Compare commits

...

156 Commits

Author SHA1 Message Date
65a96851ef Check min number of nested folds 2024-01-04 11:01:59 +01:00
722da7f781 Keep only mpi b_grid compute 2024-01-04 01:21:56 +01:00
b1833a5feb Add reset color to final progress bar 2024-01-03 22:45:16 +01:00
41a0bd4ddd fix dataset name mistakes 2024-01-03 17:15:57 +01:00
9ab4fc7d76 Fix some mistakes in methods 2024-01-03 11:53:46 +01:00
beadb7465f Complete first approach 2023-12-31 12:02:13 +01:00
652e5f623f Add todo comments 2023-12-28 23:32:24 +01:00
b7fef9a99d Remove kk file 2023-12-28 23:24:59 +01:00
343269d48c Fix syntax errors 2023-12-28 23:21:50 +01:00
21c4c6df51 Fix first mistakes in structure 2023-12-25 19:33:52 +01:00
702f086706 Update miniconda instructions 2023-12-23 19:54:00 +01:00
981bc8f98b Fix install message in readme 2023-12-23 01:00:55 +01:00
e0b7b2d316 Set structure & protocol of producer-consumer 2023-12-22 12:47:13 +01:00
9b9e91e856 Merge pull request 'mpi_grid' (#14) from mpi_grid into main
Reviewed-on: #14
2023-12-18 09:05:55 +00:00
18e8e84284 Add openmpi instructions for Oracle Linux 2023-12-17 12:19:50 +01:00
7de11b0e6d Fix format of duration 2023-12-17 01:45:04 +01:00
9b8db37a4b Fix duration of task not set 2023-12-16 19:31:45 +01:00
49b26bd04b fix duration output 2023-12-16 12:53:25 +01:00
b5b5b48864 Update grid progress bar output 2023-12-15 18:09:17 +01:00
19586a3a5a Fix pesky error allocating memory in workers 2023-12-15 01:54:13 +01:00
ffe6d37436 Add messages to control trace 2023-12-14 21:06:43 +01:00
b73f4be146 First try with complete algorithm 2023-12-14 15:55:08 +01:00
dbf2f35502 First compiling version 2023-12-12 18:57:57 +01:00
db9e80a70e Create build tasks 2023-12-12 12:15:22 +01:00
40ae4ad7f9 Include mpi in CMakeLists 2023-12-11 09:06:05 +01:00
234342f2de Add mpi parameter to b_grid 2023-12-10 22:33:17 +01:00
aa0936abd1 Add --exclude parameter to b_grid to exclude datasets 2023-12-08 12:09:08 +01:00
f0d6f0cc38 Fix sample building 2023-12-04 19:12:44 +01:00
cc316bb8d3 Add colors to results of gridsearch 2023-12-04 17:34:00 +01:00
0723564e66 Fix some output in gridsearch 2023-12-03 17:55:44 +01:00
2e95e8999d Complete nested gridsearch 2023-12-03 12:37:25 +01:00
fb9b395748 Begin output nested grid 2023-12-02 13:19:12 +01:00
03e4437fea refactor gridsearch to have only one go method 2023-12-02 10:59:05 +01:00
33cd32c639 Add header to grid output and report 2023-12-01 10:30:53 +01:00
c460ef46ed Refactor gridsearch method 2023-11-30 11:01:37 +01:00
dee9c674da Refactor grid input hyperparameter file 2023-11-29 18:24:34 +01:00
e3f6dc1e0b Fix tolerance hyperp error & gridsearch 2023-11-29 12:33:50 +01:00
460d20a402 Add reports to gridsearch 2023-11-29 00:26:48 +01:00
8dbbb65a2f Add only parameter to gridsearch 2023-11-28 10:08:40 +01:00
d06bf187b2 Implement Random Forest nodes/leaves/depth 2023-11-28 00:35:38 +01:00
4addaefb47 Implement sklearn version in PyWrap 2023-11-27 22:34:34 +01:00
