oocytes_merluccius_nucleus_4d": {
|
||||
"C": 8.25,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly"
|
||||
},
|
||||
"oocytes_merluccius_states_2f": {},
|
||||
"oocytes_trisopterus_nucleus_2f": {},
|
||||
"oocytes_trisopterus_states_5b": {
|
||||
"C": 0.11,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"parkinsons": {},
|
||||
"pima": {},
|
||||
"pittsburg-bridges-MATERIAL": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"pittsburg-bridges-REL-L": {},
|
||||
"pittsburg-bridges-SPAN": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"pittsburg-bridges-T-OR-D": {},
|
||||
"planning": {
|
||||
"C": 7,
|
||||
"gamma": 10.0,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"post-operative": {
|
||||
"C": 55,
|
||||
"degree": 5,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"seeds": {
|
||||
"C": 10000.0,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-australian-credit": {
|
||||
"C": 0.05,
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-german-credit": {},
|
||||
"statlog-heart": {},
|
||||
"statlog-image": {
|
||||
"C": 7,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-vehicle": {},
|
||||
"synthetic-control": {
|
||||
"C": 0.55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"tic-tac-toe": {
|
||||
"C": 0.2,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"vertebral-column-2clases": {},
|
||||
"wine": {
|
||||
"C": 0.55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"zoo": {
|
||||
"C": 0.1,
|
||||
"max_iter": 10000
|
||||
}
|
||||
}
|
@@ -4,11 +4,9 @@
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
vector<string> ArffFiles::getLines() const
|
||||
std::vector<std::string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
@@ -18,48 +16,48 @@ unsigned long int ArffFiles::getSize() const
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
vector<pair<string, string>> ArffFiles::getAttributes() const
|
||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassName() const
|
||||
std::string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassType() const
|
||||
std::string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
vector<vector<float>>& ArffFiles::getX()
|
||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
vector<int>& ArffFiles::getY()
|
||||
std::vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::loadCommon(string fileName)
|
||||
void ArffFiles::loadCommon(std::string fileName)
|
||||
{
|
||||
ifstream file(fileName);
|
||||
std::ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw invalid_argument("Unable to open file");
|
||||
throw std::invalid_argument("Unable to open file");
|
||||
}
|
||||
string line;
|
||||
string keyword;
|
||||
string attribute;
|
||||
string type;
|
||||
string type_w;
|
||||
std::string line;
|
||||
std::string keyword;
|
||||
std::string attribute;
|
||||
std::string type;
|
||||
std::string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
||||
stringstream ss(line);
|
||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||
std::stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
@@ -74,35 +72,35 @@ void ArffFiles::loadCommon(string fileName)
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw invalid_argument("No attributes found");
|
||||
throw std::invalid_argument("No attributes found");
|
||||
}
|
||||
|
||||
void ArffFiles::load(const string& fileName, bool classLast)
|
||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
if (classLast) {
|
||||
className = get<0>(attributes.back());
|
||||
classType = get<1>(attributes.back());
|
||||
className = std::get<0>(attributes.back());
|
||||
classType = std::get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
labelIndex = static_cast<int>(attributes.size());
|
||||
} else {
|
||||
className = get<0>(attributes.front());
|
||||
classType = get<1>(attributes.front());
|
||||
className = std::get<0>(attributes.front());
|
||||
classType = std::get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
labelIndex = 0;
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
void ArffFiles::load(const string& fileName, const string& name)
|
||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
bool found = false;
|
||||
for (int i = 0; i < attributes.size(); ++i) {
|
||||
if (attributes[i].first == name) {
|
||||
className = get<0>(attributes[i]);
|
||||
classType = get<1>(attributes[i]);
|
||||
className = std::get<0>(attributes[i]);
|
||||
classType = std::get<1>(attributes[i]);
|
||||
attributes.erase(attributes.begin() + i);
|
||||
labelIndex = i;
|
||||
found = true;
|
||||
@@ -110,19 +108,19 @@ void ArffFiles::load(const string& fileName, const string& name)
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
throw invalid_argument("Class name not found");
|
||||
throw std::invalid_argument("Class name not found");
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(int labelIndex)
|
||||
{
|
||||
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
|
||||
auto yy = vector<string>(lines.size(), "");
|
||||
auto removeLines = vector<int>(); // Lines with missing values
|
||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||
auto yy = std::vector<std::string>(lines.size(), "");
|
||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
stringstream ss(lines[i]);
|
||||
string value;
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
@@ -146,21 +144,21 @@ void ArffFiles::generateDataset(int labelIndex)
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
string ArffFiles::trim(const string& source)
|
||||
std::string ArffFiles::trim(const std::string& source)
|
||||
{
|
||||
string s(source);
|
||||
std::string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const string& label : labels_t) {
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
|
@@ -4,31 +4,29 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
vector<string> lines;
|
||||
vector<pair<string, string>> attributes;
|
||||
string className;
|
||||
string classType;
|
||||
vector<vector<float>> X;
|
||||
vector<int> y;
|
||||
std::vector<std::string> lines;
|
||||
std::vector<std::pair<std::string, std::string>> attributes;
|
||||
std::string className;
|
||||
std::string classType;
|
||||
std::vector<std::vector<float>> X;
|
||||
std::vector<int> y;
|
||||
void generateDataset(int);
|
||||
void loadCommon(string);
|
||||
void loadCommon(std::string);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const string&, bool = true);
|
||||
void load(const string&, const string&);
|
||||
vector<string> getLines() const;
|
||||
void load(const std::string&, bool = true);
|
||||
void load(const std::string&, const std::string&);
|
||||
std::vector<std::string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
string getClassName() const;
|
||||
string getClassType() const;
|
||||
static string trim(const string&);
|
||||
vector<vector<float>>& getX();
|
||||
vector<int>& getY();
|
||||
vector<pair<string, string>> getAttributes() const;
|
||||
static vector<int> factorize(const vector<string>& labels_t);
|
||||
std::string getClassName() const;
|
||||
std::string getClassType() const;
|
||||
static std::string trim(const std::string&);
|
||||
std::vector<std::vector<float>>& getX();
|
||||
std::vector<int>& getY();
|
||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
Submodule lib/argparse updated: b0930ab028...69dabd88a8
Submodule lib/catch2 updated: 4acc51828f...766541d12d
2
lib/json
2
lib/json
Submodule lib/json updated: 5d2754306d...edffad036d
1
lib/libxlsxwriter
Submodule
1
lib/libxlsxwriter
Submodule
Submodule lib/libxlsxwriter added at 29355a0887
Submodule lib/openXLSX deleted from b80da42d14
@@ -1,8 +1,10 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
102
sample/sample.cc
102
sample/sample.cc
@@ -10,16 +10,14 @@
|
||||
#include "Folding.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include <fstream>
|
||||
|
||||
const std::string PATH = "../../data/";
|
||||
|
||||
using namespace std;
|
||||
|
||||
const string PATH = "../../data/";
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
|
||||
{
|
||||
vector<mdlp::labels_t>Xd;
|
||||
map<string, int> maxes;
|
||||
std::vector<mdlp::labels_t>Xd;
|
||||
map<std::string, int> maxes;
|
||||
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
@@ -40,12 +38,12 @@ bool file_exists(const std::string& name)
|
||||
return false;
|
||||
}
|
||||
}
|
||||
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
|
||||
pair<std::vector<std::vector<int>>, std::vector<int>> extract_indices(std::vector<int> indices, std::vector<std::vector<int>> X, std::vector<int> y)
|
||||
{
|
||||
vector<vector<int>> Xr; // nxm
|
||||
vector<int> yr;
|
||||
std::vector<std::vector<int>> Xr; // nxm
|
||||
std::vector<int> yr;
|
||||
for (int col = 0; col < X.size(); ++col) {
|
||||
Xr.push_back(vector<int>());
|
||||
Xr.push_back(std::vector<int>());
|
||||
}
|
||||
for (auto index : indices) {
|
||||
for (int col = 0; col < X.size(); ++col) {
|
||||
@@ -58,7 +56,7 @@ pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vect
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<string, bool> datasets = {
|
||||
map<std::string, bool> datasets = {
|
||||
{"diabetes", true},
|
||||
{"ecoli", true},
|
||||
{"glass", true},
|
||||
@@ -68,9 +66,9 @@ int main(int argc, char** argv)
|
||||
{"liver-disorders", true},
|
||||
{"mfeat-factors", true},
|
||||
};
|
||||
auto valid_datasets = vector<string>();
|
||||
auto valid_datasets = std::vector<std::string>();
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
[](const pair<string, bool>& pair) { return pair.first; });
|
||||
[](const pair<std::string, bool>& pair) { return pair.first; });
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
@@ -83,23 +81,23 @@ int main(int argc, char** argv)
|
||||
);
|
||||
program.add_argument("-p", "--path")
|
||||
.help(" folder where the data files are located, default")
|
||||
.default_value(string{ PATH }
|
||||
.default_value(std::string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
@@ -115,13 +113,13 @@ int main(int argc, char** argv)
|
||||
}});
|
||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
bool class_last, stratified, tensors, dump_cpt;
|
||||
string model_name, file_name, path, complete_file_name;
|
||||
std::string model_name, file_name, path, complete_file_name;
|
||||
int nFolds, seed;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<string>("dataset");
|
||||
path = program.get<string>("path");
|
||||
model_name = program.get<string>("model");
|
||||
file_name = program.get<std::string>("dataset");
|
||||
path = program.get<std::string>("path");
|
||||
model_name = program.get<std::string>("model");
|
||||
complete_file_name = path + file_name + ".arff";
|
||||
stratified = program.get<bool>("stratified");
|
||||
tensors = program.get<bool>("tensors");
|
||||
@@ -134,7 +132,7 @@ int main(int argc, char** argv)
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << err.what() << std::endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
@@ -145,64 +143,64 @@ int main(int argc, char** argv)
|
||||
auto handler = ArffFiles();
|
||||
handler.load(complete_file_name, class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
std::vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
std::vector<std::string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
[](const pair<string, string>& item) { return item.first; });
|
||||
[](const pair<std::string, std::string>& item) { return item.first; });
|
||||
// Discretize Dataset
|
||||
auto [Xd, maxes] = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
map<std::string, std::vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
states[feature] = std::vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
states[className] = std::vector<int>(maxes[className]);
|
||||
auto clf = platform::Models::instance()->create(model_name);
|
||||
clf->fit(Xd, y, features, className, states);
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
std::cout << "--- CPT Tables ---" << std::endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
auto lines = clf->show();
|
||||
for (auto line : lines) {
|
||||
cout << line << endl;
|
||||
std::cout << line << std::endl;
|
||||
}
|
||||
cout << "--- Topological Order ---" << endl;
|
||||
std::cout << "--- Topological Order ---" << std::endl;
|
||||
auto order = clf->topological_order();
|
||||
for (auto name : order) {
|
||||
cout << name << ", ";
|
||||
std::cout << name << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
std::cout << "end." << std::endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
cout << "Score: " << score << endl;
|
||||
std::cout << "Score: " << score << std::endl;
|
||||
auto graph = clf->graph();
|
||||
auto dot_file = model_name + "_" + file_name;
|
||||
ofstream file(dot_file + ".dot");
|
||||
file << graph;
|
||||
file.close();
|
||||
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||
string stratified_string = stratified ? " Stratified" : "";
|
||||
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||
cout << "==========================================" << endl;
|
||||
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||
std::string stratified_string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||
std::cout << "==========================================" << std::endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
}
|
||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
Fold* fold;
|
||||
platform::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nFolds, y, seed);
|
||||
fold = new platform::StratifiedKFold(nFolds, y, seed);
|
||||
else
|
||||
fold = new KFold(nFolds, y.size(), seed);
|
||||
fold = new platform::KFold(nFolds, y.size(), seed);
|
||||
for (auto i = 0; i < nFolds; ++i) {
|
||||
auto [train, test] = fold->getFold(i);
|
||||
cout << "Fold: " << i + 1 << endl;
|
||||
std::cout << "Fold: " << i + 1 << std::endl;
|
||||
if (tensors) {
|
||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
auto ttest = torch::tensor(test, torch::kInt64);
|
||||
@@ -222,16 +220,16 @@ int main(int argc, char** argv)
|
||||
score_test = clf->score(Xtest, ytest);
|
||||
}
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
std::cout << "--- CPT Tables ---" << std::endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
total_score_train += score_train;
|
||||
total_score += score_test;
|
||||
cout << "Score Train: " << score_train << endl;
|
||||
cout << "Score Test : " << score_test << endl;
|
||||
cout << "-------------------------------------------------------------------------------" << endl;
|
||||
std::cout << "Score Train: " << score_train << std::endl;
|
||||
std::cout << "Score Test : " << score_test << std::endl;
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
cout << "**********************************************************************************" << endl;
|
||||
cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||
std::cout << "**********************************************************************************" << std::endl;
|
||||
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
|
||||
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
|
||||
}
|
@@ -9,9 +9,9 @@ namespace bayesnet {
|
||||
models.push_back(std::make_unique<SPODE>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = vector<double>(n_models, 1.0);
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
vector<string> AODE::graph(const string& title) const
|
||||
std::vector<std::string> AODE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
|
@@ -9,8 +9,7 @@ namespace bayesnet {
|
||||
public:
|
||||
AODE();
|
||||
virtual ~AODE() {};
|
||||
vector<string> graph(const string& title = "AODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
std::vector<std::string> graph(const std::string& title = "AODE") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,17 +1,15 @@
|
||||
#include "AODELd.h"
|
||||
#include "Models.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
@@ -26,6 +24,7 @@ namespace bayesnet {
|
||||
models.push_back(std::make_unique<SPODELd>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
@@ -33,7 +32,7 @@ namespace bayesnet {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
}
|
||||
}
|
||||
vector<string> AODELd::graph(const string& name) const
|
||||
std::vector<std::string> AODELd::graph(const std::string& name) const
|
||||
{
|
||||
return Ensemble::graph(name);
|
||||
}
|
||||
|
@@ -5,18 +5,16 @@
|
||||
#include "SPODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class AODELd : public Ensemble, public Proposal {
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODELd();
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
|
||||
virtual ~AODELd() = default;
|
||||
vector<string> graph(const string& name = "AODE") const override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !AODELD_H
|
@@ -4,31 +4,34 @@
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
public:
|
||||
// X is nxm vector, y is nx1 vector
|
||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||
status_t virtual getStatus() const = 0;
|
||||
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
|
||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
int virtual getNumberOfNodes()const = 0;
|
||||
int virtual getNumberOfEdges()const = 0;
|
||||
int virtual getNumberOfStates() const = 0;
|
||||
vector<string> virtual show() const = 0;
|
||||
vector<string> virtual graph(const string& title = "") const = 0;
|
||||
const string inline getVersion() const { return "0.1.0"; };
|
||||
vector<string> virtual topological_order() = 0;
|
||||
std::vector<std::string> virtual show() const = 0;
|
||||
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
|
||||
virtual std::string getVersion() = 0;
|
||||
std::vector<std::string> virtual topological_order() = 0;
|
||||
void virtual dump_cpt()const = 0;
|
||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,16 @@
|
||||
#include "BayesMetrics.h"
|
||||
#include "Mst.h"
|
||||
namespace bayesnet {
|
||||
//samples is nxm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
}
|
||||
//samples is nxm vector used to fit the model
|
||||
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
|
||||
//samples is nxm std::vector used to fit the model
|
||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
@@ -21,7 +21,7 @@ namespace bayesnet {
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = samples.size(0) - 1;
|
||||
@@ -56,28 +56,17 @@ namespace bayesnet {
|
||||
}
|
||||
return featuresKBest;
|
||||
}
|
||||
vector<double> Metrics::getScoresKBest() const
|
||||
std::vector<double> Metrics::getScoresKBest() const
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
string temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = vector<double>();
|
||||
auto source = vector<string>(features);
|
||||
auto result = std::vector<double>();
|
||||
auto source = std::vector<std::string>(features);
|
||||
source.push_back(className);
|
||||
auto combinations = doCombinations(source);
|
||||
double totalWeight = weights.sum().item<double>();
|
||||
// Compute class prior
|
||||
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
@@ -111,7 +100,7 @@ namespace bayesnet {
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
|
||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
@@ -132,7 +121,7 @@ namespace bayesnet {
|
||||
{
|
||||
int numSamples = firstFeature.sizes()[0];
|
||||
torch::Tensor featureCounts = secondFeature.bincount(weights);
|
||||
unordered_map<int, unordered_map<int, double>> jointCounts;
|
||||
std::unordered_map<int, std::unordered_map<int, double>> jointCounts;
|
||||
double totalWeight = 0;
|
||||
for (auto i = 0; i < numSamples; i++) {
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
|
||||
@@ -166,7 +155,7 @@ namespace bayesnet {
|
||||
and the indices of the weights as nodes of this square matrix using
|
||||
Kruskal algorithm
|
||||
*/
|
||||
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
|
||||
std::vector<std::pair<int, int>> Metrics::maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root)
|
||||
{
|
||||
auto mst = MST(features, weights, root);
|
||||
return mst.maximumSpanningTree();
|
||||
|
@@ -4,29 +4,46 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class Metrics {
|
||||
private:
|
||||
Tensor samples; // nxm tensor used to fit the model
|
||||
vector<string> features;
|
||||
string className;
|
||||
int classNumStates = 0;
|
||||
vector<double> scoresKBest;
|
||||
vector<int> featuresKBest; // sorted indices of the features
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
std::vector<double> scoresKBest;
|
||||
std::vector<int> featuresKBest; // sorted indices of the features
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
protected:
|
||||
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
||||
std::string className;
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
std::vector<std::string> features;
|
||||
template <class T>
|
||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||
{
|
||||
std::vector<std::pair<T, T>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
T temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
template <class T>
|
||||
T pop_first(std::vector<T>& v)
|
||||
{
|
||||
T temp = v[0];
|
||||
v.erase(v.begin());
|
||||
return temp;
|
||||
}
|
||||
public:
|
||||
Metrics() = default;
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
|
||||
vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
|
||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
|
||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,90 +1,208 @@
|
||||
#include "BoostAODE.h"
|
||||
#include <set>
|
||||
#include "BayesMetrics.h"
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include "BoostAODE.h"
|
||||
#include "Colors.h"
|
||||
#include "Folding.h"
|
||||
#include "Paths.h"
|
||||
#include "CFS.h"
|
||||
#include "FCBF.h"
|
||||
#include "IWSS.h"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
BoostAODE::BoostAODE() : Ensemble()
|
||||
{
|
||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
|
||||
|
||||
}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = platform::StratifiedKFold(5, y_, 271);
|
||||
dataset_ = torch::clone(dataset);
|
||||
// save input dataset
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
hyperparameters.erase("repeatSparent");
|
||||
}
|
||||
if (hyperparameters.contains("maxModels")) {
|
||||
maxModels = hyperparameters["maxModels"];
|
||||
hyperparameters.erase("maxModels");
|
||||
}
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
hyperparameters.erase("ascending");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("tolerance")) {
|
||||
tolerance = hyperparameters["tolerance"];
|
||||
hyperparameters.erase("tolerance");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = { "IWSS", "FCBF", "CFS" };
|
||||
selectFeatures = true;
|
||||
algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
std::unordered_set<int> BoostAODE::initializeModels()
|
||||
{
|
||||
std::unordered_set<int> featuresUsed;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
int maxFeatures = 0;
|
||||
if (algorithm == "CFS") {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (algorithm == "IWSS") {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (algorithm == "FCBF") {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto cfsFeatures = featureSelector->getFeatures();
|
||||
for (const int& feature : cfsFeatures) {
|
||||
// std::cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << std::endl;
|
||||
featuresUsed.insert(feature);
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0);
|
||||
n_models++;
|
||||
}
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
std::unordered_set<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
}
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool exitCondition = false;
|
||||
unordered_set<int> featuresUsed;
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double delta = 1.0;
|
||||
double threshold = 1e-4;
|
||||
int count = 0; // number of times the accuracy is lower than the threshold
|
||||
fitted = true; // to enable predict
|
||||
// Step 0: Set the finish condition
|
||||
// if not repeatSparent a finish condition is run out of features
|
||||
// n_models == maxModels
|
||||
int numClasses = states[className].size();
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
while (!exitCondition) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
unique_ptr<Classifier> model;
|
||||
std::unique_ptr<Classifier> model;
|
||||
auto feature = featureSelection[0];
|
||||
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
||||
bool found = false;
|
||||
for (auto feat : featureSelection) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
bool used = true;
|
||||
for (const auto& feat : featureSelection) {
|
||||
if (std::find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
continue;
|
||||
}
|
||||
found = true;
|
||||
used = false;
|
||||
feature = feat;
|
||||
break;
|
||||
}
|
||||
if (!found) {
|
||||
if (used) {
|
||||
exitCondition = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
featuresUsed.insert(feature);
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
n_models++;
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_);
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_wrong = ypred != y_train;
|
||||
auto mask_right = ypred == y_train;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
exitCondition = n_models == maxModels && repeatSparent;
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
if (convergence) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
delta = accuracy - priorAccuracy;
|
||||
}
|
||||
if (delta < threshold) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
cout << "Warning: BoostAODE did not use all the features" << endl;
|
||||
status = WARNING;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
}
|
||||
vector<string> BoostAODE::graph(const string& title) const
|
||||
std::vector<std::string> BoostAODE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
|
@@ -1,21 +1,33 @@
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include "Ensemble.h"
|
||||
#include <map>
|
||||
#include "SPODE.h"
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
public:
|
||||
BoostAODE();
|
||||
virtual ~BoostAODE() {};
|
||||
vector<string> graph(const string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
bool repeatSparent=false;
|
||||
int maxModels=0;
|
||||
bool ascending=false; //Process KBest features ascending or descending order
|
||||
torch::Tensor dataset_;
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
std::unordered_set<int> initializeModels();
|
||||
// Hyperparameters
|
||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||
int maxModels = 0;
|
||||
int tolerance = 0;
|
||||
bool ascending = false; //Process KBest features ascending or descending order
|
||||
bool convergence = false; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string algorithm = ""; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
72
src/BayesNet/CFS.cc
Normal file
72
src/BayesNet/CFS.cc
Normal file
@@ -0,0 +1,72 @@
|
||||
#include "CFS.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
void CFS::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto continueCondition = true;
|
||||
auto feature = featureOrder[0];
|
||||
selectedFeatures.push_back(feature);
|
||||
selectedScores.push_back(suLabels[feature]);
|
||||
selectedFeatures.erase(selectedFeatures.begin());
|
||||
while (continueCondition) {
|
||||
double merit = std::numeric_limits<double>::lowest();
|
||||
int bestFeature = -1;
|
||||
for (auto feature : featureOrder) {
|
||||
selectedFeatures.push_back(feature);
|
||||
// Compute merit with selectedFeatures
|
||||
auto meritNew = computeMeritCFS();
|
||||
if (meritNew > merit) {
|
||||
merit = meritNew;
|
||||
bestFeature = feature;
|
||||
}
|
||||
selectedFeatures.pop_back();
|
||||
}
|
||||
if (bestFeature == -1) {
|
||||
// meritNew has to be nan due to constant features
|
||||
break;
|
||||
}
|
||||
selectedFeatures.push_back(bestFeature);
|
||||
selectedScores.push_back(merit);
|
||||
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
|
||||
continueCondition = computeContinueCondition(featureOrder);
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
bool CFS::computeContinueCondition(const std::vector<int>& featureOrder)
|
||||
{
|
||||
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
|
||||
return false;
|
||||
}
|
||||
if (selectedScores.size() >= 5) {
|
||||
/*
|
||||
"To prevent the best first search from exploring the entire
|
||||
feature subset search space, a stopping criterion is imposed.