82964190f6 Add nodes/leaves/depth to STree & ODTE 2023-11-27 10:57:57 +01:00
4fefe9a1d2 Add grid input info to grid output 2023-11-26 16:07:32 +01:00
7c12dd25e5 Fix upper case typo 2023-11-26 10:55:32 +01:00
c713c0b1df Add continue from parameter to gridsearch 2023-11-26 10:36:09 +01:00
64069a6cb7 Adapt b_main to the new hyperparam file format 2023-11-25 16:52:25 +01:00
ba2a3f9523 Merge pull request 'gridsearch' (#13) from gridsearch into main
Reviewed-on: #13
2023-11-25 11:16:13 +00:00
f94e2d6a27 Add quiet parameter 2023-11-24 21:16:20 +01:00
2121ba9b98 Refactor input grid parameters to json file 2023-11-24 09:57:29 +01:00
8b7b59d42b Complete first step 2023-11-23 12:59:21 +01:00
bbe5302ab1 Add info to output 2023-11-22 16:38:50 +01:00
c2eb727fc7 Complete output interface of gridsearch 2023-11-22 16:30:04 +01:00
fb347ed5b9 Begin gridsearch implementation 2023-11-22 12:22:30 +01:00
b657762c0c Generate combinations sample 2023-11-22 00:18:24 +01:00
495d8a8528 Begin implementing grid combinations 2023-11-21 13:11:14 +01:00
4628e48d3c Build gridsearch structure 2023-11-20 23:32:34 +01:00
5876be4b24 Add more install instructions of Boost to README 2023-11-20 20:39:22 +01:00
dc3400197f Add coment todo impelemt number of nodes 2023-11-20 01:14:13 +01:00
26d3a57782 Add info to invalid hyperparameter exception 2023-11-19 23:02:28 +01:00
4f3a04058f Refactor Hyperparameters management 2023-11-19 22:36:27 +01:00
89c4613591 Implement hyperparameters with json file 2023-11-18 11:56:10 +01:00
28f3d87e32 Add Python Classifiers
Add STree, Odte, SVC & RandomForest Classifiers
Remove using namespace ... in project
2023-11-17 11:11:05 +01:00
e8d2c9fc0b Set intolerant convergence 2023-11-17 10:26:25 +01:00
d3cb580387 Remove n_jobs from STree 2023-11-17 10:10:31 +01:00
f088df14fd Restore the Creation model position in experiment 2023-11-17 01:10:46 +01:00
e2249eace7 Disable Warning messages in python clfs
Disable removing Python env
2023-11-16 22:38:46 +01:00
64f5a7f14a Fix header in example 2023-11-16 17:03:40 +01:00
408db2aad5 Mark override fit funtcion 2023-11-14 18:59:41 +01:00
e03efb5f63 set tolerance=0 if feature selection in BoostAODE 2023-11-14 10:12:02 +01:00
f617886133 Add new models to example 2023-11-14 09:12:25 +01:00
69ad660040 Refactor version method in PyClassifier 2023-11-13 13:59:06 +01:00
431b3a3aa5 Fit PyWrap into BayesNet 2023-11-13 11:13:32 +01:00
6a23e2cc26 Add CMakelist integration 2023-11-12 22:14:29 +01:00
f6e00530be Add Pywrap sources 2023-11-12 21:43:07 +01:00
f9258e43b9 Remove using namespace from Library 2023-11-08 18:45:35 +01:00
92820555da Simple fix 2023-10-28 10:56:47 +02:00
5a3af51826 Activate best score in odte 2023-10-25 10:23:42 +02:00
a8f9800631 Fix mistake when no results in manage 2023-10-24 19:44:23 +02:00
84cec0c1e0 Add results files affected in best results excel 2023-10-24 16:18:52 +02:00
130139f644 Update formulas to use letters in ranges in excel 2023-10-24 13:06:31 +02:00
651f84b562 Fix mistake in conditional format in bestresults 2023-10-24 11:18:19 +02:00
553ab0fa22 Add conditional format to BestResults Excel 2023-10-24 10:56:41 +02:00
4975feabff Fix mistake in node count 2023-10-23 22:46:10 +02:00
32293af69f Fix header in manage 2023-10-23 17:04:59 +02:00
858664be2d Add total number of results in manage 2023-10-23 16:22:15 +02:00
1f705f6018 Refactor BestScore and add experiment to .env 2023-10-23 16:12:52 +02:00
7bcd2eed06 Add variable width of dataset name in reports 2023-10-22 22:58:52 +02:00
833acefbb3 Fix index limits mistake in manage 2023-10-22 20:21:50 +02:00
26b649ebae Refactor ManageResults and CommandParser 2023-10-22 20:03:34 +02:00
080eddf9cd Fix hyperparameters output in b_best 2023-10-20 22:52:48 +02:00
04e754b2f5 Adjust filename and hyperparameters in reports 2023-10-20 11:12:46 +02:00
38423048bd Add excel to best report of model 2023-10-19 18:12:55 +02:00
64fc97b892 Rename utilities sources to match final names 2023-10-19 09:57:04 +02:00
2c2159f192 Add quiet mode to b_main
Reduce output when --quiet is set, not showing fold info
2023-10-17 21:51:53 +02:00
6765552a7c Update submodule versions 2023-10-16 19:21:57 +02:00
f72aa5b9a6 Merge pull request 'Create Boost_CFS' (#11) from Boost_CFS into main
Add hyper parameter to BoostAODE. This hyper parameter decides if we select features with cfs/fcbf/iwss before start building models and build a Spode with the selected features.
The hyperparameter is select_features
2023-10-15 09:22:14 +00:00
fa7fe081ad Fix xlsx library finding 2023-10-15 11:19:58 +02:00
660e783517 Update validation for feature selection 2023-10-14 13:32:09 +02:00
b35532dd9e Implement IWSS and FCBF too for BoostAODE 2023-10-14 13:12:04 +02:00
6ef49385ea Remove unneeded method declaration FeatureSelect 2023-10-14 11:30:32 +02:00
6d5a25cdc8 Refactor CFS class creating abstract base class 2023-10-14 11:27:46 +02:00
d00b08cbe8 Fix Header for Linux 2023-10-13 14:26:47 +02:00
977ff6fddb Update CMakeLists for Linux 2023-10-13 14:01:52 +02:00
54b8939f35 Prepare BoostAODE first try 2023-10-13 13:46:22 +02:00
5022a4dc90 Complete CFS tested with Python mufs 2023-10-13 12:29:25 +02:00
40d1dad5d8 Begin CFS implementation 2023-10-11 21:17:26 +02:00
47e2b138c5 Complete first working cfs 2023-10-11 11:33:29 +02:00
e7ded68267 First cfs working version 2023-10-10 23:00:38 +02:00
ca833a34f5 try openssl sha256 2023-10-10 18:16:43 +02:00
df9b4c48d2 Begin CFS initialization 2023-10-10 13:39:11 +02:00
f288bbd6fa Begin adding cfs to BoostAODE 2023-10-10 11:52:39 +02:00
7d8aca4f59 Add Locale shared config to reports 2023-10-09 19:41:29 +02:00
8fdad78a8c Continue Test Network 2023-10-09 11:25:30 +02:00
e3ae073333 Continue test Network 2023-10-08 15:54:58 +02:00
4b732e76c2 MST change unordered_set to list 2023-10-07 19:08:13 +02:00
fe5fead27e Begin Fix Test MST 2023-10-07 01:43:26 +02:00
8c3864f3c8 Complete Folding Test 2023-10-07 01:23:36 +02:00
1287160c47 Refactor makefile to use variables 2023-10-07 00:16:25 +02:00