|
||||
The search will terminate if five consecutive fully expanded
|
||||
subsets show no improvement over the current best subset."
|
||||
as stated in Mark A.Hall Thesis
|
||||
*/
|
||||
double item_ant = std::numeric_limits<double>::lowest();
|
||||
int num = 0;
|
||||
std::vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
|
||||
for (auto item : lastFive) {
|
||||
if (item_ant == std::numeric_limits<double>::lowest()) {
|
||||
item_ant = item;
|
||||
}
|
||||
if (item > item_ant) {
|
||||
break;
|
||||
} else {
|
||||
num++;
|
||||
item_ant = item;
|
||||
}
|
||||
}
|
||||
if (num == 5) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
20
src/BayesNet/CFS.h
Normal file
20
src/BayesNet/CFS.h
Normal file
@@ -0,0 +1,20 @@
|
||||
#ifndef CFS_H
|
||||
#define CFS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class CFS : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
CFS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
|
||||
{
|
||||
}
|
||||
virtual ~CFS() {};
|
||||
void fit() override;
|
||||
private:
|
||||
bool computeContinueCondition(const std::vector<int>& featureOrder);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,7 +3,10 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
@@ -2,10 +2,8 @@
|
||||
#include "bayesnetUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@@ -13,7 +11,7 @@ namespace bayesnet {
|
||||
m = dataset.size(1);
|
||||
n = dataset.size(0) - 1;
|
||||
checkFitParameters();
|
||||
auto n_classes = states[className].size();
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel(weights);
|
||||
@@ -21,7 +19,7 @@ namespace bayesnet {
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
void Classifier::buildDataset(Tensor& ytmp)
|
||||
void Classifier::buildDataset(torch::Tensor& ytmp)
|
||||
{
|
||||
try {
|
||||
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||
@@ -29,8 +27,8 @@ namespace bayesnet {
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << e.what() << '\n';
|
||||
cout << "X dimensions: " << dataset.sizes() << "\n";
|
||||
cout << "y dimensions: " << ytmp.sizes() << "\n";
|
||||
std::cout << "X dimensions: " << dataset.sizes() << "\n";
|
||||
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@@ -39,7 +37,7 @@ namespace bayesnet {
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
@@ -47,79 +45,82 @@ namespace bayesnet {
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
|
||||
dataset.index_put_({ i, "..." }, torch::tensor(X[i], torch::kInt32));
|
||||
}
|
||||
auto ytmp = torch::tensor(y, kInt32);
|
||||
auto ytmp = torch::tensor(y, torch::kInt32);
|
||||
buildDataset(ytmp);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
if (torch::is_floating_point(dataset)) {
|
||||
throw std::invalid_argument("dataset (X, y) must be of type Integer");
|
||||
}
|
||||
if (n != features.size()) {
|
||||
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
|
||||
}
|
||||
if (states.find(className) == states.end()) {
|
||||
throw invalid_argument("className not found in states");
|
||||
throw std::invalid_argument("className not found in states");
|
||||
}
|
||||
for (auto feature : features) {
|
||||
if (states.find(feature) == states.end()) {
|
||||
throw invalid_argument("feature [" + feature + "] not found in states");
|
||||
throw std::invalid_argument("feature [" + feature + "] not found in states");
|
||||
}
|
||||
}
|
||||
}
|
||||
Tensor Classifier::predict(Tensor& X)
|
||||
torch::Tensor Classifier::predict(torch::Tensor& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
return model.predict(X);
|
||||
}
|
||||
vector<int> Classifier::predict(vector<vector<int>>& X)
|
||||
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
auto m_ = X[0].size();
|
||||
auto n_ = X.size();
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
||||
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
auto yp = model.predict(Xd);
|
||||
return yp;
|
||||
}
|
||||
float Classifier::score(Tensor& X, Tensor& y)
|
||||
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
Tensor y_pred = predict(X);
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
|
||||
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Classifier has not been fitted");
|
||||
throw std::logic_error("Classifier has not been fitted");
|
||||
}
|
||||
return model.score(X, y);
|
||||
}
|
||||
vector<string> Classifier::show() const
|
||||
std::vector<std::string> Classifier::show() const
|
||||
{
|
||||
return model.show();
|
||||
}
|
||||
@@ -134,7 +135,7 @@ namespace bayesnet {
|
||||
int Classifier::getNumberOfNodes() const
|
||||
{
|
||||
// Features does not include class
|
||||
return fitted ? model.getFeatures().size() + 1 : 0;
|
||||
return fitted ? model.getFeatures().size() : 0;
|
||||
}
|
||||
int Classifier::getNumberOfEdges() const
|
||||
{
|
||||
@@ -144,7 +145,7 @@ namespace bayesnet {
|
||||
{
|
||||
return fitted ? model.getStates() : 0;
|
||||
}
|
||||
vector<string> Classifier::topological_order()
|
||||
std::vector<std::string> Classifier::topological_order()
|
||||
{
|
||||
return model.topological_sort();
|
||||
}
|
||||
@@ -152,12 +153,8 @@ namespace bayesnet {
|
||||
{
|
||||
model.dump_cpt();
|
||||
}
|
||||
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
|
||||
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
for (const auto& item : hyperparameters.items()) {
|
||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
||||
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
||||
}
|
||||
}
|
||||
//For classifiers that don't have hyperparameters
|
||||
}
|
||||
}
|
@@ -4,45 +4,46 @@
|
||||
#include "BaseClassifier.h"
|
||||
#include "Network.h"
|
||||
#include "BayesMetrics.h"
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
namespace bayesnet {
|
||||
class Classifier : public BaseClassifier {
|
||||
private:
|
||||
void buildDataset(torch::Tensor& y);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
protected:
|
||||
bool fitted;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Network model;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
std::vector<std::string> features;
|
||||
std::string className;
|
||||
std::map<std::string, std::vector<int>> states;
|
||||
torch::Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
|
||||
void buildDataset(torch::Tensor& y);
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
vector<string> show() const override;
|
||||
vector<string> topological_order() override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
status_t getStatus() const override { return status; }
|
||||
std::string getVersion() override { return "0.2.0"; };
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
std::vector<std::string> show() const override;
|
||||
std::vector<std::string> topological_order() override;
|
||||
void dump_cpt() const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -1,26 +1,29 @@
|
||||
#include "Ensemble.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble() : Classifier(Network()) {}
|
||||
Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
|
||||
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with vectors
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
}
|
||||
}
|
||||
vector<int> Ensemble::voting(Tensor& y_pred)
|
||||
std::vector<int> Ensemble::voting(torch::Tensor& y_pred)
|
||||
{
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
vector<int> y_pred_final;
|
||||
std::vector<int> y_pred_final;
|
||||
int numClasses = states.at(className).size();
|
||||
// y_pred is m x n_models with the prediction of every model for each sample
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<double> votes(y_pred.size(1), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels[j];
|
||||
// votes store in each index (value of class) the significance added by each model
|
||||
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
std::vector<double> votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
@@ -28,19 +31,18 @@ namespace bayesnet {
|
||||
}
|
||||
return y_pred_final;
|
||||
}
|
||||
Tensor Ensemble::predict(Tensor& X)
|
||||
torch::Tensor Ensemble::predict(torch::Tensor& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||
//Create a threadpool
|
||||
auto threads{ vector<thread>() };
|
||||
mutex mtx;
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(thread([&, i]() {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
lock_guard<mutex> lock(mtx);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
@@ -49,27 +51,27 @@ namespace bayesnet {
|
||||
}
|
||||
return torch::tensor(voting(y_pred));
|
||||
}
|
||||
vector<int> Ensemble::predict(vector<vector<int>>& X)
|
||||
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
long m_ = X[0].size();
|
||||
long n_ = X.size();
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
||||
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ m_, n_models }, kInt32);
|
||||
torch::Tensor y_pred = torch::zeros({ m_, n_models }, torch::kInt32);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt32));
|
||||
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), torch::kInt32));
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
float Ensemble::score(Tensor& X, Tensor& y)
|
||||
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
@@ -80,10 +82,10 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size(0);
|
||||
}
|
||||
float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
|
||||
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
throw std::logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
@@ -94,20 +96,20 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
vector<string> Ensemble::show() const
|
||||
std::vector<std::string> Ensemble::show() const
|
||||
{
|
||||
auto result = vector<string>();
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->show();
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
vector<string> Ensemble::graph(const string& title) const
|
||||
std::vector<std::string> Ensemble::graph(const std::string& title) const
|
||||
{
|
||||
auto result = vector<string>();
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->graph(title + "_" + to_string(i));
|
||||
auto res = models[i]->graph(title + "_" + std::to_string(i));
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
|
@@ -4,34 +4,32 @@
|
||||
#include "Classifier.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "bayesnetUtils.h"
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
namespace bayesnet {
|
||||
class Ensemble : public Classifier {
|
||||
private:
|
||||
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
Ensemble& build(std::vector<std::string>& features, std::string className, std::map<std::string, std::vector<int>>& states);
|
||||
protected:
|
||||
unsigned n_models;
|
||||
vector<unique_ptr<Classifier>> models;
|
||||
vector<double> significanceModels;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
vector<int> voting(Tensor& y_pred);
|
||||
std::vector<int> voting(torch::Tensor& y_pred);
|
||||
public:
|
||||
Ensemble();
|
||||
virtual ~Ensemble() = default;
|
||||
Tensor predict(Tensor& X) override;
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
vector<string> show() const override;
|
||||
vector<string> graph(const string& title) const override;
|
||||
vector<string> topological_order() override
|
||||
std::vector<std::string> show() const override;
|
||||
std::vector<std::string> graph(const std::string& title) const override;
|
||||
std::vector<std::string> topological_order() override
|
||||
{
|
||||
return vector<string>();
|
||||
return std::vector<std::string>();
|
||||
}
|
||||
void dump_cpt() const override
|
||||
{
|
||||
|
44
src/BayesNet/FCBF.cc
Normal file
44
src/BayesNet/FCBF.cc
Normal file
@@ -0,0 +1,44 @@
|
||||
#include "bayesnetUtils.h"
|
||||
#include "FCBF.h"
|
||||
namespace bayesnet {
|
||||
|
||||
FCBF::FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||
{
|
||||
if (threshold < 1e-7) {
|
||||
throw std::invalid_argument("Threshold cannot be less than 1e-7");
|
||||
}
|
||||
}
|
||||
void FCBF::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto featureOrderCopy = featureOrder;
|
||||
for (const auto& feature : featureOrder) {
|
||||
// Don't self compare
|
||||
featureOrderCopy.erase(featureOrderCopy.begin());
|
||||
if (suLabels.at(feature) == 0.0) {
|
||||
// The feature has been removed from the list
|
||||
continue;
|
||||
}
|
||||
if (suLabels.at(feature) < threshold) {
|
||||
break;
|
||||
}
|
||||
// Remove redundant features
|
||||
for (const auto& featureCopy : featureOrderCopy) {
|
||||
double value = computeSuFeatures(feature, featureCopy);
|
||||
if (value >= suLabels.at(featureCopy)) {
|
||||
// Remove feature from list
|
||||
suLabels[featureCopy] = 0.0;
|
||||
}
|
||||
}
|
||||
selectedFeatures.push_back(feature);
|
||||
selectedScores.push_back(suLabels[feature]);
|
||||
if (selectedFeatures.size() == maxFeatures) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
}
|
17
src/BayesNet/FCBF.h
Normal file
17
src/BayesNet/FCBF.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#ifndef FCBF_H
|
||||
#define FCBF_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class FCBF : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
|
||||
virtual ~FCBF() {};
|
||||
void fit() override;
|
||||
private:
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
79
src/BayesNet/FeatureSelect.cc
Normal file
79
src/BayesNet/FeatureSelect.cc
Normal file
@@ -0,0 +1,79 @@
|
||||
#include "FeatureSelect.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
|
||||
|
||||
{
|
||||
}
|
||||
void FeatureSelect::initialize()
|
||||
{
|
||||
selectedFeatures.clear();
|
||||
selectedScores.clear();
|
||||
}
|
||||
double FeatureSelect::symmetricalUncertainty(int a, int b)
|
||||
{
|
||||
/*
|
||||
Compute symmetrical uncertainty. Normalize* information gain (mutual
|
||||
information) with the entropies of the features in order to compensate
|
||||
the bias due to high cardinality features. *Range [0, 1]
|
||||
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
|
||||
*/
|
||||
auto x = samples.index({ a, "..." });
|
||||
auto y = samples.index({ b, "..." });
|
||||
auto mu = mutualInformation(x, y, weights);
|
||||
auto hx = entropy(x, weights);
|
||||
auto hy = entropy(y, weights);
|
||||
return 2.0 * mu / (hx + hy);
|
||||
}
|
||||
void FeatureSelect::computeSuLabels()
|
||||
{
|
||||
// Compute Simmetrical Uncertainty between features and labels
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
suLabels.push_back(symmetricalUncertainty(i, -1));
|
||||
}
|
||||
}
|
||||
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
|
||||
{
|
||||
// Compute Simmetrical Uncertainty between features
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
try {
|
||||
return suFeatures.at({ firstFeature, secondFeature });
|
||||
}
|
||||
catch (const std::out_of_range& e) {
|
||||
double result = symmetricalUncertainty(firstFeature, secondFeature);
|
||||
suFeatures[{firstFeature, secondFeature}] = result;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
double FeatureSelect::computeMeritCFS()
|
||||
{
|
||||
double result;
|
||||
double rcf = 0;
|
||||
for (auto feature : selectedFeatures) {
|
||||
rcf += suLabels[feature];
|
||||
}
|
||||
double rff = 0;
|
||||
int n = selectedFeatures.size();
|
||||
for (const auto& item : doCombinations(selectedFeatures)) {
|
||||
rff += computeSuFeatures(item.first, item.second);
|
||||
}
|
||||
return rcf / sqrt(n + (n * n - n) * rff);
|
||||
}
|
||||
std::vector<int> FeatureSelect::getFeatures() const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedFeatures;
|
||||
}
|
||||
std::vector<double> FeatureSelect::getScores() const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedScores;
|
||||
}
|
||||
}
|
30
src/BayesNet/FeatureSelect.h
Normal file
30
src/BayesNet/FeatureSelect.h
Normal file
@@ -0,0 +1,30 @@
|
||||
#ifndef FEATURE_SELECT_H
|
||||
#define FEATURE_SELECT_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "BayesMetrics.h"
|
||||
namespace bayesnet {
|
||||
class FeatureSelect : public Metrics {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
|
||||
virtual ~FeatureSelect() {};
|
||||
virtual void fit() = 0;
|
||||
std::vector<int> getFeatures() const;
|
||||
std::vector<double> getScores() const;
|
||||
protected:
|
||||
void initialize();
|
||||
void computeSuLabels();
|
||||
double computeSuFeatures(const int a, const int b);
|
||||
double symmetricalUncertainty(int a, int b);
|
||||
double computeMeritCFS();
|
||||
const torch::Tensor& weights;
|
||||
int maxFeatures;
|
||||
std::vector<int> selectedFeatures;
|
||||
std::vector<double> selectedScores;
|
||||
std::vector<double> suLabels;
|
||||
std::map<std::pair<int, int>, double> suFeatures;
|
||||
bool fitted = false;
|
||||
};
|
||||
}
|
||||
#endif
|
47
src/BayesNet/IWSS.cc
Normal file
47
src/BayesNet/IWSS.cc
Normal file
@@ -0,0 +1,47 @@
|
||||
#include "IWSS.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||
{
|
||||
if (threshold < 0 || threshold > .5) {
|
||||
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
|
||||
}
|
||||
}
|
||||
void IWSS::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto featureOrderCopy = featureOrder;
|
||||
// Add first and second features to result
|
||||
// First with its own score
|
||||
auto first_feature = pop_first(featureOrderCopy);
|
||||
selectedFeatures.push_back(first_feature);
|
||||
selectedScores.push_back(suLabels.at(first_feature));
|
||||
// Second with the score of the candidates
|
||||
selectedFeatures.push_back(pop_first(featureOrderCopy));
|
||||
auto merit = computeMeritCFS();
|
||||
selectedScores.push_back(merit);
|
||||
for (const auto feature : featureOrderCopy) {
|
||||
selectedFeatures.push_back(feature);
|
||||
// Compute merit with selectedFeatures
|
||||
auto meritNew = computeMeritCFS();
|
||||
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
|
||||
if (meritNew > merit || delta < threshold) {
|
||||
if (meritNew > merit) {
|
||||
merit = meritNew;
|
||||
}
|
||||
selectedScores.push_back(meritNew);
|
||||
} else {
|
||||
selectedFeatures.pop_back();
|
||||
break;
|
||||
}
|
||||
if (selectedFeatures.size() == maxFeatures) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
}
|
17
src/BayesNet/IWSS.h
Normal file
17
src/BayesNet/IWSS.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#ifndef IWSS_H
|
||||
#define IWSS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class IWSS : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
|
||||
IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
|
||||
virtual ~IWSS() {};
|
||||
void fit() override;
|
||||
private:
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,9 +1,20 @@
|
||||
#include "KDB.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
|
||||
{
|
||||
validHyperparameters = { "k", "theta" };
|
||||
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||
}
|
||||
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
if (hyperparameters.contains("k")) {
|
||||
k = hyperparameters["k"];
|
||||
}
|
||||
if (hyperparameters.contains("theta")) {
|
||||
theta = hyperparameters["theta"];
|
||||
}
|
||||
}
|
||||
void KDB::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
/*
|
||||
@@ -28,16 +39,16 @@ namespace bayesnet {
|
||||
// 1. For each feature Xi, compute mutual information, I(X;C),
|
||||
// where C is the class.
|
||||
addNodes();
|
||||
const Tensor& y = dataset.index({ -1, "..." });
|
||||
vector<double> mi;
|
||||
const torch::Tensor& y = dataset.index({ -1, "..." });
|
||||
std::vector<double> mi;
|
||||
for (auto i = 0; i < features.size(); i++) {
|
||||
Tensor firstFeature = dataset.index({ i, "..." });
|
||||
torch::Tensor firstFeature = dataset.index({ i, "..." });
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
|
||||
}
|
||||
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
|
||||
// 3. Let the used variable list, S, be empty.
|
||||
vector<int> S;
|
||||
std::vector<int> S;
|
||||
// 4. Let the DAG network being constructed, BN, begin with a single
|
||||
// class node, C.