2f58807322 Begin refactor CMakeLists debug/release paths 2023-10-06 19:32:29 +02:00
17e079edd5 Begin Test Folding 2023-10-06 17:08:54 +02:00
b9e0028e9d Refactor Makefile 2023-10-06 01:28:27 +02:00
e0d39fe631 Fix BayesMetrics Test 2023-10-06 01:14:55 +02:00
36b0277576 Add Maximum Spanning Tree test 2023-10-05 15:45:36 +02:00
da8d018ec4 Refactor Makefile 2023-10-05 11:45:00 +02:00
5f0676691c Add First BayesMetrics Tests 2023-10-05 01:14:16 +02:00
3448fb1299 Refactor Tests and add BayesMetrics test 2023-10-04 23:19:23 +02:00
5e938d5cca Add ranks sheet to excel best results 2023-10-04 16:26:57 +02:00
55e742438f Add constant references to Statistics 2023-10-04 13:40:45 +02:00
c4ae3fe429 Add Control model rank info to report 2023-10-04 12:42:35 +02:00
93e4ff94db Add significance level as parameter in best 2023-10-02 15:46:40 +02:00
57c27f739c Remove unused code in BestResults 2023-10-02 15:31:02 +02:00
a434d7f1ae Add a Linux config in launch.json 2023-09-30 18:44:21 +02:00
294666c516 Fix a Linux problem in Datasets 2023-09-30 18:43:47 +02:00
fd04e78ad9 Restore sample.cc 2023-09-29 18:50:25 +02:00
66ec1b343b Remove platformUtils and split Datasets & Dataset 2023-09-29 18:20:46 +02:00
bb423da42f Add csv and R_dat files to platform 2023-09-29 13:52:50 +02:00
db17c14042 Change names of executables to b_... 2023-09-29 09:17:50 +02:00
a4401cb78f Linux CMakeLists.txt adjustment 2023-09-29 00:30:47 +02:00
9d3d9cc6c6 Complete Excel output for bestResults with Friedman test 2023-09-28 18:52:37 +02:00
cfcf3c16df Add best results Excel 2023-09-28 17:12:04 +02:00
85202260f3 Separate specific Excel methods to ExcelFile 2023-09-28 13:07:11 +02:00
82acb3cab5 Enhance output of Best results reports 2023-09-28 12:08:56 +02:00
623ceed396 Merge pull request 'Add Friedman Test & post hoc tests to BestResults' (#10) from boost into main
Reviewed-on: #10
2023-09-28 07:44:55 +00:00
926de2bebd Add boost info to README 2023-09-28 09:44:33 +02:00
71704e3547 Enhance output info in Statistics 2023-09-28 01:27:18 +02:00
3b06534327 Remove duplicated code in BestResults 2023-09-28 00:59:34 +02:00
ac89a451e3 Duplicate statistics tests in class 2023-09-28 00:45:15 +02:00
00c6cf663b Fix order of output in posthoc 2023-09-27 19:11:47 +02:00
5043c12be8 Complete posthoc with Holm adjust 2023-09-27 18:34:16 +02:00
11320e2cc7 Complete friedman test as in exreport 2023-09-27 12:36:03 +02:00
ce66483b65 Update boost version requirement for Linux 2023-09-26 14:12:53 +02:00
cab8e14b2d Add friedman hyperparameter 2023-09-26 11:26:59 +02:00
f0d0abe891 Add boost library link to linux build 2023-09-26 01:07:50 +02:00
dcba146e12 Begin adding Friedman test to BestResults 2023-09-26 01:04:59 +02:00
3ea0285119 Fix ranks to match friedman test ranks 2023-09-25 18:38:12 +02:00
e3888e1503 Merge pull request 'bestResults' (#9) from bestResults into main
Reviewed-on: https://gitea.rmontanana.es:3000/rmontanana/BayesNet/pulls/9