|
||||
// 5. Repeat until S includes all domain features
|
||||
@@ -55,9 +66,9 @@ namespace bayesnet {
|
||||
S.push_back(idx);
|
||||
}
|
||||
}
|
||||
void KDB::add_m_edges(int idx, vector<int>& S, Tensor& weights)
|
||||
void KDB::add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights)
|
||||
{
|
||||
auto n_edges = min(k, static_cast<int>(S.size()));
|
||||
auto n_edges = std::min(k, static_cast<int>(S.size()));
|
||||
auto cond_w = clone(weights);
|
||||
bool exit_cond = k == 0;
|
||||
int num = 0;
|
||||
@@ -69,7 +80,7 @@ namespace bayesnet {
|
||||
model.addEdge(features[max_minfo], features[idx]);
|
||||
num++;
|
||||
}
|
||||
catch (const invalid_argument& e) {
|
||||
catch (const std::invalid_argument& e) {
|
||||
// Loops are not allowed
|
||||
}
|
||||
}
|
||||
@@ -79,11 +90,11 @@ namespace bayesnet {
|
||||
exit_cond = num == n_edges || candidates.size(0) == 0;
|
||||
}
|
||||
}
|
||||
vector<string> KDB::graph(const string& title) const
|
||||
std::vector<std::string> KDB::graph(const std::string& title) const
|
||||
{
|
||||
string header{ title };
|
||||
std::string header{ title };
|
||||
if (title == "KDB") {
|
||||
header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
|
||||
header += " (k=" + std::to_string(k) + ", theta=" + std::to_string(theta) + ")";
|
||||
}
|
||||
return model.graph(header);
|
||||
}
|
||||
|
@@ -4,20 +4,18 @@
|
||||
#include "Classifier.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class KDB : public Classifier {
|
||||
private:
|
||||
int k;
|
||||
float theta;
|
||||
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
|
||||
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
virtual ~KDB() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,15 @@
|
||||
#include "KDBLd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
@@ -18,12 +17,12 @@ namespace bayesnet {
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
Tensor KDBLd::predict(Tensor& X)
|
||||
torch::Tensor KDBLd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return KDB::predict(Xt);
|
||||
}
|
||||
vector<string> KDBLd::graph(const string& name) const
|
||||
std::vector<std::string> KDBLd::graph(const std::string& name) const
|
||||
{
|
||||
return KDB::graph(name);
|
||||
}
|
||||
|
@@ -4,17 +4,15 @@
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class KDBLd : public KDB, public Proposal {
|
||||
private:
|
||||
public:
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
static inline string version() { return "0.0.1"; };
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !KDBLD_H
|
@@ -1,13 +1,13 @@
|
||||
#include "Mst.h"
|
||||
#include <vector>
|
||||
#include <list>
|
||||
/*
|
||||
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
|
||||
|
||||
*/
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
Graph::Graph(int V) : V(V), parent(vector<int>(V))
|
||||
Graph::Graph(int V) : V(V), parent(std::vector<int>(V))
|
||||
{
|
||||
for (int i = 0; i < V; i++)
|
||||
parent[i] = i;
|
||||
@@ -34,36 +34,45 @@ namespace bayesnet {
|
||||
void Graph::kruskal_algorithm()
|
||||
{
|
||||
// sort the edges ordered on decreasing weight
|
||||
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
|
||||
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
|
||||
for (int i = 0; i < G.size(); i++) {
|
||||
int uSt, vEd;
|
||||
uSt = find_set(G[i].second.first);
|
||||
vEd = find_set(G[i].second.second);
|
||||
if (uSt != vEd) {
|
||||
T.push_back(G[i]); // add to mst vector
|
||||
T.push_back(G[i]); // add to mst std::vector
|
||||
union_set(uSt, vEd);
|
||||
}
|
||||
}
|
||||
}
|
||||
void Graph::display_mst()
|
||||
{
|
||||
cout << "Edge :" << " Weight" << endl;
|
||||
std::cout << "Edge :" << " Weight" << std::endl;
|
||||
for (int i = 0; i < T.size(); i++) {
|
||||
cout << T[i].second.first << " - " << T[i].second.second << " : "
|
||||
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
|
||||
<< T[i].first;
|
||||
cout << endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
|
||||
void insertElement(std::list<int>& variables, int variable)
|
||||
{
|
||||
auto result = vector<pair<int, int>>();
|
||||
auto visited = vector<int>();
|
||||
auto nextVariables = unordered_set<int>();
|
||||
nextVariables.emplace(root_original);
|
||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||
variables.push_front(variable);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
{
|
||||
// Create the edges of a DAG from the MST
|
||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||
auto result = std::vector<std::pair<int, int>>();
|
||||
auto visited = std::vector<int>();
|
||||
auto nextVariables = std::list<int>();
|
||||
nextVariables.push_front(root_original);
|
||||
while (nextVariables.size() > 0) {
|
||||
int root = *nextVariables.begin();
|
||||
nextVariables.erase(nextVariables.begin());
|
||||
int root = nextVariables.front();
|
||||
nextVariables.pop_front();
|
||||
for (int i = 0; i < T.size(); ++i) {
|
||||
auto [weight, edge] = T[i];
|
||||
auto [from, to] = edge;
|
||||
@@ -71,10 +80,10 @@ namespace bayesnet {
|
||||
visited.insert(visited.begin(), i);
|
||||
if (from == root) {
|
||||
result.push_back({ from, to });
|
||||
nextVariables.emplace(to);
|
||||
insertElement(nextVariables, to);
|
||||
} else {
|
||||
result.push_back({ to, from });
|
||||
nextVariables.emplace(from);
|
||||
insertElement(nextVariables, from);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -94,12 +103,11 @@ namespace bayesnet {
|
||||
return result;
|
||||
}
|
||||
|
||||
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
|
||||
vector<pair<int, int>> MST::maximumSpanningTree()
|
||||
MST::MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
|
||||
std::vector<std::pair<int, int>> MST::maximumSpanningTree()
|
||||
{
|
||||
auto num_features = features.size();
|
||||
Graph g(num_features);
|
||||
|
||||
// Make a complete graph
|
||||
for (int i = 0; i < num_features - 1; ++i) {
|
||||
for (int j = i + 1; j < num_features; ++j) {
|
||||
|
@@ -4,24 +4,22 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class MST {
|
||||
private:
|
||||
Tensor weights;
|
||||
vector<string> features;
|
||||
torch::Tensor weights;
|
||||
std::vector<std::string> features;
|
||||
int root = 0;
|
||||
public:
|
||||
MST() = default;
|
||||
MST(const vector<string>& features, const Tensor& weights, const int root);
|
||||
vector<pair<int, int>> maximumSpanningTree();
|
||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||
};
|
||||
class Graph {
|
||||
private:
|
||||
int V; // number of nodes in graph
|
||||
vector <pair<float, pair<int, int>>> G; // vector for graph
|
||||
vector <pair<float, pair<int, int>>> T; // vector for mst
|
||||
vector<int> parent;
|
||||
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
|
||||
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
|
||||
std::vector<int> parent;
|
||||
public:
|
||||
explicit Graph(int V);
|
||||
void addEdge(int u, int v, float wt);
|
||||
@@ -29,7 +27,7 @@ namespace bayesnet {
|
||||
void union_set(int u, int v);
|
||||
void kruskal_algorithm();
|
||||
void display_mst();
|
||||
vector <pair<float, pair<int, int>>> get_mst() { return T; }
|
||||
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,18 +3,18 @@
|
||||
#include "Network.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
|
||||
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
|
||||
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
|
||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
||||
getmaxThreads()), fitted(other.fitted)
|
||||
{
|
||||
for (const auto& pair : other.nodes) {
|
||||
nodes[pair.first] = std::make_unique<Node>(*pair.second);
|
||||
for (const auto& node : other.nodes) {
|
||||
nodes[node.first] = std::make_unique<Node>(*node.second);
|
||||
}
|
||||
}
|
||||
void Network::initialize()
|
||||
{
|
||||
features = vector<string>();
|
||||
features = std::vector<std::string>();
|
||||
className = "";
|
||||
classNumStates = 0;
|
||||
fitted = false;
|
||||
@@ -29,10 +29,10 @@ namespace bayesnet {
|
||||
{
|
||||
return samples;
|
||||
}
|
||||
void Network::addNode(const string& name)
|
||||
void Network::addNode(const std::string& name)
|
||||
{
|
||||
if (name == "") {
|
||||
throw invalid_argument("Node name cannot be empty");
|
||||
throw std::invalid_argument("Node name cannot be empty");
|
||||
}
|
||||
if (nodes.find(name) != nodes.end()) {
|
||||
return;
|
||||
@@ -42,7 +42,7 @@ namespace bayesnet {
|
||||
}
|
||||
nodes[name] = std::make_unique<Node>(name);
|
||||
}
|
||||
vector<string> Network::getFeatures() const
|
||||
std::vector<std::string> Network::getFeatures() const
|
||||
{
|
||||
return features;
|
||||
}
|
||||
@@ -58,11 +58,11 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
string Network::getClassName() const
|
||||
std::string Network::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
|
||||
bool Network::isCyclic(const std::string& nodeId, std::unordered_set<std::string>& visited, std::unordered_set<std::string>& recStack)
|
||||
{
|
||||
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
|
||||
{
|
||||
@@ -78,78 +78,78 @@ namespace bayesnet {
|
||||
recStack.erase(nodeId); // remove node from recursion stack before function ends
|
||||
return false;
|
||||
}
|
||||
void Network::addEdge(const string& parent, const string& child)
|
||||
void Network::addEdge(const std::string& parent, const std::string& child)
|
||||
{
|
||||
if (nodes.find(parent) == nodes.end()) {
|
||||
throw invalid_argument("Parent node " + parent + " does not exist");
|
||||
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
||||
}
|
||||
if (nodes.find(child) == nodes.end()) {
|
||||
throw invalid_argument("Child node " + child + " does not exist");
|
||||
throw std::invalid_argument("Child node " + child + " does not exist");
|
||||
}
|
||||
// Temporarily add edge to check for cycles
|
||||
nodes[parent]->addChild(nodes[child].get());
|
||||
nodes[child]->addParent(nodes[parent].get());
|
||||
unordered_set<string> visited;
|
||||
unordered_set<string> recStack;
|
||||
std::unordered_set<std::string> visited;
|
||||
std::unordered_set<std::string> recStack;
|
||||
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
|
||||
{
|
||||
// remove problematic edge
|
||||
nodes[parent]->removeChild(nodes[child].get());
|
||||
nodes[child]->removeParent(nodes[parent].get());
|
||||
throw invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||
throw std::invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||
}
|
||||
}
|
||||
map<string, std::unique_ptr<Node>>& Network::getNodes()
|
||||
std::map<std::string, std::unique_ptr<Node>>& Network::getNodes()
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
if (weights.size(0) != n_samples) {
|
||||
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
|
||||
throw std::invalid_argument("Weights (" + std::to_string(weights.size(0)) + ") must have the same number of elements as samples (" + std::to_string(n_samples) + ") in Network::fit");
|
||||
}
|
||||
if (n_samples != n_samples_y) {
|
||||
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||
throw std::invalid_argument("X and y must have the same number of samples in Network::fit (" + std::to_string(n_samples) + " != " + std::to_string(n_samples_y) + ")");
|
||||
}
|
||||
if (n_features != featureNames.size()) {
|
||||
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
|
||||
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
|
||||
}
|
||||
if (n_features != features.size() - 1) {
|
||||
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
|
||||
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
if (find(features.begin(), features.end(), className) == features.end()) {
|
||||
throw invalid_argument("className not found in Network::features");
|
||||
throw std::invalid_argument("className not found in Network::features");
|
||||
}
|
||||
for (auto& feature : featureNames) {
|
||||
if (find(features.begin(), features.end(), feature) == features.end()) {
|
||||
throw invalid_argument("Feature " + feature + " not found in Network::features");
|
||||
throw std::invalid_argument("Feature " + feature + " not found in Network::features");
|
||||
}
|
||||
if (states.find(feature) == states.end()) {
|
||||
throw invalid_argument("Feature " + feature + " not found in states");
|
||||
throw std::invalid_argument("Feature " + feature + " not found in states");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Network::setStates(const map<string, vector<int>>& states)
|
||||
void Network::setStates(const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
// Set states to every Node in the network
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
nodes[features[i]]->setNumStates(states.at(features[i]).size());
|
||||
}
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
for_each(features.begin(), features.end(), [this, &states](const std::string& feature) {
|
||||
nodes.at(feature)->setNumStates(states.at(feature).size());
|
||||
});
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
torch::Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X , ytmp }, 0);
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
@@ -157,7 +157,7 @@ namespace bayesnet {
|
||||
completeFit(states, weights);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
@@ -170,41 +170,15 @@ namespace bayesnet {
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
}
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
condition_variable cv;
|
||||
int activeThreads = 0;
|
||||
int nextNodeIndex = 0;
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
break; // No more work remaining
|
||||
}
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
}
|
||||
lock_guard<mutex> lock(mtx);
|
||||
--activeThreads;
|
||||
cv.notify_one();
|
||||
std::vector<std::thread> threads;
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
++activeThreads;
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
@@ -214,12 +188,12 @@ namespace bayesnet {
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("You must call fit() before calling predict()");
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
torch::Tensor result;
|
||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
const Tensor sample = samples.index({ "...", i });
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
auto psample = predict_sample(sample);
|
||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||
@@ -227,36 +201,35 @@ namespace bayesnet {
|
||||
}
|
||||
if (proba)
|
||||
return result;
|
||||
else
|
||||
return result.argmax(1);
|
||||
return result.argmax(1);
|
||||
}
|
||||
// Return mxn tensor of probabilities
|
||||
Tensor Network::predict_proba(const Tensor& samples)
|
||||
torch::Tensor Network::predict_proba(const torch::Tensor& samples)
|
||||
{
|
||||
return predict_tensor(samples, true);
|
||||
}
|
||||
|
||||
// Return mxn tensor of probabilities
|
||||
Tensor Network::predict(const Tensor& samples)
|
||||
torch::Tensor Network::predict(const torch::Tensor& samples)
|
||||
{
|
||||
return predict_tensor(samples, false);
|
||||
}
|
||||
|
||||
// Return mx1 vector of predictions
|
||||
// tsamples is nxm vector of samples
|
||||
vector<int> Network::predict(const vector<vector<int>>& tsamples)
|
||||
// Return mx1 std::vector of predictions
|
||||
// tsamples is nxm std::vector of samples
|
||||
std::vector<int> Network::predict(const std::vector<std::vector<int>>& tsamples)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("You must call fit() before calling predict()");
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
vector<int> predictions;
|
||||
vector<int> sample;
|
||||
std::vector<int> predictions;
|
||||
std::vector<int> sample;
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
vector<double> classProbabilities = predict_sample(sample);
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
@@ -264,14 +237,14 @@ namespace bayesnet {
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
// Return mxn vector of probabilities
|
||||
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
|
||||
// Return mxn std::vector of probabilities
|
||||
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw logic_error("You must call fit() before calling predict_proba()");
|
||||
throw std::logic_error("You must call fit() before calling predict_proba()");
|
||||
}
|
||||
vector<vector<double>> predictions;
|
||||
vector<int> sample;
|
||||
std::vector<std::vector<double>> predictions;
|
||||
std::vector<int> sample;
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
@@ -281,9 +254,9 @@ namespace bayesnet {
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
|
||||
double Network::score(const std::vector<std::vector<int>>& tsamples, const std::vector<int>& labels)
|
||||
{
|
||||
vector<int> y_pred = predict(tsamples);
|
||||
std::vector<int> y_pred = predict(tsamples);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == labels[i]) {
|
||||
@@ -292,35 +265,35 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
// Return 1xn vector of probabilities
|
||||
vector<double> Network::predict_sample(const vector<int>& sample)
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size() - 1) {
|
||||
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||
") does not match the number of features (" + to_string(features.size() - 1) + ")");
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
map<string, int> evidence;
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(); ++i) {
|
||||
evidence[features[i]] = sample[i];
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
// Return 1xn vector of probabilities
|
||||
vector<double> Network::predict_sample(const Tensor& sample)
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size(0) != features.size() - 1) {
|
||||
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + to_string(features.size() - 1) + ")");
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
map<string, int> evidence;
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(0); ++i) {
|
||||
evidence[features[i]] = sample[i].item<int>();
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
double Network::computeFactor(map<string, int>& completeEvidence)
|
||||
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
|
||||
{
|
||||
double result = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
@@ -328,17 +301,17 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
vector<double> Network::exactInference(map<string, int>& evidence)
|
||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||
{
|
||||
vector<double> result(classNumStates, 0.0);
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
std::vector<double> result(classNumStates, 0.0);
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
auto completeEvidence = map<string, int>(evidence);
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
lock_guard<mutex> lock(mtx);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result[i] = factor;
|
||||
});
|
||||
}
|
||||
@@ -350,12 +323,12 @@ namespace bayesnet {
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Network::show() const
|
||||
std::vector<std::string> Network::show() const
|
||||
{
|
||||
vector<string> result;
|
||||
std::vector<std::string> result;
|
||||
// Draw the network
|
||||
for (auto& node : nodes) {
|
||||
string line = node.first + " -> ";
|
||||
std::string line = node.first + " -> ";
|
||||
for (auto child : node.second->getChildren()) {
|
||||
line += child->getName() + ", ";
|
||||
}
|
||||
@@ -363,12 +336,12 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
vector<string> Network::graph(const string& title) const
|
||||
std::vector<std::string> Network::graph(const std::string& title) const
|
||||
{
|
||||
auto output = vector<string>();
|
||||
auto output = std::vector<std::string>();
|
||||
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
|
||||
auto suffix = ">\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n";
|
||||
string header = prefix + title + suffix;
|
||||
std::string header = prefix + title + suffix;
|
||||
output.push_back(header);
|
||||
for (auto& node : nodes) {
|
||||
auto result = node.second->graph(className);
|
||||
@@ -377,9 +350,9 @@ namespace bayesnet {
|
||||
output.push_back("}\n");
|
||||
return output;
|
||||
}
|
||||
vector<pair<string, string>> Network::getEdges() const
|
||||
std::vector<std::pair<std::string, std::string>> Network::getEdges() const
|
||||
{
|
||||
auto edges = vector<pair<string, string>>();
|
||||
auto edges = std::vector<std::pair<std::string, std::string>>();
|
||||
for (const auto& node : nodes) {
|
||||
auto head = node.first;
|
||||
for (const auto& child : node.second->getChildren()) {
|
||||
@@ -393,13 +366,12 @@ namespace bayesnet {
|
||||
{
|
||||
return getEdges().size();
|
||||
}
|
||||
vector<string> Network::topological_sort()
|
||||
std::vector<std::string> Network::topological_sort()
|
||||
{
|
||||
/* Check if al the fathers of every node are before the node */
|
||||
auto result = features;
|
||||
result.erase(remove(result.begin(), result.end(), className), result.end());
|
||||
bool ending{ false };
|
||||
int idx = 0;
|
||||
while (!ending) {
|
||||
ending = true;
|
||||
for (auto feature : features) {
|
||||
@@ -421,10 +393,10 @@ namespace bayesnet {
|
||||
ending = false;
|
||||
}
|
||||
} else {
|
||||
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
}
|
||||
} else {
|
||||
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -434,8 +406,8 @@ namespace bayesnet {
|
||||
void Network::dump_cpt() const
|
||||
{
|
||||
for (auto& node : nodes) {
|
||||
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
|
||||
cout << node.second->getCPT() << endl;
|
||||
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
|
||||
std::cout << node.second->getCPT() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -7,52 +7,56 @@
|
||||
namespace bayesnet {
|
||||
class Network {
|
||||
private:
|
||||
map<string, unique_ptr<Node>> nodes;
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
float maxThreads = 0.95;
|
||||
int classNumStates;
|
||||
vector<string> features; // Including classname
|
||||
string className;
|
||||
std::vector<std::string> features; // Including classname
|
||||
std::string className;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // nxm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
vector<double> predict_sample(const vector<int>&);
|
||||
vector<double> predict_sample(const torch::Tensor&);
|
||||
vector<double> exactInference(map<string, int>&);
|
||||
double computeFactor(map<string, int>&);
|
||||
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const map<string, vector<int>>&);
|
||||
std::vector<double> predict_sample(const std::vector<int>&);
|
||||
std::vector<double> predict_sample(const torch::Tensor&);
|
||||
std::vector<double> exactInference(std::map<std::string, int>&);
|
||||
double computeFactor(std::map<std::string, int>&);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const std::map<std::string, std::vector<int>>&);
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getmaxThreads();
|
||||
void addNode(const string&);
|
||||
void addEdge(const string&, const string&);
|
||||
map<string, std::unique_ptr<Node>>& getNodes();
|
||||
vector<string> getFeatures() const;
|
||||
void addNode(const std::string&);
|
||||
void addEdge(const std::string&, const std::string&);
|
||||
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
||||
std::vector<std::string> getFeatures() const;
|
||||
int getStates() const;
|
||||
vector<pair<string, string>> getEdges() const;
|
||||
std::vector<std::pair<std::string, std::string>> getEdges() const;
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
std::string getClassName() const;
|
||||
/*
|
||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||
*/
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
|
||||
std::vector<std::vector<double>> predict_proba(const std::vector<std::vector<int>>&); // Return mxn std::vector of probabilities
|
||||
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
|
||||
double score(const vector<vector<int>>&, const vector<int>&);
|
||||
vector<string> topological_sort();
|
||||
vector<string> show() const;
|
||||
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
|
||||
double score(const std::vector<std::vector<int>>&, const std::vector<int>&);
|
||||
std::vector<std::string> topological_sort();
|
||||
std::vector<std::string> show() const;
|
||||
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
void initialize();
|
||||
void dump_cpt() const;
|
||||
inline string version() { return "0.1.0"; }
|
||||
inline std::string version() { return "0.2.0"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,7 +3,7 @@
|
||||
namespace bayesnet {
|
||||
|
||||
Node::Node(const std::string& name)
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
|
||||
{
|
||||
}
|
||||
void Node::clear()
|
||||
@@ -14,7 +14,7 @@ namespace bayesnet {
|
||||
dimensions.clear();
|
||||
numStates = 0;
|
||||
}
|
||||
string Node::getName() const
|
||||
std::string Node::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
@@ -34,11 +34,11 @@ namespace bayesnet {
|
||||
{
|
||||
children.push_back(child);
|
||||
}
|
||||
vector<Node*>& Node::getParents()
|
||||
std::vector<Node*>& Node::getParents()
|
||||
{
|
||||
return parents;
|
||||
}
|
||||
vector<Node*>& Node::getChildren()
|
||||
std::vector<Node*>& Node::getChildren()
|
||||
{
|
||||
return children;
|
||||
}
|
||||
@@ -63,28 +63,28 @@ namespace bayesnet {
|
||||
*/
|
||||
unsigned Node::minFill()
|
||||
{
|
||||
unordered_set<string> neighbors;
|
||||
std::unordered_set<std::string> neighbors;
|
||||
for (auto child : children) {
|
||||
neighbors.emplace(child->getName());
|
||||
}
|
||||
for (auto parent : parents) {
|
||||
neighbors.emplace(parent->getName());
|
||||
}
|
||||
auto source = vector<string>(neighbors.begin(), neighbors.end());
|
||||
auto source = std::vector<std::string>(neighbors.begin(), neighbors.end());
|
||||
return combinations(source).size();
|
||||
}
|
||||
vector<pair<string, string>> Node::combinations(const vector<string>& source)
|
||||
std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
std::vector<std::pair<std::string, std::string>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
string temp = source[i];
|
||||
std::string temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
@@ -96,16 +96,16 @@ namespace bayesnet {
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
throw logic_error("Feature " + name + " not found in dataset");
|
||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||
}
|
||||
int name_index = pos - features.begin();
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
if (pos == features.end()) {
|
||||
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
}
|
||||
int parent_index = pos - features.begin();
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
@@ -116,17 +116,17 @@ namespace bayesnet {
|
||||
// Normalize the counts
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
}
|
||||
float Node::getFactorValue(map<string, int>& evidence)
|
||||
float Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
// following predetermined order of indices in the cpTable (see Node.h)
|
||||
coordinates.push_back(torch::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
|
||||
coordinates.push_back(at::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||
return cpTable.index({ coordinates }).item<float>();
|
||||
}
|
||||
vector<string> Node::graph(const string& className)
|
||||
std::vector<std::string> Node::graph(const std::string& className)
|
||||
{
|
||||
auto output = vector<string>();
|
||||
auto output = std::vector<std::string>();
|
||||
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
||||
output.push_back(name + " [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
|
||||
|
@@ -5,33 +5,32 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class Node {
|
||||
private:
|
||||
string name;
|
||||
vector<Node*> parents;
|
||||
vector<Node*> children;
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
public:
|
||||
vector<pair<string, string>> combinations(const vector<string>&);
|
||||
explicit Node(const string&);
|
||||
explicit Node(const std::string&);
|
||||
void clear();
|
||||
void addParent(Node*);
|
||||
void addChild(Node*);
|
||||
void removeParent(Node*);
|
||||
void removeChild(Node*);
|
||||
string getName() const;
|
||||
vector<Node*>& getParents();
|
||||
vector<Node*>& getChildren();
|
||||
std::string getName() const;
|
||||
std::vector<Node*>& getParents();
|
||||
std::vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
|
||||
float getFactorValue(map<string, int>&);
|
||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
float getFactorValue(std::map<std::string, int>&);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -2,21 +2,30 @@
|
||||
#include "ArffFiles.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
||||
Proposal::~Proposal()
|
||||
{
|
||||
for (auto& [key, value] : discretizers) {
|
||||
delete value;
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
|
||||
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
|
||||
{
|
||||
if (!torch::is_floating_point(X)) {
|
||||
throw std::invalid_argument("X must be a floating point tensor");
|
||||
}
|
||||
if (torch::is_floating_point(y)) {
|
||||
throw std::invalid_argument("y must be an integer tensor");
|
||||
}
|
||||
}
|
||||
map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)
|
||||
{
|
||||
// order of local discretization is important. no good 0, 1, 2...
|
||||
// although we rediscretize features after the local discretization of every feature
|
||||
auto order = model.topological_sort();
|
||||
auto& nodes = model.getNodes();
|
||||
map<string, vector<int>> states = oldStates;
|
||||
vector<int> indicesToReDiscretize;
|
||||
map<std::string, std::vector<int>> states = oldStates;
|
||||
std::vector<int> indicesToReDiscretize;
|
||||
bool upgrade = false; // Flag to check if we need to upgrade the model
|
||||
for (auto feature : order) {
|
||||
auto nodeParents = nodes[feature]->getParents();
|
||||
@@ -24,16 +33,16 @@ namespace bayesnet {
|
||||
upgrade = true;
|
||||
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
|
||||
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
|
||||
vector<string> parents;
|
||||
std::vector<std::string> parents;
|
||||
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
||||
// Remove class as parent as it will be added later
|
||||
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
|
||||
// Get the indices of the parents
|
||||
vector<int> indices;
|
||||
std::vector<int> indices;
|
||||
indices.push_back(-1); // Add class index
|
||||
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
|
||||
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
|
||||
vector<string> yJoinParents(Xf.size(1));
|
||||
std::vector<std::string> yJoinParents(Xf.size(1));
|
||||
for (auto idx : indices) {
|
||||
for (int i = 0; i < Xf.size(1); ++i) {
|
||||
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||
@@ -42,25 +51,16 @@ namespace bayesnet {
|
||||
auto arff = ArffFiles();
|
||||
auto yxv = arff.factorize(yJoinParents);
|
||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
discretizers[feature]->fit(xvf, yxv);
|
||||
//
|
||||
//
|
||||
//
|
||||
// auto tmp = discretizers[feature]->transform(xvf);
|
||||
// Xv[index] = tmp;
|
||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
// iota(xStates.begin(), xStates.end(), 0);
|
||||
// //Update new states of the feature/node
|
||||
// states[feature] = xStates;
|
||||
}
|
||||
if (upgrade) {
|
||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||
for (auto index : indicesToReDiscretize) {
|
||||
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
|
||||
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
auto xStates = std::vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
iota(xStates.begin(), xStates.end(), 0);
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
@@ -70,28 +70,28 @@ namespace bayesnet {
|
||||
}
|
||||
return states;
|
||||
}
|
||||
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
|
||||
map<std::string, std::vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
|
||||
{
|
||||
// Discretize the continuous input data and build pDataset (Classifier::dataset)
|
||||
int m = Xf.size(1);
|
||||
int n = Xf.size(0);
|
||||
map<string, vector<int>> states;
|
||||
pDataset = torch::zeros({ n + 1, m }, kInt32);
|
||||
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
||||
map<std::string, std::vector<int>> states;
|
||||
pDataset = torch::zeros({ n + 1, m }, torch::kInt32);
|
||||
auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
||||
// discretize input data by feature(row)
|
||||
for (auto i = 0; i < pFeatures.size(); ++i) {
|
||||
auto* discretizer = new mdlp::CPPFImdlp();
|
||||
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
|
||||
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
discretizer->fit(Xt, yv);
|
||||
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
|
||||
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
|
||||
auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);
|
||||
iota(xStates.begin(), xStates.end(), 0);
|
||||
states[pFeatures[i]] = xStates;
|
||||
discretizers[pFeatures[i]] = discretizer;
|
||||
}
|
||||
int n_classes = torch::max(y).item<int>() + 1;
|
||||
auto yStates = vector<int>(n_classes);
|
||||
auto yStates = std::vector<int>(n_classes);
|
||||
iota(yStates.begin(), yStates.end(), 0);
|
||||
states[pClassName] = yStates;
|
||||
pDataset.index_put_({ n, "..." }, y);
|
||||
@@ -101,7 +101,7 @@ namespace bayesnet {
|
||||
{
|
||||
auto Xtd = torch::zeros_like(X, torch::kInt32);
|
||||
for (int i = 0; i < X.size(0); ++i) {
|
||||
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xt = std::vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
|
||||
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
|
||||
}
|
||||
|
@@ -10,19 +10,20 @@
|
||||
namespace bayesnet {
|
||||
class Proposal {
|
||||
public:
|
||||
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
|
||||
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
|
||||
virtual ~Proposal();
|
||||
protected:
|
||||
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
|
||||
torch::Tensor prepareX(torch::Tensor& X);
|
||||
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
|
||||
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||
map<std::string, std::vector<int>> localDiscretizationProposal(const map<std::string, std::vector<int>>& states, Network& model);
|
||||
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||
torch::Tensor Xf; // X continuous nxm tensor
|
||||
torch::Tensor y; // y discrete nx1 tensor
|
||||
map<string, mdlp::CPPFImdlp*> discretizers;
|
||||
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
||||
private:
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
vector<string>& pFeatures;
|
||||
string& pClassName;
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
};
|
||||
}
|
||||
|
||||
|
@@ -17,7 +17,7 @@ namespace bayesnet {
|
||||
}
|
||||
}
|
||||
}
|
||||
vector<string> SPODE::graph(const string& name) const
|
||||
std::vector<std::string> SPODE::graph(const std::string& name) const
|
||||
{
|
||||
return model.graph(name);
|
||||
}
|
||||
|
@@ -10,9 +10,8 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() {};
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
virtual ~SPODE() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,15 @@
|
||||
#include "SPODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
@@ -18,14 +17,16 @@ namespace bayesnet {
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone();
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
features = features_;
|
||||
className = className_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
@@ -34,12 +35,12 @@ namespace bayesnet {
|
||||
return *this;
|
||||
}
|
||||
|
||||
Tensor SPODELd::predict(Tensor& X)
|
||||
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return SPODE::predict(Xt);
|
||||
}
|
||||
vector<string> SPODELd::graph(const string& name) const
|
||||
std::vector<std::string> SPODELd::graph(const std::string& name) const
|
||||
{
|
||||
return SPODE::graph(name);
|
||||
}
|
||||
|
@@ -4,17 +4,15 @@
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class SPODELd : public SPODE, public Proposal {
|
||||
public:
|
||||
explicit SPODELd(int root);
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
static inline string version() { return "0.0.1"; };
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !SPODELD_H
|
@@ -1,8 +1,6 @@
|
||||
#include "TAN.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
@@ -11,10 +9,10 @@ namespace bayesnet {
|
||||
addNodes();
|
||||
// 1. Compute mutual information between each feature and the class and set the root node
|
||||
// as the highest mutual information with the class
|
||||
auto mi = vector <pair<int, float >>();
|
||||
Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
auto mi = std::vector <std::pair<int, float >>();
|
||||
torch::Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
torch::Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
@@ -34,7 +32,7 @@ namespace bayesnet {
|
||||
model.addEdge(className, feature);
|
||||
}
|
||||
}
|
||||
vector<string> TAN::graph(const string& title) const
|
||||
std::vector<std::string> TAN::graph(const std::string& title) const
|
||||
{
|
||||
return model.graph(title);
|
||||
}
|
||||
|
@@ -2,16 +2,14 @@
|
||||
#define TAN_H
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() {};
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
virtual ~TAN() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,16 +1,15 @@
|
||||
#include "TANLd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
@@ -19,12 +18,12 @@ namespace bayesnet {
|
||||
return *this;
|
||||
|
||||
}
|
||||
Tensor TANLd::predict(Tensor& X)
|
||||
torch::Tensor TANLd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict(Xt);
|
||||
}
|
||||
vector<string> TANLd::graph(const string& name) const
|
||||
std::vector<std::string> TANLd::graph(const std::string& name) const
|
||||
{
|
||||
return TAN::graph(name);
|
||||
}
|
||||
|
@@ -4,17 +4,15 @@
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class TANLd : public TAN, public Proposal {
|
||||
private:
|
||||
public:
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
@@ -1,25 +1,23 @@
|
||||
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
// Return the indices in descending order
|
||||
vector<int> argsort(vector<double>& nums)
|
||||
std::vector<int> argsort(std::vector<double>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
vector<int> indices(n);
|
||||
std::vector<int> indices(n);
|
||||
iota(indices.begin(), indices.end(), 0);
|
||||
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
||||
return indices;
|
||||
}
|
||||
vector<vector<int>> tensorToVector(Tensor& tensor)
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor)
|
||||
{
|
||||
// convert mxn tensor to nxm vector
|
||||
vector<vector<int>> result;
|
||||
// convert mxn tensor to nxm std::vector
|
||||
std::vector<std::vector<int>> result;
|
||||
// Iterate over cols
|
||||
for (int i = 0; i < tensor.size(1); ++i) {
|
||||
auto col_tensor = tensor.index({ "...", i });
|
||||
auto col = vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
|
||||
auto col = std::vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
|
||||
result.push_back(col);
|
||||
}
|
||||
return result;
|
||||
|
@@ -3,9 +3,7 @@
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
vector<int> argsort(vector<double>& nums);
|
||||
vector<vector<int>> tensorToVector(Tensor& tensor);
|
||||
std::vector<int> argsort(std::vector<double>& nums);
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor);
|
||||
}
|
||||
#endif //BAYESNET_UTILS_H
|
@@ -1,10 +0,0 @@
|
||||
#ifndef BESTRESULT_H
|
||||
#define BESTRESULT_H
|
||||
#include <string>
|
||||
class BestResult {
|
||||
public:
|
||||
static std::string title() { return "STree_default (linear-ovo)"; }
|
||||
static double score() { return 22.109799; }
|
||||
static std::string scoreName() { return "accuracy"; }
|
||||
};
|
||||
#endif
|
343
src/Platform/BestResults.cc
Normal file
343
src/Platform/BestResults.cc
Normal file
@@ -0,0 +1,343 @@
|
||||
#include <filesystem>
|
||||
#include <set>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include "BestResults.h"
|
||||
#include "Result.h"
|
||||
#include "Colors.h"
|
||||
#include "Statistics.h"
|
||||
#include "BestResultsExcel.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
// function ftime_to_std::string, Code taken from
|
||||
// https://stackoverflow.com/a/58237530/1389271
|
||||
template <typename TP>
|
||||
std::string ftime_to_string(TP tp)
|
||||
{
|
||||
auto sctp = std::chrono::time_point_cast<std::chrono::system_clock::duration>(tp - TP::clock::now()
|
||||
+ std::chrono::system_clock::now());
|
||||
auto tt = std::chrono::system_clock::to_time_t(sctp);
|
||||
std::tm* gmt = std::gmtime(&tt);
|
||||
std::stringstream buffer;
|
||||
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
|
||||
return buffer.str();
|
||||
}
|
||||
namespace platform {
|
||||
std::string BestResults::build()
|
||||
{
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
json bests;
|
||||
for (const auto& file : files) {
|
||||
auto result = Result(path, file);
|
||||
auto data = result.load();
|
||||
for (auto const& item : data.at("results")) {
|
||||
bool update = false;
|
||||
// Check if results file contains only one dataset
|
||||
auto datasetName = item.at("dataset").get<std::string>();
|
||||
if (bests.contains(datasetName)) {
|
||||
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
|
||||
update = true;
|
||||
}
|
||||
} else {
|
||||
update = true;
|
||||
}
|
||||
if (update) {
|
||||
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
|
||||
}
|
||||
}
|
||||
}
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
std::cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::ofstream file(bestFileName);
|
||||
file << bests;
|
||||
file.close();
|
||||
return bestFileName;
|
||||
}
|
||||
std::string BestResults::bestResultFile()
|
||||
{
|
||||
return "best_results_" + score + "_" + model + ".json";
|
||||
}
|
||||
std::pair<std::string, std::string> getModelScore(std::string name)
|
||||
{
|
||||
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
|
||||
int i = 0;
|
||||
auto pos = name.find("_");
|
||||
auto pos2 = name.find("_", pos + 1);
|
||||
std::string score = name.substr(pos + 1, pos2 - pos - 1);
|
||||
pos = name.find("_", pos2 + 1);
|
||||
std::string model = name.substr(pos2 + 1, pos - pos2 - 1);
|
||||
return { model, score };
|
||||
}
|
||||
std::vector<std::string> BestResults::loadResultFiles()
|
||||
{
|
||||
std::vector<std::string> files;
|
||||
using std::filesystem::directory_iterator;
|
||||
std::string fileModel, fileScore;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto fileName = file.path().filename().string();
|
||||
if (fileName.find(".json") != std::string::npos && fileName.find("results_") == 0) {
|
||||
tie(fileModel, fileScore) = getModelScore(fileName);
|
||||
if (score == fileScore && (model == fileModel || model == "any")) {
|
||||
files.push_back(fileName);
|
||||
}
|
||||
}
|
||||
}
|
||||
return files;
|
||||
}
|
||||
json BestResults::loadFile(const std::string& fileName)
|
||||
{
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
std::vector<std::string> BestResults::getModels()
|
||||
{
|
||||
std::set<std::string> models;
|
||||
std::vector<std::string> result;
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::string fileModel, fileScore;
|
||||
for (const auto& file : files) {
|
||||
// extract the model from the file name
|
||||
tie(fileModel, fileScore) = getModelScore(file);
|
||||
// add the model to the std::vector of models
|
||||
models.insert(fileModel);
|
||||
}
|
||||
result = std::vector<std::string>(models.begin(), models.end());
|
||||
return result;
|
||||
}
|
||||
std::vector<std::string> BestResults::getDatasets(json table)
|
||||
{
|
||||
std::vector<std::string> datasets;
|
||||
for (const auto& dataset : table.items()) {
|
||||
datasets.push_back(dataset.key());
|
||||
}
|
||||
return datasets;
|
||||
}
|
||||
void BestResults::buildAll()
|
||||
{
|
||||
auto models = getModels();
|
||||
for (const auto& model : models) {
|
||||
std::cout << "Building best results for model: " << model << std::endl;
|
||||
this->model = model;
|
||||
build();
|
||||
}
|
||||
model = "any";
|
||||
}
|
||||
void BestResults::listFile()
|
||||
{
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
auto temp = ConfigLocale();
|
||||
auto date = ftime_to_string(std::filesystem::last_write_time(bestFileName));
|
||||
auto data = loadFile(bestFileName);
|
||||
auto datasets = getDatasets(data);
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
int maxFileName = 0;
|
||||
int maxHyper = 15;
|
||||
for (auto const& item : data.items()) {
|
||||
maxHyper = std::max(maxHyper, (int)item.value().at(1).dump().size());
|
||||
maxFileName = std::max(maxFileName, (int)item.value().at(2).get<std::string>().size());
|
||||
}
|
||||
std::stringstream oss;
|
||||
oss << Colors::GREEN() << "Best results for " << model << " as of " << date << std::endl;
|
||||
std::cout << oss.str();
|
||||
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << "Dataset" << "Score " << std::setw(maxFileName) << "File" << " Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << std::string(maxDatasetName, '=') << " =========== " << std::string(maxFileName, '=') << " " << std::string(maxHyper, '=') << std::endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
double total = 0;
|
||||
for (auto const& item : data.items()) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
double value = item.value().at(0).get<double>();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << std::setw(maxDatasetName) << std::left << item.key() << " ";
|
||||
std::cout << std::setw(11) << std::setprecision(9) << std::fixed << value << " ";
|
||||
std::cout << std::setw(maxFileName) << item.value().at(2).get<std::string>() << " ";
|
||||
std::cout << item.value().at(1) << " ";
|
||||
std::cout << std::endl;
|
||||
total += value;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ===========" << std::endl;
|
||||
std::cout << std::setw(5 + maxDatasetName) << "Total.................. " << std::setw(11) << std::setprecision(8) << std::fixed << total << std::endl;
|
||||
}
|
||||
json BestResults::buildTableResults(std::vector<std::string> models)
|
||||
{
|
||||
json table;
|
||||
auto maxDate = std::filesystem::file_time_type::max();
|
||||
for (const auto& model : models) {
|
||||
this->model = model;
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
auto dateWrite = std::filesystem::last_write_time(bestFileName);
|
||||
if (dateWrite < maxDate) {
|
||||
maxDate = dateWrite;
|
||||
}
|
||||
auto data = loadFile(bestFileName);
|
||||
table[model] = data;
|
||||
}
|
||||
table["dateTable"] = ftime_to_string(maxDate);
|
||||
return table;
|
||||
}
|
||||
void BestResults::printTableResults(std::vector<std::string> models, json table)
|
||||
{
|
||||
std::stringstream oss;
|
||||
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
|
||||
std::cout << oss.str();
|
||||
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << std::string("Dataset");
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::setw(maxModelName) << std::left << model << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "=== " << std::string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::string(maxModelName, '=') << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
std::map<std::string, double> totals;
|
||||
int nDatasets = table.begin().value().size();
|
||||
for (const auto& model : models) {
|
||||
totals[model] = 0.0;
|
||||
}
|
||||
auto datasets = getDatasets(table.begin().value());
|
||||
for (auto const& dataset : datasets) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << std::setw(maxDatasetName) << std::left << dataset << " ";
|
||||
double maxValue = 0;
|
||||
// Find out the max value for this dataset
|
||||
for (const auto& model : models) {
|
||||
double value = table[model].at(dataset).at(0).get<double>();
|
||||
if (value > maxValue) {
|
||||
maxValue = value;
|
||||
}
|
||||
}
|
||||
// Print the row with red colors on max values
|
||||
for (const auto& model : models) {
|
||||
std::string efectiveColor = color;
|
||||
double value = table[model].at(dataset).at(0).get<double>();
|
||||
if (value == maxValue) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
totals[model] += value;
|
||||
std::cout << efectiveColor << std::setw(maxModelName) << std::setprecision(maxModelName - 2) << std::fixed << value << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::string(maxModelName, '=') << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << Colors::GREEN() << std::setw(5 + maxDatasetName) << " Totals...................";
|
||||
double max = 0.0;
|
||||
for (const auto& total : totals) {
|
||||
if (total.second > max) {
|
||||
max = total.second;
|
||||
}
|
||||
}
|
||||
for (const auto& model : models) {
|
||||
std::string efectiveColor = Colors::GREEN();
|
||||
if (totals[model] == max) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << totals[model] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
void BestResults::reportSingle(bool excel)
|
||||
{
|
||||
listFile();
|
||||
if (excel) {
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
std::vector<std::string> datasets = getDatasets(table.begin().value());
|
||||
BestResultsExcel excel(score, datasets);
|
||||
excel.reportSingle(model, path + bestResultFile());
|
||||
messageExcelFile(excel.getFileName());
|
||||
}
|
||||
}
|
||||
void BestResults::reportAll(bool excel)
|
||||
{
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
std::vector<std::string> datasets = getDatasets(table.begin().value());
|
||||
maxModelName = (*max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxModelName = std::max(12, maxModelName);
|
||||
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = std::max(25, maxDatasetName);
|
||||
// Print the table of results
|
||||
printTableResults(models, table);
|
||||
// Compute the Friedman test
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
if (friedman) {
|
||||
Statistics stats(models, datasets, table, significance);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
ranksModels = stats.getRanks();
|
||||
}
|
||||
if (excel) {
|
||||
BestResultsExcel excel(score, datasets);
|
||||
excel.reportAll(models, table, ranksModels, friedman, significance);
|
||||
if (friedman) {
|
||||
int idx = -1;
|
||||
double min = 2000;
|
||||
// Find out the control model
|
||||