Add best results management, build, report, build all & report all
2023-09-25 12:02:17 +00:00
146 changed files with 7136 additions and 2300 deletions

3
.gitignore vendored
View File

@@ -31,7 +31,8 @@
*.exe
*.out
*.app
build/
build/**
build_*/**
*.dSYM/**
cmake-build*/**
.idea

10
.gitmodules vendored
View File

@@ -1,15 +1,25 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
main = main
update = merge
[submodule "lib/catch2"]
path = lib/catch2
main = v2.x
update = merge
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
master = master
update = merge
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git
master = master
update = merge
[submodule "lib/libxlsxwriter"]
path = lib/libxlsxwriter
url = https://github.com/jmcnamara/libxlsxwriter.git
main = main
update = merge

18
.vscode/c_cpp_properties.json vendored Normal file
View File

@@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "Mac",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"macFrameworkPath": [
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
}
],
"version": 4
}

75
.vscode/launch.json vendored
View File

@@ -5,7 +5,7 @@
"type": "lldb",
"request": "launch",
"name": "sample",
"program": "${workspaceFolder}/build/sample/BayesNetSample",
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
"args": [
"-d",
"iris",
@@ -21,27 +21,58 @@
{
"type": "lldb",
"request": "launch",
"name": "experiment",
"program": "${workspaceFolder}/build/src/Platform/main",
"name": "experimentPy",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"BoostAODE",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets",
"STree",
"--stratified",
"-d",
"mfeat-morphological",
"--discretize"
"iris",
//"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "gridsearch",
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
"args": [
"-m",
"KDB",
"--discretize",
"--continue",
"glass",
"--only",
"--compute"
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "experimentBayes",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"TAN",
"--stratified",
"--discretize",
"-d",
"iris",
"--hyperparameters",
"{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build/src/Platform/best",
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
"args": [
"-m",
"BoostAODE",
@@ -49,32 +80,44 @@
"accuracy",
"--build",
],
"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build/src/Platform/manage",
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
"args": [
"-n",
"20"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/list",
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
"args": [],
"cwd": "/Users/rmontanana/Code/discretizbench",
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "test",
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
"args": [
"-c=\"Metrics Test\"",
// "-s",
],
"cwd": "${workspaceFolder}/build/tests",
},
{
"name": "Build & debug active file",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceFolder}/build/bayesnet",
"program": "${workspaceFolder}/build_debug/bayesnet",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",

View File

@@ -24,18 +24,39 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
option(MPI_ENABLED "Enable MPI options" ON)
if (MPI_ENABLED)
find_package(MPI REQUIRED)
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
endif (MPI_ENABLED)
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost 1.66.0 REQUIRED COMPONENTS python3 numpy3)
if(Boost_FOUND)
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
include_directories(${Boost_INCLUDE_DIRS})
endif()
# Python
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
# CMakes modules
# --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
@@ -54,7 +75,11 @@ endif (ENABLE_CLANG_TIDY)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
find_library(XLSXWRITER_LIB libxlsxwriter.dylib PATHS /usr/local/lib)
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
# Subdirectories
# --------------
@@ -62,9 +87,10 @@ add_subdirectory(config)
add_subdirectory(lib/Files)
add_subdirectory(src/BayesNet)
add_subdirectory(src/Platform)
add_subdirectory(src/PyClassifiers)
add_subdirectory(sample)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)

122
Makefile
View File

@@ -1,6 +1,26 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help build test
.PHONY: coverage setup help build test clean debug release
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage b_grid
test_targets = unit_tests_bayesnet unit_tests_platform
n_procs = -j 16
define ClearTests
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
echo ">>> Cleaning $$t..." ; \
rm -f $(f_debug)/tests/$$t ; \
fi ; \
done
@nfiles="$(find . -name "*.gcda" -print0)" ; \
if test "${nfiles}" != "" ; then \
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
fi ;
endef
setup: ## Install dependencies for tests and coverage
@if [ "$(shell uname)" = "Darwin" ]; then \
@@ -11,63 +31,87 @@ setup: ## Install dependencies for tests and coverage
pip install gcovr; \
fi
dest ?= ../discretizbench
copy: ## Copy binary files to selected folder
dest ?= ${HOME}/bin
install: ## Copy binary files to bin folder
@echo "Destination folder: $(dest)"
make build
make buildr
@echo "*******************************************"
@echo ">>> Copying files to $(dest)"
@cp build/src/Platform/main $(dest)
@cp build/src/Platform/list $(dest)
@cp build/src/Platform/manage $(dest)
@cp build/src/Platform/best $(dest)
@echo ">>> Done"
@echo "*******************************************"
@for item in $(app_targets); do \
echo ">>> Copying $$item" ; \
cp $(f_release)/src/Platform/$$item $(dest) ; \
done
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
@echo ">>> Creating dependency graph diagram of the project...";
$(MAKE) debug
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -j 32
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
clean: ## Clean the tests info
@echo ">>> Cleaning Debug BayesNet tests...";
$(call ClearTests)
@echo ">>> Done";
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -t unit_tests -j 32;
@echo ">>> Building Debug BayesNet...";
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
@mkdir $(f_debug);
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
@echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -j 32;
@echo ">>> Building Release BayesNet...";
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
@mkdir $(f_release);
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
@echo ">>> Done";
test: ## Run tests
@echo "* Running tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet & Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
./$$t $(opt) ; \
fi ; \
done
@echo ">>> Done";
opt = ""
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
@echo ">>> Running Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
@echo ">>> Done";
opt = ""
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo "*Building tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
gcovr ;
@echo ">>> Building tests with coverage...";
@$(MAKE) test
@cd $(f_debug) ; \
gcovr --config ../gcovr.cfg tests ;
@echo ">>> Done";
help: ## Show help message
@IFS=$$'\n' ; \