auto totals = std::vector<double>(models.size(), 0.0);
|
||||
for (const auto& dataset : datasets) {
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
totals[i] += ranksModels[dataset][models[i]];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
if (totals[i] < min) {
|
||||
min = totals[i];
|
||||
idx = i;
|
||||
}
|
||||
}
|
||||
model = models.at(idx);
|
||||
excel.reportSingle(model, path + bestResultFile());
|
||||
}
|
||||
messageExcelFile(excel.getFileName());
|
||||
}
|
||||
}
|
||||
void BestResults::messageExcelFile(const std::string& fileName)
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << std::endl;
|
||||
}
|
||||
}
|
36
src/Platform/BestResults.h
Normal file
36
src/Platform/BestResults.h
Normal file
@@ -0,0 +1,36 @@
|
||||
#ifndef BESTRESULTS_H
|
||||
#define BESTRESULTS_H
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
class BestResults {
|
||||
public:
|
||||
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, bool friedman, double significance = 0.05)
|
||||
: path(path), score(score), model(model), friedman(friedman), significance(significance)
|
||||
{
|
||||
}
|
||||
std::string build();
|
||||
void reportSingle(bool excel);
|
||||
void reportAll(bool excel);
|
||||
void buildAll();
|
||||
private:
|
||||
std::vector<std::string> getModels();
|
||||
std::vector<std::string> getDatasets(json table);
|
||||
std::vector<std::string> loadResultFiles();
|
||||
void messageExcelFile(const std::string& fileName);
|
||||
json buildTableResults(std::vector<std::string> models);
|
||||
void printTableResults(std::vector<std::string> models, json table);
|
||||
std::string bestResultFile();
|
||||
json loadFile(const std::string& fileName);
|
||||
void listFile();
|
||||
std::string path;
|
||||
std::string score;
|
||||
std::string model;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_H
|
300
src/Platform/BestResultsExcel.cc
Normal file
300
src/Platform/BestResultsExcel.cc
Normal file
@@ -0,0 +1,300 @@
|
||||
#include <sstream>
|
||||
#include "BestResultsExcel.h"
|
||||
#include "Paths.h"
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Statistics.h"
|
||||
#include "ReportExcel.h"
|
||||
|
||||
namespace platform {
|
||||
json loadResultData(const std::string& fileName)
|
||||
{
|
||||
json data;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
data = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
return data;
|
||||
}
|
||||
std::string getColumnName(int colNum)
|
||||
{
|
||||
std::string columnName = "";
|
||||
if (colNum == 0)
|
||||
return "A";
|
||||
while (colNum > 0) {
|
||||
int modulo = colNum % 26;
|
||||
columnName = char(65 + modulo) + columnName;
|
||||
colNum = (int)((colNum - modulo) / 26);
|
||||
}
|
||||
return columnName;
|
||||
}
|
||||
BestResultsExcel::BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets) : score(score), datasets(datasets)
|
||||
{
|
||||
workbook = workbook_new((Paths::excel() + fileName).c_str());
|
||||
setProperties("Best Results");
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
datasetNameSize = std::max(datasetNameSize, maxDatasetName);
|
||||
createFormats();
|
||||
}
|
||||
void BestResultsExcel::reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance)
|
||||
{
|
||||
this->table = table;
|
||||
this->models = models;
|
||||
ranksModels = ranks;
|
||||
this->friedman = friedman;
|
||||
this->significance = significance;
|
||||
worksheet = workbook_add_worksheet(workbook, "Best Results");
|
||||
int maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
modelNameSize = std::max(modelNameSize, maxModelName);
|
||||
formatColumns();
|
||||
build();
|
||||
}
|
||||
void BestResultsExcel::reportSingle(const std::string& model, const std::string& fileName)
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Report");
|
||||
if (FILE* fileTest = fopen(fileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << "File " << fileName << " doesn't exist." << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
json data = loadResultData(fileName);
|
||||
|
||||
std::string title = "Best results for " + model;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
writeString(row, 2, "Score", "bodyHeader");
|
||||
writeString(row, 3, "File", "bodyHeader");
|
||||
writeString(row, 4, "Hyperparameters", "bodyHeader");
|
||||
auto i = 0;
|
||||
std::string hyperparameters;
|
||||
int hypSize = 22;
|
||||
std::map<std::string, std::string> files; // map of files imported and their tabs
|
||||
for (auto const& item : data.items()) {
|
||||
row++;
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
writeDouble(row, 2, item.value().at(0).get<double>(), "result");
|
||||
auto fileName = item.value().at(2).get<std::string>();
|
||||
std::string hyperlink = "";
|
||||
try {
|
||||
hyperlink = files.at(fileName);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
auto tabName = "table_" + std::to_string(i);
|
||||
auto worksheetNew = workbook_add_worksheet(workbook, tabName.c_str());
|
||||
json data = loadResultData(Paths::results() + fileName);
|
||||
auto report = ReportExcel(data, false, workbook, worksheetNew);
|
||||
report.show();
|
||||
hyperlink = "#table_" + std::to_string(i);
|
||||
files[fileName] = hyperlink;
|
||||
}
|
||||
hyperlink += "!H" + std::to_string(i + 6);
|
||||
std::string fileNameText = "=HYPERLINK(\"" + hyperlink + "\",\"" + fileName + "\")";
|
||||
worksheet_write_formula(worksheet, row, 3, fileNameText.c_str(), efectiveStyle("text"));
|
||||
hyperparameters = item.value().at(1).dump();
|
||||
if (hyperparameters.size() > hypSize) {
|
||||
hypSize = hyperparameters.size();
|
||||
}
|
||||
writeString(row, 4, hyperparameters, "text");
|
||||
}
|
||||
row++;
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
std::stringstream oss;
|
||||
auto colName = getColumnName(2);
|
||||
oss << "=sum(" << colName << "5:" << colName << row << ")";
|
||||
worksheet_write_formula(worksheet, row, 2, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
// Set format
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize, modelNameSize, 66, hypSize + 1 };
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
BestResultsExcel::~BestResultsExcel()
|
||||
{
|
||||
workbook_close(workbook);
|
||||
}
|
||||
void BestResultsExcel::formatColumns()
|
||||
{
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::addConditionalFormat(std::string formula)
|
||||
{
|
||||
// Add conditional format for max/min values in scores/ranks sheets
|
||||
lxw_format* custom_format = workbook_add_format(workbook);
|
||||
format_set_bg_color(custom_format, 0xFFC7CE);
|
||||
format_set_font_color(custom_format, 0x9C0006);
|
||||
// Create a conditional format object. A static object would also work.
|
||||
lxw_conditional_format* conditional_format = (lxw_conditional_format*)calloc(1, sizeof(lxw_conditional_format));
|
||||
conditional_format->type = LXW_CONDITIONAL_TYPE_FORMULA;
|
||||
std::string col = getColumnName(models.size() + 1);
|
||||
std::stringstream oss;
|
||||
oss << "=C5=" << formula << "($C5:$" << col << "5)";
|
||||
auto formulaValue = oss.str();
|
||||
conditional_format->value_string = formulaValue.c_str();
|
||||
conditional_format->format = custom_format;
|
||||
worksheet_conditional_format_range(worksheet, 4, 2, datasets.size() + 3, models.size() + 1, conditional_format);
|
||||
}
|
||||
void BestResultsExcel::build()
|
||||
{
|
||||
// Create Sheet with scores
|
||||
header(false);
|
||||
body(false);
|
||||
// Add conditional format for max values
|
||||
addConditionalFormat("max");
|
||||
footer(false);
|
||||
if (friedman) {
|
||||
// Create Sheet with ranks
|
||||
worksheet = workbook_add_worksheet(workbook, "Ranks");
|
||||
formatColumns();
|
||||
header(true);
|
||||
body(true);
|
||||
addConditionalFormat("min");
|
||||
footer(true);
|
||||
// Create Sheet with Friedman Test
|
||||
doFriedman();
|
||||
}
|
||||
}
|
||||
std::string BestResultsExcel::getFileName()
|
||||
{
|
||||
return Paths::excel() + fileName;
|
||||
}
|
||||
void BestResultsExcel::header(bool ranks)
|
||||
{
|
||||
row = 0;
|
||||
std::string message = ranks ? "Ranks for score " + score : "Best results for " + score;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
for (const auto& model : models) {
|
||||
writeString(row, ++col, model.c_str(), "bodyHeader");
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::body(bool ranks)
|
||||
{
|
||||
row = 4;
|
||||
int i = 0;
|
||||
json origin = table.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
|
||||
writeDouble(row, ++col, value, "result");
|
||||
}
|
||||
++row;
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::footer(bool ranks)
|
||||
{
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
std::stringstream oss;
|
||||
auto colName = getColumnName(col + 1);
|
||||
oss << "=SUM(" << colName << "5:" << colName << row << ")";
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
if (ranks) {
|
||||
row++;
|
||||
writeString(row, 1, "Average ranks", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
auto colName = getColumnName(col + 1);
|
||||
std::stringstream oss;
|
||||
oss << "=SUM(" << colName << "5:" << colName << row - 1 << ")/" << datasets.size();
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::doFriedman()
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Friedman");
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
|
||||
row = 2;
|
||||
Statistics stats(models, datasets, table, significance, false);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
auto friedmanResult = stats.getFriedmanResult();
|
||||
auto holmResult = stats.getHolmResult();
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
writeString(row, 1, "Friedman Q", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "Critical χ2 value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "p-value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
|
||||
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
|
||||
writeDouble(row, 4, significance, "bodyHeader");
|
||||
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
|
||||
row += 3;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
|
||||
row += 2;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
std::string controlModel = "Control Model: " + holmResult.model;
|
||||
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
|
||||
row++;
|
||||
writeString(row, 1, "Model", "bodyHeader");
|
||||
writeString(row, 2, "p-value", "bodyHeader");
|
||||
writeString(row, 3, "Rank", "bodyHeader");
|
||||
writeString(row, 4, "Win", "bodyHeader");
|
||||
writeString(row, 5, "Tie", "bodyHeader");
|
||||
writeString(row, 6, "Loss", "bodyHeader");
|
||||
writeString(row, 7, "Reject H0", "bodyHeader");
|
||||
row++;
|
||||
bool first = true;
|
||||
for (const auto& item : holmResult.holmLines) {
|
||||
writeString(row, 1, item.model, "text");
|
||||
if (first) {
|
||||
// Control model info
|
||||
first = false;
|
||||
writeString(row, 2, "", "text");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeString(row, 4, "", "text");
|
||||
writeString(row, 5, "", "text");
|
||||
writeString(row, 6, "", "text");
|
||||
writeString(row, 7, "", "textCentered");
|
||||
} else {
|
||||
// Rest of the models info
|
||||
writeDouble(row, 2, item.pvalue, "result");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeInt(row, 4, item.wtl.win, "ints");
|
||||
writeInt(row, 5, item.wtl.tie, "ints");
|
||||
writeInt(row, 6, item.wtl.loss, "ints");
|
||||
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
|
||||
}
|
||||
row++;
|
||||
}
|
||||
}
|
||||
}
|
39
src/Platform/BestResultsExcel.h
Normal file
39
src/Platform/BestResultsExcel.h
Normal file
@@ -0,0 +1,39 @@
|
||||
#ifndef BESTRESULTS_EXCEL_H
|
||||
#define BESTRESULTS_EXCEL_H
|
||||
#include "ExcelFile.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
|
||||
class BestResultsExcel : ExcelFile {
|
||||
public:
|
||||
BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets);
|
||||
~BestResultsExcel();
|
||||
void reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance);
|
||||
void reportSingle(const std::string& model, const std::string& fileName);
|
||||
std::string getFileName();
|
||||
private:
|
||||
void build();
|
||||
void header(bool ranks);
|
||||
void body(bool ranks);
|
||||
void footer(bool ranks);
|
||||
void formatColumns();
|
||||
void doFriedman();
|
||||
void addConditionalFormat(std::string formula);
|
||||
const std::string fileName = "BestResults.xlsx";
|
||||
std::string score;
|
||||
std::vector<std::string> models;
|
||||
std::vector<std::string> datasets;
|
||||
json table;
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int modelNameSize = 12; // Min size of the column
|
||||
int datasetNameSize = 25; // Min size of the column
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_EXCEL_H
|
28
src/Platform/BestScore.h
Normal file
28
src/Platform/BestScore.h
Normal file
@@ -0,0 +1,28 @@
|
||||
#ifndef BESTSCORE_H
|
||||
#define BESTSCORE_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class BestScore {
|
||||
public:
|
||||
static std::pair<std::string, double> getScore(const std::string& metric)
|
||||
{
|
||||
static std::map<std::pair<std::string, std::string>, std::pair<std::string, double>> data = {
|
||||
{{"discretiz", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
|
||||
{{"odte", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
|
||||
};
|
||||
auto env = platform::DotEnv();
|
||||
std::string experiment = env.get("experiment");
|
||||
try {
|
||||
return data[{experiment, metric}];
|
||||
}
|
||||
catch (...) {
|
||||
return { "", 0.0 };
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
22
src/Platform/CLocale.h
Normal file
22
src/Platform/CLocale.h
Normal file
@@ -0,0 +1,22 @@
|
||||
#ifndef LOCALE_H
|
||||
#define LOCALE_H
|
||||
#include <locale>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
namespace platform {
|
||||
struct separation : std::numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
std::string do_grouping() const { return "\03"; }
|
||||
};
|
||||
class ConfigLocale {
|
||||
public:
|
||||
explicit ConfigLocale()
|
||||
{
|
||||
std::locale mylocale(std::cout.getloc(), new separation);
|
||||
std::locale::global(mylocale);
|
||||
std::cout.imbue(mylocale);
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,12 +1,22 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
|
||||
add_executable(list list.cc platformUtils Datasets.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
|
||||
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${MPI_CXX_INCLUDE_DIRS})
|
||||
|
||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
@@ -9,6 +9,7 @@ public:
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string IBLUE() { return "\033[0;94m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
87
src/Platform/CommandParser.cc
Normal file
87
src/Platform/CommandParser.cc
Normal file
@@ -0,0 +1,87 @@
|
||||
#include "CommandParser.h"
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include "Colors.h"
|
||||
#include "Utils.h"
|
||||
|
||||
namespace platform {
|
||||
void CommandParser::messageError(const std::string& message)
|
||||
{
|
||||
std::cout << Colors::RED() << message << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::pair<char, int> CommandParser::parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex)
|
||||
{
|
||||
bool finished = false;
|
||||
while (!finished) {
|
||||
std::stringstream oss;
|
||||
std::string line;
|
||||
oss << color << "Choose option (";
|
||||
bool first = true;
|
||||
for (auto& option : options) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << std::get<char>(option) << "=" << std::get<std::string>(option);
|
||||
}
|
||||
oss << "): ";
|
||||
std::cout << oss.str();
|
||||
getline(std::cin, line);
|
||||
std::cout << Colors::RESET();
|
||||
line = trim(line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
if (all_of(line.begin(), line.end(), ::isdigit)) {
|
||||
command = defaultCommand;
|
||||
index = stoi(line);
|
||||
if (index > maxIndex || index < 0) {
|
||||
messageError("Index out of range");
|
||||
continue;
|
||||
}
|
||||
finished = true;
|
||||
break;
|
||||
}
|
||||
bool found = false;
|
||||
for (auto& option : options) {
|
||||
if (line[0] == std::get<char>(option)) {
|
||||
found = true;
|
||||
// it's a match
|
||||
line.erase(line.begin());
|
||||
line = trim(line);
|
||||
if (std::get<bool>(option)) {
|
||||
// The option requires a value
|
||||
if (line.size() == 0) {
|
||||
messageError("Option " + std::get<std::string>(option) + " requires a value");
|
||||
break;
|
||||
}
|
||||
try {
|
||||
index = stoi(line);
|
||||
if (index > maxIndex || index < 0) {
|
||||
messageError("Index out of range");
|
||||
break;
|
||||
}
|
||||
}
|
||||
catch (const std::invalid_argument& ia) {
|
||||
messageError("Invalid value: " + line);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if (line.size() > 0) {
|
||||
messageError("option " + std::get<std::string>(option) + " doesn't accept values");
|
||||
break;
|
||||
}
|
||||
}
|
||||
command = std::get<char>(option);
|
||||
finished = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
messageError("I don't know " + line);
|
||||
}
|
||||
}
|
||||
return { command, index };
|
||||
}
|
||||
} /* namespace platform */
|
20
src/Platform/CommandParser.h
Normal file
20
src/Platform/CommandParser.h
Normal file
@@ -0,0 +1,20 @@
|
||||
#ifndef COMMAND_PARSER_H
|
||||
#define COMMAND_PARSER_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <tuple>
|
||||
|
||||
namespace platform {
|
||||
class CommandParser {
|
||||
public:
|
||||
CommandParser() = default;
|
||||
std::pair<char, int> parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex);
|
||||
char getCommand() const { return command; };
|
||||
int getIndex() const { return index; };
|
||||
private:
|
||||
void messageError(const std::string& message);
|
||||
char command;
|
||||
int index;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* COMMAND_PARSER_H */
|
215
src/Platform/Dataset.cc
Normal file
215
src/Platform/Dataset.cc
Normal file
@@ -0,0 +1,215 @@
|
||||
#include "Dataset.h"
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
std::string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
std::string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
std::vector<std::string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
std::map<std::string, std::vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<std::vector<std::vector<float>>&, std::vector<int>&> Dataset::getVectors()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xv, yv };
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<std::vector<std::vector<int>>&, std::vector<int>&> Dataset::getVectorsDiscretized()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xd, yv };
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
|
||||
{
|
||||
if (loaded) {
|
||||
buildTensors();
|
||||
return { X, y };
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Dataset::load_csv()
|
||||
{
|
||||
ifstream file(path + "/" + name + ".csv");
|
||||
if (file.is_open()) {
|
||||
std::string line;
|
||||
getline(file, line);
|
||||
std::vector<std::string> tokens = split(line, ',');
|
||||
features = std::vector<std::string>(tokens.begin(), tokens.end() - 1);
|
||||
if (className == "-1") {
|
||||
className = tokens.back();
|
||||
}
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(std::vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = split(line, ',');
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv[i].push_back(stof(tokens[i]));
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::computeStates()
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
}
|
||||
states[className] = std::vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
auto arff = ArffFiles();
|
||||
arff.load(path + "/" + name + ".arff", className);
|
||||
// Get Dataset X, y
|
||||
Xv = arff.getX();
|
||||
yv = arff.getY();
|
||||
// Get className & Features
|
||||
className = arff.getClassName();
|
||||
auto attributes = arff.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
|
||||
}
|
||||
std::vector<std::string> tokenize(std::string line)
|
||||
{
|
||||
std::vector<std::string> tokens;
|
||||
for (auto i = 0; i < line.size(); ++i) {
|
||||
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
|
||||
std::string token = line.substr(0, i);
|
||||
tokens.push_back(token);
|
||||
line.erase(line.begin(), line.begin() + i + 1);
|
||||
i = 0;
|
||||
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
|
||||
line.erase(line.begin(), line.begin() + i + 1);
|
||||
}
|
||||
}
|
||||
if (line.size() > 0) {
|
||||
tokens.push_back(line);
|
||||
}
|
||||
return tokens;
|
||||
}
|
||||
void Dataset::load_rdata()
|
||||
{
|
||||
ifstream file(path + "/" + name + "_R.dat");
|
||||
if (file.is_open()) {
|
||||
std::string line;
|
||||
getline(file, line);
|
||||
line = ArffFiles::trim(line);
|
||||
std::vector<std::string> tokens = tokenize(line);
|
||||
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
|
||||
if (className == "-1") {
|
||||
className = ArffFiles::trim(tokens.back());
|
||||
}
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(std::vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = tokenize(line);
|
||||
// We have to skip the first token, which is the instance number.
|
||||
for (auto i = 1; i < features.size() + 1; ++i) {
|
||||
const float value = stof(tokens[i]);
|
||||
Xv[i - 1].push_back(value);
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::load()
|
||||
{
|
||||
if (loaded) {
|
||||
return;
|
||||
}
|
||||
if (fileType == CSV) {
|
||||
load_csv();
|
||||
} else if (fileType == ARFF) {
|
||||
load_arff();
|
||||
} else if (fileType == RDATA) {
|
||||
load_rdata();
|
||||
}
|
||||
if (discretize) {
|
||||
Xd = discretizeDataset(Xv, yv);
|
||||
computeStates();
|
||||
}
|
||||
n_samples = Xv[0].size();
|
||||
n_features = Xv.size();
|
||||
loaded = true;
|
||||
}
|
||||
void Dataset::buildTensors()
|
||||
{
|
||||
if (discretize) {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
|
||||
} else {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
|
||||
}
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
if (discretize) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
} else {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
|
||||
}
|
||||
}
|
||||
y = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
std::vector<mdlp::labels_t> Dataset::discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
std::vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
}
|
78
src/Platform/Dataset.h
Normal file
78
src/Platform/Dataset.h
Normal file
@@ -0,0 +1,78 @@
|
||||
#ifndef DATASET_H
|
||||
#define DATASET_H
|
||||
#include <torch/torch.h>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Utils.h"
|
||||
namespace platform {
|
||||
enum fileType_t { CSV, ARFF, RDATA };
|
||||
class SourceData {
|
||||
public:
|
||||
SourceData(std::string source)
|
||||
{
|
||||
if (source == "Surcov") {
|
||||
path = "datasets/";
|
||||
fileType = CSV;
|
||||
} else if (source == "Arff") {
|
||||
path = "datasets/";
|
||||
fileType = ARFF;
|
||||
} else if (source == "Tanveer") {
|
||||
path = "data/";
|
||||
fileType = RDATA;
|
||||
} else {
|
||||
throw std::invalid_argument("Unknown source.");
|
||||
}
|
||||
}
|
||||
std::string getPath()
|
||||
{
|
||||
return path;
|
||||
}
|
||||
fileType_t getFileType()
|
||||
{
|
||||
return fileType;
|
||||
}
|
||||
private:
|
||||
std::string path;
|
||||
fileType_t fileType;
|
||||
};
|
||||
class Dataset {
|
||||
private:
|
||||
std::string path;
|
||||
std::string name;
|
||||
fileType_t fileType;
|
||||
std::string className;
|
||||
int n_samples{ 0 }, n_features{ 0 };
|
||||
std::vector<std::string> features;
|
||||
std::map<std::string, std::vector<int>> states;
|
||||
bool loaded;
|
||||
bool discretize;
|
||||
torch::Tensor X, y;
|
||||
std::vector<std::vector<float>> Xv;
|
||||
std::vector<std::vector<int>> Xd;
|
||||
std::vector<int> yv;
|
||||
void buildTensors();
|
||||
void load_csv();
|
||||
void load_arff();
|
||||
void load_rdata();
|
||||
void computeStates();
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
public:
|
||||
Dataset(const std::string& path, const std::string& name, const std::string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
std::string getName() const;
|
||||
std::string getClassName() const;
|
||||
std::vector<string> getFeatures() const;
|
||||
std::map<std::string, std::vector<int>> getStates() const;
|
||||
std::pair<vector<std::vector<float>>&, std::vector<int>&> getVectors();
|
||||
std::pair<vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized();
|
||||
std::pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -1,46 +1,56 @@
|
||||
#include "Datasets.h"
|
||||
#include "platformUtils.h"
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
void Datasets::load()
|
||||
{
|
||||
ifstream catalog(path + "/all.txt");
|
||||
auto sd = SourceData(sfileType);
|
||||
fileType = sd.getFileType();
|
||||
path = sd.getPath();
|
||||
ifstream catalog(path + "all.txt");
|
||||
if (catalog.is_open()) {
|
||||
string line;
|
||||
std::string line;
|
||||
while (getline(catalog, line)) {
|
||||
vector<string> tokens = split(line, ',');
|
||||
string name = tokens[0];
|
||||
string className = tokens[1];
|
||||
if (line.empty() || line[0] == '#') {
|
||||
continue;
|
||||
}
|
||||
std::vector<std::string> tokens = split(line, ',');
|
||||
std::string name = tokens[0];
|
||||
std::string className;
|
||||
if (tokens.size() == 1) {
|
||||
className = "-1";
|
||||
} else {
|
||||
className = tokens[1];
|
||||
}
|
||||
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
|
||||
}
|
||||
catalog.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open catalog file. [" + path + "/all.txt" + "]");
|
||||
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
|
||||
}
|
||||
}
|
||||
vector<string> Datasets::getNames()
|
||||
std::vector<std::string> Datasets::getNames()
|
||||
{
|
||||
vector<string> result;
|
||||
std::vector<std::string> result;
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Datasets::getFeatures(const string& name) const
|
||||
std::vector<std::string> Datasets::getFeatures(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getFeatures();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Datasets::getStates(const string& name) const
|
||||
map<std::string, std::vector<int>> Datasets::getStates(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getStates();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Datasets::loadDataset(const string& name) const
|
||||
void Datasets::loadDataset(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return;
|
||||
@@ -48,23 +58,23 @@ namespace platform {
|
||||
datasets.at(name)->load();
|
||||
}
|
||||
}
|
||||
string Datasets::getClassName(const string& name) const
|
||||
std::string Datasets::getClassName(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getClassName();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNSamples(const string& name) const
|
||||
int Datasets::getNSamples(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getNSamples();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNClasses(const string& name)
|
||||
int Datasets::getNClasses(const std::string& name)
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto className = datasets.at(name)->getClassName();
|
||||
@@ -73,194 +83,47 @@ namespace platform {
|
||||
return states.at(className).size();
|
||||
}
|
||||
auto [Xv, yv] = getVectors(name);
|
||||
return *max_element(yv.begin(), yv.end()) + 1;
|
||||
return *std::max_element(yv.begin(), yv.end()) + 1;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
vector<int> Datasets::getClassesCounts(const string& name) const
|
||||
std::vector<int> Datasets::getClassesCounts(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto [Xv, yv] = datasets.at(name)->getVectors();
|
||||
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
|
||||
std::vector<int> counts(*std::max_element(yv.begin(), yv.end()) + 1);
|
||||
for (auto y : yv) {
|
||||
counts[y]++;
|
||||
}
|
||||
return counts;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
|
||||
pair<std::vector<std::vector<float>>&, std::vector<int>&> Datasets::getVectors(const std::string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectors();
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
|
||||
pair<std::vector<std::vector<int>>&, std::vector<int>&> Datasets::getVectorsDiscretized(const std::string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectorsDiscretized();
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const std::string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getTensors();
|
||||
}
|
||||
bool Datasets::isDataset(const string& name) const
|
||||
bool Datasets::isDataset(const std::string& name) const
|
||||
{
|
||||
return datasets.find(name) != datasets.end();
|
||||
}
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
vector<string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xv, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xd, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
|
||||
{
|
||||
if (loaded) {
|
||||
buildTensors();
|
||||
return { X, y };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Dataset::load_csv()
|
||||
{
|
||||
ifstream file(path + "/" + name + ".csv");
|
||||
if (file.is_open()) {
|
||||
string line;
|
||||
getline(file, line);
|
||||
vector<string> tokens = split(line, ',');
|
||||
features = vector<string>(tokens.begin(), tokens.end() - 1);
|
||||
className = tokens.back();
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = split(line, ',');
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv[i].push_back(stof(tokens[i]));
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::computeStates()
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
||||
}
|
||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states[className]), end(states[className]), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
auto arff = ArffFiles();
|
||||
arff.load(path + "/" + name + ".arff", className);
|
||||
// Get Dataset X, y
|
||||
Xv = arff.getX();
|
||||
yv = arff.getY();
|
||||
// Get className & Features
|
||||
className = arff.getClassName();
|
||||
auto attributes = arff.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
|
||||
}
|
||||
void Dataset::load()
|
||||
{
|
||||
if (loaded) {
|
||||
return;
|
||||
}
|
||||
if (fileType == CSV) {
|
||||
load_csv();
|
||||
} else if (fileType == ARFF) {
|
||||
load_arff();
|
||||
}
|
||||
if (discretize) {
|
||||
Xd = discretizeDataset(Xv, yv);
|
||||
computeStates();
|
||||
}
|
||||
n_samples = Xv[0].size();
|
||||
n_features = Xv.size();
|
||||
loaded = true;
|
||||
}
|
||||
void Dataset::buildTensors()
|
||||
{
|
||||
if (discretize) {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
|
||||
} else {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
|
||||
}
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
if (discretize) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
} else {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
|
||||
}
|
||||
}
|
||||
y = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
}
|
@@ -1,67 +1,29 @@
|
||||
#ifndef DATASETS_H
|
||||
#define DATASETS_H
|
||||
#include <torch/torch.h>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "Dataset.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
enum fileType_t { CSV, ARFF };
|
||||
class Dataset {
|
||||
private:
|
||||
string path;
|
||||
string name;
|
||||
fileType_t fileType;
|
||||
string className;
|
||||
int n_samples{ 0 }, n_features{ 0 };
|
||||
vector<string> features;
|
||||
map<string, vector<int>> states;
|
||||
bool loaded;
|
||||
bool discretize;
|
||||
torch::Tensor X, y;
|
||||
vector<vector<float>> Xv;
|
||||
vector<vector<int>> Xd;
|
||||
vector<int> yv;
|
||||
void buildTensors();
|
||||
void load_csv();
|
||||
void load_arff();
|
||||
void computeStates();
|
||||
public:
|
||||
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
string getName() const;
|
||||
string getClassName() const;
|
||||
vector<string> getFeatures() const;
|
||||
map<string, vector<int>> getStates() const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors();
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
class Datasets {
|
||||
private:
|
||||
string path;
|
||||
std::string path;
|
||||
fileType_t fileType;
|
||||
map<string, unique_ptr<Dataset>> datasets;
|
||||
std::string sfileType;
|
||||
std::map<std::string, std::unique_ptr<Dataset>> datasets;
|
||||
bool discretize;
|
||||
void load(); // Loads the list of datasets
|
||||
public:
|
||||
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
|
||||
vector<string> getNames();
|
||||
vector<string> getFeatures(const string& name) const;
|
||||
int getNSamples(const string& name) const;
|
||||
string getClassName(const string& name) const;
|
||||
int getNClasses(const string& name);
|
||||
vector<int> getClassesCounts(const string& name) const;
|
||||
map<string, vector<int>> getStates(const string& name) const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
|
||||
bool isDataset(const string& name) const;
|
||||
void loadDataset(const string& name) const;
|
||||
explicit Datasets(bool discretize, std::string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
|
||||
std::vector<string> getNames();
|
||||
std::vector<string> getFeatures(const std::string& name) const;
|
||||
int getNSamples(const std::string& name) const;
|
||||
std::string getClassName(const std::string& name) const;
|
||||
int getNClasses(const std::string& name);
|
||||
std::vector<int> getClassesCounts(const std::string& name) const;
|
||||
std::map<std::string, std::vector<int>> getStates(const std::string& name) const;
|
||||
std::pair<std::vector<std::vector<float>>&, std::vector<int>&> getVectors(const std::string& name);
|
||||
std::pair<std::vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized(const std::string& name);
|
||||
std::pair<torch::Tensor&, torch::Tensor&> getTensors(const std::string& name);
|
||||
bool isDataset(const std::string& name) const;
|
||||
void loadDataset(const std::string& name) const;
|
||||
};
|
||||
};
|
||||
|
||||
|
@@ -4,22 +4,15 @@
|
||||
#include <map>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "platformUtils.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include "Utils.h"
|
||||
|
||||
//#include "Dataset.h"
|
||||
namespace platform {
|
||||
class DotEnv {
|
||||
private:
|
||||
std::map<std::string, std::string> env;
|
||||
std::string trim(const std::string& str)
|
||||
{
|
||||
std::string result = str;
|
||||
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}));
|
||||
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}).base(), result.end());
|
||||
return result;
|
||||
}
|
||||
public:
|
||||
DotEnv()
|
||||
{
|
||||
@@ -43,7 +36,7 @@ namespace platform {
|
||||
}
|
||||
std::string get(const std::string& key)
|
||||
{
|
||||
return env[key];
|
||||
return env.at(key);
|
||||
}
|
||||
std::vector<int> getSeeds()
|
||||
{
|
||||
|
168
src/Platform/ExcelFile.cc
Normal file
168
src/Platform/ExcelFile.cc
Normal file
@@ -0,0 +1,168 @@
|
||||
#include "ExcelFile.h"
|
||||
|
||||
namespace platform {
|
||||
ExcelFile::ExcelFile()
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
ExcelFile::ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet) : workbook(workbook), worksheet(worksheet)
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
void ExcelFile::setDefault()
|
||||
{
|
||||
normalSize = 14; //font size for report body
|
||||
row = 0;
|
||||
colorTitle = 0xB1A0C7;
|
||||
colorOdd = 0xDCE6F1;
|
||||
colorEven = 0xFDE9D9;
|
||||
}
|
||||
|
||||
lxw_workbook* ExcelFile::getWorkbook()
|
||||
{
|
||||
return workbook;
|
||||
}
|
||||
void ExcelFile::setProperties(std::string title)
|
||||
{
|
||||
char line[title.size() + 1];
|
||||
strcpy(line, title.c_str());
|
||||
lxw_doc_properties properties = {
|
||||
.title = line,
|
||||
.subject = (char*)"Machine learning results",
|
||||
.author = (char*)"Ricardo Montañana Gómez",
|
||||
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
|
||||
.company = (char*)"UCLM",
|
||||
.comments = (char*)"Created with libxlsxwriter and c++",
|
||||
};
|
||||
workbook_set_properties(workbook, &properties);
|
||||
}
|
||||
lxw_format* ExcelFile::efectiveStyle(const std::string& style)
|
||||
{
|
||||
lxw_format* efectiveStyle = NULL;
|
||||
if (style != "") {
|
||||
std::string suffix = row % 2 ? "_odd" : "_even";
|
||||
try {
|
||||
efectiveStyle = styles.at(style + suffix);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
try {
|
||||
efectiveStyle = styles.at(style);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
throw std::invalid_argument("Style " + style + " not found");
|
||||
}
|
||||
}
|
||||
}
|
||||
return efectiveStyle;
|
||||
}
|
||||
void ExcelFile::writeString(int row, int col, const std::string& text, const std::string& style)
|
||||
{
|
||||
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::writeInt(int row, int col, const int number, const std::string& style)
|
||||
{
|
||||
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::writeDouble(int row, int col, const double number, const std::string& style)
|
||||
{
|
||||
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::addColor(lxw_format* style, bool odd)
|
||||
{
|
||||
uint32_t efectiveColor = odd ? colorEven : colorOdd;
|
||||
format_set_bg_color(style, lxw_color_t(efectiveColor));
|
||||
}
|
||||
void ExcelFile::createStyle(const std::string& name, lxw_format* style, bool odd)
|
||||
{
|
||||
addColor(style, odd);
|
||||
if (name == "textCentered") {
|
||||
format_set_align(style, LXW_ALIGN_CENTER);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "text") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "bodyHeader") {
|
||||
format_set_bold(style);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_align(style, LXW_ALIGN_CENTER);
|
||||
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_bg_color(style, lxw_color_t(colorTitle));
|
||||
} else if (name == "result") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_num_format(style, "0.0000000");
|
||||
} else if (name == "time") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_num_format(style, "#,##0.000000");
|
||||
} else if (name == "ints") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_num_format(style, "###,##0");
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "floats") {
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_num_format(style, "#,##0.00");
|
||||
}
|
||||
}
|
||||
|
||||
void ExcelFile::createFormats()
|
||||
{
|
||||
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
|
||||
lxw_format* style;
|
||||
for (std::string name : styleNames) {
|
||||
lxw_format* style = workbook_add_format(workbook);
|
||||
style = workbook_add_format(workbook);
|
||||
createStyle(name, style, true);
|
||||
styles[name + "_odd"] = style;
|
||||
style = workbook_add_format(workbook);
|
||||
createStyle(name, style, false);
|
||||
styles[name + "_even"] = style;
|
||||
}
|
||||
|
||||
// Header 1st line
|
||||
lxw_format* headerFirst = workbook_add_format(workbook);
|
||||
format_set_bold(headerFirst);
|
||||
format_set_font_size(headerFirst, 18);
|
||||
format_set_align(headerFirst, LXW_ALIGN_CENTER);
|
||||
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(headerFirst, LXW_BORDER_THIN);
|
||||
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
|
||||
|
||||
// Header rest
|
||||
lxw_format* headerRest = workbook_add_format(workbook);
|
||||
format_set_bold(headerRest);
|
||||
format_set_align(headerRest, LXW_ALIGN_CENTER);
|
||||
format_set_font_size(headerRest, 16);
|
||||
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(headerRest, LXW_BORDER_THIN);
|
||||
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
|
||||
|
||||
// Header small
|
||||
lxw_format* headerSmall = workbook_add_format(workbook);
|
||||
format_set_bold(headerSmall);
|
||||
format_set_align(headerSmall, LXW_ALIGN_LEFT);
|
||||
format_set_font_size(headerSmall, 12);
|
||||
format_set_border(headerSmall, LXW_BORDER_THIN);
|
||||
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
|
||||
|
||||
// Summary style
|
||||
lxw_format* summaryStyle = workbook_add_format(workbook);
|
||||
format_set_bold(summaryStyle);
|
||||
format_set_font_size(summaryStyle, 16);
|
||||
format_set_border(summaryStyle, LXW_BORDER_THIN);
|
||||
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
|
||||
|
||||
styles["headerFirst"] = headerFirst;
|
||||
styles["headerRest"] = headerRest;
|
||||
styles["headerSmall"] = headerSmall;
|
||||
styles["summaryStyle"] = summaryStyle;
|
||||
}
|
||||
}
|
43
src/Platform/ExcelFile.h
Normal file
43
src/Platform/ExcelFile.h
Normal file
@@ -0,0 +1,43 @@
|
||||
#ifndef EXCELFILE_H
|
||||
#define EXCELFILE_H
|
||||
#include <locale>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "xlsxwriter.h"
|
||||
|
||||
namespace platform {
|
||||
struct separated : std::numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
|
||||
std::string do_grouping() const { return "\03"; }
|
||||
};
|
||||
class ExcelFile {
|
||||
public:
|
||||
ExcelFile();
|
||||
ExcelFile(lxw_workbook* workbook);
|
||||
ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet);
|
||||
lxw_workbook* getWorkbook();
|
||||
protected:
|
||||
void setProperties(std::string title);
|
||||
void writeString(int row, int col, const std::string& text, const std::string& style = "");
|
||||
void writeInt(int row, int col, const int number, const std::string& style = "");
|
||||
void writeDouble(int row, int col, const double number, const std::string& style = "");
|
||||
void createFormats();
|
||||
void createStyle(const std::string& name, lxw_format* style, bool odd);
|
||||
void addColor(lxw_format* style, bool odd);
|
||||
lxw_format* efectiveStyle(const std::string& name);
|
||||
lxw_workbook* workbook;
|
||||
lxw_worksheet* worksheet;
|
||||
std::map<std::string, lxw_format*> styles;
|
||||
int row;
|
||||
int normalSize; //font size for report body
|
||||
uint32_t colorTitle;
|
||||
uint32_t colorOdd;
|
||||
uint32_t colorEven;
|
||||
private:
|
||||
void setDefault();
|
||||
};
|
||||
}
|
||||
#endif // !EXCELFILE_H
|
@@ -1,11 +1,12 @@
|
||||
#include <fstream>
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
#include "ReportConsole.h"
|
||||
|
||||
#include "Paths.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
string get_date()
|
||||
std::string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
@@ -15,7 +16,7 @@ namespace platform {
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
string get_time()
|
||||
std::string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
@@ -25,10 +26,9 @@ namespace platform {
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
|
||||
string Experiment::get_file_name()
|
||||
std::string Experiment::get_file_name()
|
||||
{
|
||||
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -80,7 +80,7 @@ namespace platform {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Experiment::save(const string& path)
|
||||
void Experiment::save(const std::string& path)
|
||||
{
|
||||
json data = build_json();
|
||||
ofstream file(path + "/" + get_file_name());
|
||||
@@ -98,35 +98,57 @@ namespace platform {
|
||||
void Experiment::show()
|
||||
{
|
||||
json data = build_json();
|
||||
cout << data.dump(4) << endl;
|
||||
std::cout << data.dump(4) << std::endl;
|
||||
}
|
||||
|
||||
void Experiment::go(vector<string> filesToProcess, const string& path)
|
||||
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet)
|
||||
{
|
||||
cout << "*** Starting experiment: " << title << " ***" << endl;
|
||||
std::cout << "*** Starting experiment: " << title << " ***" << std::endl;
|
||||
for (auto fileName : filesToProcess) {
|
||||
cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
cross_validation(path, fileName);
|
||||
cout << endl;
|
||||
std::cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
cross_validation(fileName, quiet);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void Experiment::cross_validation(const string& path, const string& fileName)
|
||||
std::string getColor(bayesnet::status_t status)
|
||||
{
|
||||
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
|
||||
void showProgress(int fold, const std::string& color, const std::string& phase)
|
||||
{
|
||||
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
|
||||
}
|
||||
void Experiment::cross_validation(const std::string& fileName, bool quiet)
|
||||
{
|
||||
auto datasets = Datasets(discretized, Paths::datasets());
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
if (!quiet) {
|
||||
std::cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
}
|
||||
// Prepare Result
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
result.setHyperparameters(hyperparameters);
|
||||
// Initialize results vectors
|
||||
result.setHyperparameters(hyperparameters.get(fileName));
|
||||
// Initialize results std::vectors
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
|
||||
@@ -138,7 +160,8 @@ namespace platform {
|
||||
Timer train_timer, test_timer;
|
||||
int item = 0;
|
||||
for (auto seed : randomSeeds) {
|
||||
cout << "(" << seed << ") doing Fold: " << flush;
|
||||
if (!quiet)
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nfolds, y, seed);
|
||||
@@ -147,9 +170,9 @@ namespace platform {
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
if (hyperparameters.size() != 0) {
|
||||
clf->setHyperparameters(hyperparameters);
|
||||
}
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// Split train - test dataset
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
@@ -159,28 +182,38 @@ namespace platform {
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
// Score train
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
// Store results and times in vector
|
||||
if (!quiet)
|
||||
std::cout << "\b\b\b, " << flush;
|
||||
// Store results and times in std::vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
if (!quiet)
|
||||
std::cout << "end. " << flush;
|
||||
delete fold;
|
||||
}
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
|
@@ -3,41 +3,27 @@
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <chrono>
|
||||
#include "Folding.h"
|
||||
#include "BaseClassifier.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "AODE.h"
|
||||
#include "Timer.h"
|
||||
|
||||
using namespace std;
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class Timer {
|
||||
private:
|
||||
chrono::high_resolution_clock::time_point begin;
|
||||
public:
|
||||
Timer() = default;
|
||||
~Timer() = default;
|
||||
void start() { begin = chrono::high_resolution_clock::now(); }
|
||||
double getDuration()
|
||||
{
|
||||
chrono::high_resolution_clock::time_point end = chrono::high_resolution_clock::now();
|
||||
chrono::duration<double> time_span = chrono::duration_cast<chrono::duration<double>>(end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
};
|
||||
class Result {
|
||||
private:
|
||||
string dataset, model_version;
|
||||
std::string dataset, model_version;
|
||||
json hyperparameters;
|
||||
int samples{ 0 }, features{ 0 }, classes{ 0 };
|
||||
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
|
||||
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
|
||||
vector<double> scores_train, scores_test, times_train, times_test;
|
||||
std::vector<double> scores_train, scores_test, times_train, times_test;
|
||||
public:
|
||||
Result() = default;
|
||||
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
|
||||
Result& setDataset(const std::string& dataset) { this->dataset = dataset; return *this; }
|
||||
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setSamples(int samples) { this->samples = samples; return *this; }
|
||||
Result& setFeatures(int features) { this->features = features; return *this; }
|
||||
@@ -59,7 +45,7 @@ namespace platform {
|
||||
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
|
||||
const float get_score_train() const { return score_train; }
|
||||
float get_score_test() { return score_test; }
|
||||
const string& getDataset() const { return dataset; }
|
||||
const std::string& getDataset() const { return dataset; }
|
||||
const json& getHyperparameters() const { return hyperparameters; }
|
||||
const int getSamples() const { return samples; }
|
||||
const int getFeatures() const { return features; }
|
||||
@@ -75,43 +61,43 @@ namespace platform {
|
||||
const float getNodes() const { return nodes; }
|
||||
const float getLeaves() const { return leaves; }
|
||||
const float getDepth() const { return depth; }
|
||||
const vector<double>& getScoresTrain() const { return scores_train; }
|
||||
const vector<double>& getScoresTest() const { return scores_test; }
|
||||
const vector<double>& getTimesTrain() const { return times_train; }
|
||||
const vector<double>& getTimesTest() const { return times_test; }
|
||||
const std::vector<double>& getScoresTrain() const { return scores_train; }
|
||||
const std::vector<double>& getScoresTest() const { return scores_test; }
|
||||
const std::vector<double>& getTimesTrain() const { return times_train; }
|
||||
const std::vector<double>& getTimesTest() const { return times_test; }
|
||||
};
|
||||
class Experiment {
|
||||
private:
|
||||
string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized{ false }, stratified{ false };
|
||||
vector<Result> results;
|
||||
vector<int> randomSeeds;
|
||||
json hyperparameters = "{}";
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
public:
|
||||
Experiment();
|
||||
Experiment& setTitle(const string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
|
||||
Experiment& setScoreName(const string& score_name) { this->score_name = score_name; return *this; }
|
||||
Experiment& setModelVersion(const string& model_version) { this->model_version = model_version; return *this; }
|
||||
Experiment& setLanguage(const string& language) { this->language = language; return *this; }
|
||||
Experiment& setLanguageVersion(const string& language_version) { this->language_version = language_version; return *this; }
|
||||
Experiment() = default;
|
||||
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
|
||||
Experiment& setScoreName(const std::string& score_name) { this->score_name = score_name; return *this; }
|
||||
Experiment& setModelVersion(const std::string& model_version) { this->model_version = model_version; return *this; }
|
||||
Experiment& setLanguage(const std::string& language) { this->language = language; return *this; }
|
||||
Experiment& setLanguageVersion(const std::string& language_version) { this->language_version = language_version; return *this; }
|
||||
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
|
||||
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
|
||||
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
string get_file_name();
|
||||
void save(const string& path);
|
||||
void cross_validation(const string& path, const string& fileName);
|
||||
void go(vector<string> filesToProcess, const string& path);
|
||||
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
|
||||
std::string get_file_name();
|
||||
void save(const std::string& path);
|
||||
void cross_validation(const std::string& fileName, bool quiet);
|
||||
void go(std::vector<std::string> filesToProcess, bool quiet);
|
||||
void show();
|
||||
void report();
|
||||
private:
|
||||
std::string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized{ false }, stratified{ false };
|
||||
std::vector<Result> results;
|
||||
std::vector<int> randomSeeds;
|
||||
HyperParameters hyperparameters;
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,95 +1,104 @@
|
||||
#include "Folding.h"
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
|
||||
{
|
||||
random_device rd;
|
||||
random_seed = default_random_engine(seed == -1 ? rd() : seed);
|
||||
srand(seed == -1 ? time(0) : seed);
|
||||
}
|
||||
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
|
||||
{
|
||||
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
namespace platform {
|
||||
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
|
||||
{
|
||||
std::random_device rd;
|
||||
random_seed = std::default_random_engine(seed == -1 ? rd() : seed);
|
||||
std::srand(seed == -1 ? time(0) : seed);
|
||||
}
|
||||
int nTest = n / k;
|
||||
auto train = vector<int>();
|
||||
auto test = vector<int>();
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
||||
test.push_back(indices[i]);
|
||||
} else {
|
||||
train.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
return { train, test };
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
|
||||
{
|
||||
n = y.numel();
|
||||
this->y = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
||||
build();
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
|
||||
: Fold(k, y.size(), seed)
|
||||
{
|
||||
this->y = y;
|
||||
n = y.size();
|
||||
build();
|
||||
}
|
||||
void StratifiedKFold::build()
|
||||
{
|
||||
stratified_indices = vector<vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
// Compute class counts and indices
|
||||
auto class_indices = map<int, vector<int>>();
|
||||
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
for (auto i = 0; i < n; ++i) {
|
||||
class_counts[y[i]]++;
|
||||
class_indices[y[i]].push_back(i);
|
||||
}
|
||||
// Shuffle class indices
|
||||
for (auto& [cls, indices] : class_indices) {
|
||||
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(std::vector<int>(n))
|
||||
{
|
||||
std::iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts[label] / k;
|
||||
if (num_samples_to_take == 0)
|
||||
continue;
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
std::pair<std::vector<int>, std::vector<int>> KFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
|
||||
}
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (stratified_indices[fold].size() == fold_size + 1) {
|
||||
int nTest = n / k;
|
||||
auto train = std::vector<int>();
|
||||
auto test = std::vector<int>();
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
||||
test.push_back(indices[i]);
|
||||
} else {
|
||||
train.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
return { train, test };
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
|
||||
{
|
||||
n = y.numel();
|
||||
this->y = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
||||
build();
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, const std::vector<int>& y, int seed)
|
||||
: Fold(k, y.size(), seed)
|
||||
{
|
||||
this->y = y;
|
||||
n = y.size();
|
||||
build();
|
||||
}
|
||||
void StratifiedKFold::build()
|
||||
{
|
||||
stratified_indices = std::vector<std::vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
|
||||
// Compute class counts and indices
|
||||
auto class_indices = std::map<int, std::vector<int>>();
|
||||
std::vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
for (auto i = 0; i < n; ++i) {
|
||||
class_counts[y[i]]++;
|
||||
class_indices[y[i]].push_back(i);
|
||||
}
|
||||
// Shuffle class indices
|
||||
for (auto& [cls, indices] : class_indices) {
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts.at(label) / k;
|
||||
if (num_samples_to_take == 0) {
|
||||
std::cerr << "Warning! The number of samples in class " << label << " (" << class_counts.at(label)
|
||||
<< ") is less than the number of folds (" << k << ")." << std::endl;
|
||||
faulty = true;
|
||||
continue;
|
||||
}
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
remainder_samples_to_take--;
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
}
|
||||
auto chosen = std::vector<bool>(k, false);
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (chosen.at(fold)) {
|
||||
continue;
|
||||
}
|
||||
chosen[fold] = true;
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
remainder_samples_to_take--;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
|
||||
std::pair<std::vector<int>, std::vector<int>> StratifiedKFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
|
||||
}
|
||||
std::vector<int> test_indices = stratified_indices[nFold];
|
||||
std::vector<int> train_indices;
|
||||
for (int i = 0; i < k; ++i) {
|
||||
if (i == nFold) continue;
|
||||
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
||||
vector<int> test_indices = stratified_indices[nFold];
|
||||
vector<int> train_indices;
|
||||
for (int i = 0; i < k; ++i) {
|
||||
if (i == nFold) continue;
|
||||
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
@@ -3,35 +3,37 @@
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
using namespace std;
|
||||
|
||||
class Fold {
|
||||
protected:
|
||||
int k;
|
||||
int n;
|
||||
int seed;
|
||||
default_random_engine random_seed;
|
||||
public:
|
||||
Fold(int k, int n, int seed = -1);
|
||||
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
|
||||
virtual ~Fold() = default;
|
||||
int getNumberOfFolds() { return k; }
|
||||
};
|
||||
class KFold : public Fold {
|
||||
private:
|
||||
vector<int> indices;
|
||||
public:
|
||||
KFold(int k, int n, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
class StratifiedKFold : public Fold {
|
||||
private:
|
||||
vector<int> y;
|
||||
vector<vector<int>> stratified_indices;
|
||||
void build();
|
||||
public:
|
||||
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
namespace platform {
|
||||
class Fold {
|
||||
protected:
|
||||
int k;
|
||||
int n;
|
||||
int seed;
|
||||
std::default_random_engine random_seed;
|
||||
public:
|
||||
Fold(int k, int n, int seed = -1);
|
||||
virtual std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) = 0;
|
||||
virtual ~Fold() = default;
|
||||
int getNumberOfFolds() { return k; }
|
||||
};
|
||||
class KFold : public Fold {
|
||||
private:
|
||||
std::vector<int> indices;
|
||||
public:
|
||||
KFold(int k, int n, int seed = -1);
|
||||
std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
class StratifiedKFold : public Fold {
|
||||
private:
|
||||
std::vector<int> y;
|
||||
std::vector<std::vector<int>> stratified_indices;
|
||||
void build();
|
||||
bool faulty = false; // Only true if the number of samples of any class is less than the number of folds.
|
||||
public:
|
||||
StratifiedKFold(int k, const std::vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override;
|
||||
bool isFaulty() { return faulty; }
|
||||
};
|
||||
}
|
||||
#endif
|
75
src/Platform/GridData.cc
Normal file
75
src/Platform/GridData.cc
Normal file
@@ -0,0 +1,75 @@
|
||||
#include "GridData.h"
|
||||
#include <fstream>
|
||||
|
||||
namespace platform {
|
||||
GridData::GridData(const std::string& fileName)
|
||||
{
|
||||
json grid_file;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
grid_file = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
||||
}
|
||||
for (const auto& item : grid_file.items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
grid[key] = value;
|
||||
}
|
||||
|
||||
}
|
||||
int GridData::computeNumCombinations(const json& line)
|
||||
{
|
||||
int numCombinations = 1;
|
||||
for (const auto& item : line.items()) {
|
||||
numCombinations *= item.value().size();
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
int GridData::getNumCombinations(const std::string& dataset)
|
||||
{
|
||||
int numCombinations = 0;
|
||||
auto selected = decide_dataset(dataset);
|
||||
for (const auto& line : grid.at(selected)) {
|
||||
numCombinations += computeNumCombinations(line);
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
|
||||
{
|
||||
if (index == last) {
|
||||
// If we reached the end of input, store the current combination
|
||||
output.push_back(currentCombination);
|
||||
return currentCombination;
|
||||
}
|
||||
const auto& key = index.key();
|
||||
const auto& values = index.value();
|
||||
for (const auto& value : values) {
|
||||
auto combination = currentCombination;
|
||||
combination[key] = value;
|
||||
json::iterator nextIndex = index;
|
||||
generateCombinations(++nextIndex, last, output, combination);
|
||||
}
|
||||
return currentCombination;
|
||||
}
|
||||
std::vector<json> GridData::getGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
auto result = std::vector<json>();
|
||||
for (json line : grid.at(selected)) {
|
||||
generateCombinations(line.begin(), line.end(), result, json({}));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
json& GridData::getInputGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
return grid.at(selected);
|
||||
}
|
||||
std::string GridData::decide_dataset(const std::string& dataset)
|
||||
{
|
||||
if (grid.find(dataset) != grid.end())
|
||||
return dataset;
|
||||
return ALL_DATASETS;
|
||||
}
|
||||
} /* namespace platform */
|
26
src/Platform/GridData.h
Normal file
26
src/Platform/GridData.h
Normal file
@@ -0,0 +1,26 @@
|
||||
#ifndef GRIDDATA_H
|
||||
#define GRIDDATA_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
const std::string ALL_DATASETS = "all";
|
||||
class GridData {
|
||||
public:
|
||||
explicit GridData(const std::string& fileName);
|
||||
~GridData() = default;
|
||||
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
|
||||
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
|
||||
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
|
||||
std::map<std::string, json>& getGridFile() { return grid; }
|
||||
private:
|
||||
std::string decide_dataset(const std::string& dataset);
|
||||
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
||||
int computeNumCombinations(const json& line);
|
||||
std::map<std::string, json> grid;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDDATA_H */
|
441
src/Platform/GridSearch.cc
Normal file
441
src/Platform/GridSearch.cc
Normal file
@@ -0,0 +1,441 @@
|
||||
#include <iostream>
|
||||
#include <cstddef>
|
||||
#include <torch/torch.h>
|
||||
#include "GridSearch.h"
|
||||
#include "Models.h"
|
||||
#include "Paths.h"
|
||||
#include "Folding.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
std::string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_color_rank(int rank)
|
||||
{
|
||||
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
||||
return *(colors.begin() + rank % colors.size());
|
||||
}
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
}
|
||||
json GridSearch::loadResults()
|
||||
{
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
return json::parse(file);
|
||||
}
|
||||
return json();
|
||||
}
|
||||
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets_names = datasets.getNames();
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
// Continue previous execution:
|
||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||
}
|
||||
// Remove datasets already processed
|
||||
std::vector<string>::iterator it = datasets_names.begin();
|
||||
while (it != datasets_names.end()) {
|
||||
if (*it != config.continue_from) {
|
||||
it = datasets_names.erase(it);
|
||||
} else {
|
||||
if (config.only)
|
||||
++it;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Exclude datasets
|
||||
for (const auto& name : config.excluded) {
|
||||
auto dataset = name.get<std::string>();
|
||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||
if (it == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||
}
|
||||
datasets_names.erase(it);
|
||||
}
|
||||
return datasets_names;
|
||||
}
|
||||
json GridSearch::build_tasks_mpi(int rank)
|
||||
{
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << "|";
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << "|" << std::endl << "|" << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
// initialize
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
// Generate the hyperparamters combinations
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
auto [X, y] = datasets.getTensors(dataset);
|
||||
auto states = datasets.getStates(dataset);
|
||||
auto features = datasets.getFeatures(dataset);
|
||||
auto className = datasets.getClassName(dataset);
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
double best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset));
|
||||
// Train model
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
// Return the result
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
// Update progress bar
|
||||
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
}
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridSearch::go(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the used datasets in the actual run not to the whole datasets
|
||||
* "seed": # of seed to use,
|
||||
* "Fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 0. Create the MPI result type & tasks
|
||||
* 0.1 Create the MPI result type
|
||||
* 0.2 Manager creates the tasks
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2a. Producer delivers the tasks to the consumers
|
||||
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
* 2a.2 Producer will send the end message to all the consumers
|
||||
* 2b. Consumers process the tasks and send the results to the producer
|
||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
* 2b.2 Consumers receive the task from the producer and process it
|
||||
* 2b.3 Consumers send the result to the producer
|
||||
* 3. Manager select the bests sccores for each dataset
|
||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||
* 3.2 Save the results
|
||||
*/
|
||||
//
|
||||
// 0.1 Create the MPI result type
|
||||
//
|
||||
Task_Result result;
|
||||
int tasks_size;
|
||||
MPI_Datatype MPI_Result;
|
||||
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
|
||||
int blocklen[5] = { 1, 1, 1, 1, 1 };
|
||||
MPI_Aint disp[5];
|
||||
disp[0] = offsetof(Task_Result, idx_dataset);
|
||||
disp[1] = offsetof(Task_Result, idx_combination);
|
||||
disp[2] = offsetof(Task_Result, n_fold);
|
||||
disp[3] = offsetof(Task_Result, score);
|
||||
disp[4] = offsetof(Task_Result, time);
|
||||
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
|
||||
MPI_Type_commit(&MPI_Result);
|
||||
//
|
||||
// 0.2 Manager creates the tasks
|
||||
//
|
||||
char* msg;
|
||||
json tasks;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
tasks = build_tasks_mpi(config_mpi.rank);
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
//
|
||||
// 2a. Producer delivers the tasks to the consumers
|
||||
//
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
|
||||
//
|
||||
// 3. Manager select the bests sccores for each dataset
|
||||
//
|
||||
auto results = initializeResults();
|
||||
select_best_results_folds(results, all_results, config.model);
|
||||
//
|
||||
// 3.2 Save the results
|
||||
//
|
||||
save(results);
|
||||
} else {
|
||||
//
|
||||
// 2b. Consumers process the tasks and send the results to the producer
|
||||
//
|
||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
json GridSearch::initializeResults()
|
||||
{
|
||||
// Load previous results if continue is set
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
results = json::parse(file);
|
||||
results = results["results"];
|
||||
}
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << "* There were no previous results" << std::endl;
|
||||
std::cerr << "* Initizalizing new results" << std::endl;
|
||||
results = json();
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridSearch::save(json& results)
|
||||
{
|
||||
std::ofstream file(Paths::grid_output(config.model));
|
||||
json output = {
|
||||
{ "model", config.model },
|
||||
{ "score", config.score },
|
||||
{ "discretize", config.discretize },
|
||||
{ "stratified", config.stratified },
|
||||
{ "n_folds", config.n_folds },
|
||||
{ "seeds", config.seeds },
|
||||
{ "date", get_date() + " " + get_time()},
|
||||
{ "nested", config.nested},
|
||||
{ "platform", config.platform },
|
||||
{ "duration", timer.getDurationString(true)},
|
||||
{ "results", results }
|
||||
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
} /* namespace platform */
|
60
src/Platform/GridSearch.h
Normal file
60
src/Platform/GridSearch.h
Normal file
@@ -0,0 +1,60 @@
|
||||
#ifndef GRIDSEARCH_H
|
||||
#define GRIDSEARCH_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <mpi.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Datasets.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "Timer.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
struct ConfigGrid {
|
||||
std::string model;
|
||||
std::string score;
|
||||
std::string continue_from;
|
||||
std::string platform;
|
||||
bool quiet;
|
||||
bool only; // used with continue_from to only compute that dataset
|
||||
bool discretize;
|
||||
bool stratified;
|
||||
int nested;
|
||||
int n_folds;
|
||||
json excluded;
|
||||
std::vector<int> seeds;
|
||||
};
|
||||
struct ConfigMPI {
|
||||
int rank;
|
||||
int n_procs;
|
||||
int manager;
|
||||
};
|
||||
typedef struct {
|
||||
uint idx_dataset;
|
||||
uint idx_combination;
|
||||
int n_fold;
|
||||
double score;
|
||||
double time;
|
||||
} Task_Result;
|
||||
const int TAG_QUERY = 1;
|
||||
const int TAG_RESULT = 2;
|
||||
const int TAG_TASK = 3;
|
||||
const int TAG_END = 4;
|
||||
class GridSearch {
|
||||
public:
|
||||
explicit GridSearch(struct ConfigGrid& config);
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
~GridSearch() = default;
|
||||
json loadResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
struct ConfigGrid config;
|
||||
json build_tasks_mpi(int rank);
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDSEARCH_H */
|
55
src/Platform/HyperParameters.cc
Normal file
55
src/Platform/HyperParameters.cc
Normal file
@@ -0,0 +1,55 @@
|
||||
#include "HyperParameters.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace platform {
|
||||
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
|
||||
{
|
||||
// Initialize all datasets with the given hyperparameters
|
||||
for (const auto& item : datasets) {
|
||||
hyperparameters[item] = hyperparameters_;
|
||||
}
|
||||
}
|
||||
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
|
||||
std::string join(std::vector<std::string> const& strings, std::string delim)
|
||||
{
|
||||
std::stringstream ss;
|
||||
std::copy(strings.begin(), strings.end(),
|
||||
std::ostream_iterator<std::string>(ss, delim.c_str()));
|
||||
return ss.str();
|
||||
}
|
||||
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
|
||||
{
|
||||
// Check if file exists
|
||||
std::ifstream file(hyperparameters_file);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("File " + hyperparameters_file + " not found");
|
||||
}
|
||||
// Check if file is a json
|
||||
json input_hyperparameters = json::parse(file);
|
||||
// Check if hyperparameters are valid
|
||||
for (const auto& dataset : datasets) {
|
||||
if (!input_hyperparameters.contains(dataset)) {
|
||||
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
|
||||
hyperparameters[dataset] = json({});
|
||||
continue;
|
||||
}
|
||||
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
|
||||
}
|
||||
}
|
||||
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
||||
{
|
||||
json result = hyperparameters.at(fileName);
|
||||
for (const auto& item : result.items()) {
|
||||
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
|
||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
|
||||
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
|
||||
}
|
||||
}
|
||||
}
|
||||
json HyperParameters::get(const std::string& fileName)
|
||||
{
|
||||
return hyperparameters.at(fileName);
|
||||
}
|
||||
} /* namespace platform */
|
23
src/Platform/HyperParameters.h
Normal file
23
src/Platform/HyperParameters.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifndef HYPERPARAMETERS_H
|
||||
#define HYPERPARAMETERS_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class HyperParameters {
|
||||
public:
|
||||
HyperParameters() = default;
|
||||
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
|
||||
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
|
||||
~HyperParameters() = default;
|
||||
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
|
||||
void check(const std::vector<std::string>& valid, const std::string& fileName);
|
||||
json get(const std::string& fileName);
|
||||
private:
|
||||
std::map<std::string, json> hyperparameters;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* HYPERPARAMETERS_H */
|
213
src/Platform/ManageResults.cc
Normal file
213
src/Platform/ManageResults.cc
Normal file
@@ -0,0 +1,213 @@
|
||||
#include "ManageResults.h"
|
||||
#include "CommandParser.h"
|
||||
#include <filesystem>
|
||||
#include <tuple>
|
||||
#include "Colors.h"
|
||||
#include "CLocale.h"
|
||||
#include "Paths.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "ReportExcel.h"
|
||||
|
||||
namespace platform {
|
||||
|
||||
ManageResults::ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare) :
|
||||
numFiles{ numFiles }, complete{ complete }, partial{ partial }, compare{ compare }, results(Results(Paths::results(), model, score, complete, partial))
|
||||
{
|
||||
indexList = true;
|
||||
openExcel = false;
|
||||
workbook = NULL;
|
||||
if (numFiles == 0) {
|
||||
this->numFiles = results.size();
|
||||
}
|
||||
}
|
||||
void ManageResults::doMenu()
|
||||
{
|
||||
if (results.empty()) {
|
||||
std::cout << Colors::MAGENTA() << "No results found!" << Colors::RESET() << std::endl;
|
||||
return;
|
||||
}
|
||||
results.sortDate();
|
||||
list();
|
||||
menu();
|
||||
if (openExcel) {
|
||||
workbook_close(workbook);
|
||||
}
|
||||
std::cout << Colors::RESET() << "Done!" << std::endl;
|
||||
}
|
||||
void ManageResults::list()
|
||||
{
|
||||
auto temp = ConfigLocale();
|
||||
std::string suffix = numFiles != results.size() ? " of " + std::to_string(results.size()) : "";
|
||||
std::stringstream oss;
|
||||
oss << "Results on screen: " << numFiles << suffix;
|
||||
std::cout << Colors::GREEN() << oss.str() << std::endl;
|
||||
std::cout << std::string(oss.str().size(), '-') << std::endl;
|
||||
if (complete) {
|
||||
std::cout << Colors::MAGENTA() << "Only listing complete results" << std::endl;
|
||||
}
|
||||
if (partial) {
|
||||
std::cout << Colors::MAGENTA() << "Only listing partial results" << std::endl;
|
||||
}
|
||||
auto i = 0;
|
||||
int maxModel = results.maxModelSize();
|
||||
std::cout << Colors::GREEN() << " # Date " << std::setw(maxModel) << std::left << "Model" << " Score Name Score C/P Duration Title" << std::endl;
|
||||
std::cout << "=== ========== " << std::string(maxModel, '=') << " =========== =========== === ========= =============================================================" << std::endl;
|
||||
bool odd = true;
|
||||
for (auto& result : results) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << result.to_string(maxModel) << std::endl;
|
||||
if (i == numFiles) {
|
||||
break;
|
||||
}
|
||||
odd = !odd;
|
||||
}
|
||||
}
|
||||
bool ManageResults::confirmAction(const std::string& intent, const std::string& fileName) const
|
||||
{
|
||||
std::string color;
|
||||
if (intent == "delete") {
|
||||
color = Colors::RED();
|
||||
} else {
|
||||
color = Colors::YELLOW();
|
||||
}
|
||||
std::string line;
|
||||
bool finished = false;
|
||||
while (!finished) {
|
||||
std::cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
|
||||
getline(std::cin, line);
|
||||
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0] == 'n'));
|
||||
}
|
||||
if (tolower(line[0]) == 'y') {
|
||||
return true;
|
||||
}
|
||||
std::cout << "Not done!" << std::endl;
|
||||
return false;
|
||||
}
|
||||
void ManageResults::report(const int index, const bool excelReport)
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "Reporting " << results.at(index).getFilename() << std::endl;
|
||||
auto data = results.at(index).load();
|
||||
if (excelReport) {
|
||||
ReportExcel reporter(data, compare, workbook);
|
||||
reporter.show();
|
||||
openExcel = true;
|
||||
workbook = reporter.getWorkbook();
|
||||
std::cout << "Adding sheet to " << Paths::excel() + Paths::excelResults() << std::endl;
|
||||
} else {
|
||||
ReportConsole reporter(data, compare);
|
||||
reporter.show();
|
||||
}
|
||||
}
|
||||
void ManageResults::showIndex(const int index, const int idx)
|
||||
{
|
||||
// Show a dataset result inside a report
|
||||
auto data = results.at(index).load();
|
||||
std::cout << Colors::YELLOW() << "Showing " << results.at(index).getFilename() << std::endl;
|
||||
ReportConsole reporter(data, compare, idx);
|
||||
reporter.show();
|
||||
}
|
||||
void ManageResults::sortList()
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
|
||||
std::string line;
|
||||
char option;
|
||||
getline(std::cin, line);
|
||||
if (line.size() == 0)
|
||||
return;
|
||||
if (line.size() > 1) {
|
||||
std::cout << "Invalid option" << std::endl;
|
||||
return;
|
||||
}
|
||||
option = line[0];
|
||||
switch (option) {
|
||||
case 'd':
|
||||
results.sortDate();
|
||||
break;
|
||||
case 's':
|
||||
results.sortScore();
|
||||
break;
|
||||
case 'u':
|
||||
results.sortDuration();
|
||||
break;
|
||||
case 'm':
|
||||
results.sortModel();
|
||||
break;
|
||||
default:
|
||||
std::cout << "Invalid option" << std::endl;
|
||||
}
|
||||
}
|
||||
void ManageResults::menu()
|
||||
{
|
||||
char option;
|
||||
int index, subIndex;
|
||||
bool finished = false;
|
||||
std::string filename;
|
||||
// tuple<Option, digit, requires value>
|
||||
std::vector<std::tuple<std::string, char, bool>> mainOptions = {
|
||||
{"quit", 'q', false},
|
||||
{"list", 'l', false},
|
||||
{"delete", 'd', true},
|
||||
{"hide", 'h', true},
|
||||
{"sort", 's', false},
|
||||
{"report", 'r', true},
|
||||
{"excel", 'e', true}
|
||||
};
|
||||
std::vector<std::tuple<std::string, char, bool>> listOptions = {
|
||||
{"report", 'r', true},
|
||||
{"list", 'l', false},
|
||||
{"quit", 'q', false}
|
||||
};
|
||||
auto parser = CommandParser();
|
||||
while (!finished) {
|
||||
if (indexList) {
|
||||
std::tie(option, index) = parser.parse(Colors::GREEN(), mainOptions, 'r', numFiles - 1);
|
||||
} else {
|
||||
std::tie(option, subIndex) = parser.parse(Colors::MAGENTA(), listOptions, 'r', results.at(index).load()["results"].size() - 1);
|
||||
}
|
||||
switch (option) {
|
||||
case 'q':
|
||||
finished = true;
|
||||
break;
|
||||
case 'l':
|
||||
list();
|
||||
indexList = true;
|
||||
break;
|
||||
case 'd':
|
||||
filename = results.at(index).getFilename();
|
||||
if (!confirmAction("delete", filename))
|
||||
break;
|
||||
std::cout << "Deleting " << filename << std::endl;
|
||||
results.deleteResult(index);
|
||||
std::cout << "File: " + filename + " deleted!" << std::endl;
|
||||
list();
|
||||
break;
|
||||
case 'h':
|
||||
filename = results.at(index).getFilename();
|
||||
if (!confirmAction("hide", filename))
|
||||
break;
|
||||
filename = results.at(index).getFilename();
|
||||
std::cout << "Hiding " << filename << std::endl;
|
||||
results.hideResult(index, Paths::hiddenResults());
|
||||
std::cout << "File: " + filename + " hidden! (moved to " << Paths::hiddenResults() << ")" << std::endl;
|
||||
list();
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
list();
|
||||
break;
|
||||
case 'r':
|
||||
if (indexList) {
|
||||
report(index, false);
|
||||
indexList = false;
|
||||
} else {
|
||||
showIndex(index, subIndex);
|
||||
}
|
||||
break;
|
||||
case 'e':
|
||||
report(index, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} /* namespace platform */
|
31
src/Platform/ManageResults.h
Normal file
31
src/Platform/ManageResults.h
Normal file
@@ -0,0 +1,31 @@
|
||||
#ifndef MANAGE_RESULTS_H
|
||||
#define MANAGE_RESULTS_H
|
||||
#include "Results.h"
|
||||
#include "xlsxwriter.h"
|
||||
|
||||
namespace platform {
|
||||
class ManageResults {
|
||||
public:
|
||||
ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare);
|
||||
~ManageResults() = default;
|
||||
void doMenu();
|
||||
private:
|
||||
void list();
|
||||
bool confirmAction(const std::string& intent, const std::string& fileName) const;
|
||||
void report(const int index, const bool excelReport);
|
||||
void showIndex(const int index, const int idx);
|
||||
void sortList();
|
||||
void menu();
|
||||
int numFiles;
|
||||
bool indexList;
|
||||
bool openExcel;
|
||||
bool complete;
|
||||
bool partial;
|
||||
bool compare;
|
||||
Results results;
|
||||
lxw_workbook* workbook;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* MANAGE_RESULTS_H */
|
@@ -1,6 +1,5 @@
|
||||
#include "Models.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
Models* Models::factory = nullptr;;
|
||||
Models* Models::instance()
|
||||
@@ -10,13 +9,13 @@ namespace platform {
|
||||
factory = new Models();
|
||||
return factory;
|
||||
}
|
||||
void Models::registerFactoryFunction(const string& name,
|
||||
void Models::registerFactoryFunction(const std::string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
functionRegistry[name] = classFactoryFunction;
|
||||
}
|
||||
shared_ptr<bayesnet::BaseClassifier> Models::create(const string& name)
|
||||
shared_ptr<bayesnet::BaseClassifier> Models::create(const std::string& name)
|
||||
{
|
||||
bayesnet::BaseClassifier* instance = nullptr;
|
||||
|
||||
@@ -26,27 +25,26 @@ namespace platform {
|
||||
instance = it->second();
|
||||
// wrap instance in a shared ptr and return
|
||||
if (instance != nullptr)
|
||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
||||
return unique_ptr<bayesnet::BaseClassifier>(instance);
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
vector<string> Models::getNames()
|
||||
std::vector<std::string> Models::getNames()
|
||||
{
|
||||
vector<string> names;
|
||||
std::vector<std::string> names;
|
||||
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
|
||||
[](const pair<string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
|
||||
[](const pair<std::string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
|
||||
return names;
|
||||
}
|
||||
string Models::toString()
|
||||
std::string Models::tostring()
|
||||
{
|
||||
string result = "";
|
||||
std::string result = "";
|
||||
for (const auto& pair : functionRegistry) {
|
||||
result += pair.first + ", ";
|
||||
}
|
||||
return "{" + result.substr(0, result.size() - 2) + "}";
|
||||
}
|
||||
|
||||
Registrar::Registrar(const string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
Registrar::Registrar(const std::string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
|
||||
|
@@ -11,10 +11,14 @@
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "BoostAODE.h"
|
||||
#include "STree.h"
|
||||
#include "ODTE.h"
|
||||
#include "SVC.h"
|
||||
#include "RandomForest.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
map<string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
|
||||
map<std::string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
|
||||
static Models* factory; //singleton
|
||||
Models() {};
|
||||
public:
|
||||
@@ -22,16 +26,16 @@ namespace platform {
|
||||
void operator=(const Models&) = delete;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
static Models* instance();
|
||||
shared_ptr<bayesnet::BaseClassifier> create(const string& name);
|
||||
void registerFactoryFunction(const string& name,
|
||||
shared_ptr<bayesnet::BaseClassifier> create(const std::string& name);
|
||||
void registerFactoryFunction(const std::string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
vector<string> getNames();
|
||||
string toString();
|
||||
std::vector<string> getNames();
|
||||
std::string tostring();
|
||||
|
||||
};
|
||||
class Registrar {
|
||||
public:
|
||||
Registrar(const string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
Registrar(const std::string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,12 +1,39 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
#include <filesystem>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string hiddenResults() { return "hidden_results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
static std::string grid() { return "grid/"; }
|
||||
static std::string datasets()
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
return env.get("source_data");
|
||||
}
|
||||
static void createPath(const std::string& path)
|
||||
{
|
||||
// Create directory if it does not exist
|
||||
try {
|
||||
std::filesystem::create_directory(path);
|
||||
}
|
||||
catch (std::exception& e) {
|
||||
throw std::runtime_error("Could not create directory " + path);
|
||||
}
|
||||
}
|
||||
static std::string excelResults() { return "some_results.xlsx"; }
|
||||
static std::string grid_input(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_input.json";
|
||||
}
|
||||
static std::string grid_output(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_output.json";
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,14 +1,25 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "Datasets.h"
|
||||
#include "ReportBase.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
#include "DotEnv.h"
|
||||
|
||||
namespace platform {
|
||||
string ReportBase::fromVector(const string& key)
|
||||
ReportBase::ReportBase(json data_, bool compare) : data(data_), compare(compare), margin(0.1)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
std::stringstream oss;
|
||||
oss << "Better than ZeroR + " << std::setprecision(1) << fixed << margin * 100 << "%";
|
||||
meaning = {
|
||||
{Symbols::equal_best, "Equal to best"},
|
||||
{Symbols::better_best, "Better than best"},
|
||||
{Symbols::cross, "Less than or equal to ZeroR"},
|
||||
{Symbols::upward_arrow, oss.str()}
|
||||
};
|
||||
}
|
||||
std::string ReportBase::fromVector(const std::string& key)
|
||||
{
|
||||
std::stringstream oss;
|
||||
std::string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
oss << sep << item.get<double>();
|
||||
@@ -17,13 +28,13 @@ namespace platform {
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
|
||||
std::string ReportBase::fVector(const std::string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
std::stringstream oss;
|
||||
std::string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
|
||||
oss << sep << fixed << setw(width) << std::setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
@@ -34,4 +45,69 @@ namespace platform {
|
||||
header();
|
||||
body();
|
||||
}
|
||||
std::string ReportBase::compareResult(const std::string& dataset, double result)
|
||||
{
|
||||
std::string status = " ";
|
||||
if (compare) {
|
||||
double best = bestResult(dataset, data["model"].get<std::string>());
|
||||
if (result == best) {
|
||||
status = Symbols::equal_best;
|
||||
} else if (result > best) {
|
||||
status = Symbols::better_best;
|
||||
}
|
||||
} else {
|
||||
if (data["score_name"].get<std::string>() == "accuracy") {
|
||||
auto dt = Datasets(false, Paths::datasets());
|
||||
dt.loadDataset(dataset);
|
||||
auto numClasses = dt.getNClasses(dataset);
|
||||
if (numClasses == 2) {
|
||||
std::vector<int> distribution = dt.getClassesCounts(dataset);
|
||||
double nSamples = dt.getNSamples(dataset);
|
||||
std::vector<int>::iterator maxValue = max_element(distribution.begin(), distribution.end());
|
||||
double mark = *maxValue / nSamples * (1 + margin);
|
||||
if (mark > 1) {
|
||||
mark = 0.9995;
|
||||
}
|
||||
status = result < mark ? Symbols::cross : result > mark ? Symbols::upward_arrow : "=";
|
||||
}
|
||||
}
|
||||
}
|
||||
if (status != " ") {
|
||||
auto item = summary.find(status);
|
||||
if (item != summary.end()) {
|
||||
summary[status]++;
|
||||
} else {
|
||||
summary[status] = 1;
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
double ReportBase::bestResult(const std::string& dataset, const std::string& model)
|
||||
{
|
||||
double value = 0.0;
|
||||
if (bestResults.size() == 0) {
|
||||
// try to load the best results
|
||||
std::string score = data["score_name"];
|
||||
replace(score.begin(), score.end(), '_', '-');
|
||||
std::string fileName = "best_results_" + score + "_" + model + ".json";
|
||||
ifstream resultData(Paths::results() + "/" + fileName);
|
||||
if (resultData.is_open()) {
|
||||
bestResults = json::parse(resultData);
|
||||
} else {
|
||||
existBestFile = false;
|
||||
}
|
||||
}
|
||||
try {
|
||||
value = bestResults.at(dataset).at(0);
|
||||
}
|
||||
catch (exception) {
|
||||
value = 1.0;
|
||||
|
||||
}
|
||||
return value;
|
||||
}
|
||||
bool ReportBase::getExistBestFile()
|
||||
{
|
||||
return existBestFile;
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user