View File

@@ -1,21 +1,75 @@
# BayesNet
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
Bayesian Network Classifier with libtorch from scratch
## 0. Setup
### libxlswriter
Before compiling BayesNet.
### Miniconda
To be able to run Python Classifiers such as STree, ODTE, SVC, etc. it is needed to install Miniconda. To do so, download the installer from [Miniconda](https://docs.conda.io/en/latest/miniconda.html) and run it. It is recommended to install it in the home folder.
In Linux sometimes the library libstdc++ is mistaken from the miniconda installation and produces the next message when running the b_xxxx executables:
```bash
libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by b_xxxx)
```
The solution is to erase the libstdc++ library from the miniconda installation:
### MPI
In Linux just install openmpi & openmpi-devel packages. Only if cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
```bash
export MPI_HOME="/usr/lib64/openmpi"
```
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
```bash
vi /opt/homebrew/bin/mpicx
```
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
```bash
sudo dnf install boost-devel
```
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
```bash
export BOOST_ROOT=/path/to/library/
```
In some cases, it is needed to build the library, to do so:
```bash
cd /path/to/library
mkdir own
./bootstrap.sh --prefix=/path/to/library/own
./b2 install
export BOOST_ROOT=/path/to/library/own/
```
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
### libxlswriter
```bash
cd lib/libxlsxwriter
make
sudo make install
make install DESTDIR=/home/rmontanana/Code PREFIX=
```
It has to be installed in /usr/local/lib otherwise CMakeLists.txt has to be modified accordingly
Environment variable has to be set:
```bash

162
grid_stree.json Normal file
View File

@@ -0,0 +1,162 @@
{
"balance-scale": {
"C": 10000.0,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"balloons": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"breast-cancer-wisc-diag": {
"C": 0.2,
"max_iter": 10000
},
"breast-cancer-wisc-prog": {
"C": 0.2,
"max_iter": 10000
},
"breast-cancer-wisc": {},
"breast-cancer": {},
"cardiotocography-10clases": {},
"cardiotocography-3clases": {},
"conn-bench-sonar-mines-rocks": {},
"cylinder-bands": {},
"dermatology": {
"C": 55,
"max_iter": 10000
},
"echocardiogram": {
"C": 7,
"gamma": 0.1,
"kernel": "poly",
"max_features": "auto",
"max_iter": 10000
},
"fertility": {
"C": 0.05,
"max_features": "auto",
"max_iter": 10000
},
"haberman-survival": {},
"heart-hungarian": {
"C": 0.05,
"max_iter": 10000
},
"hepatitis": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"ilpd-indian-liver": {},
"ionosphere": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"iris": {},
"led-display": {},
"libras": {
"C": 0.08,
"max_iter": 10000
},
"low-res-spect": {
"C": 0.05,
"max_iter": 10000
},
"lymphography": {
"C": 0.05,
"max_iter": 10000
},
"mammographic": {},
"molec-biol-promoter": {
"C": 0.05,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"musk-1": {
"C": 0.05,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"oocytes_merluccius_nucleus_4d": {
"C": 8.25,
"gamma": 0.1,
"kernel": "poly"
},
"oocytes_merluccius_states_2f": {},
"oocytes_trisopterus_nucleus_2f": {},
"oocytes_trisopterus_states_5b": {
"C": 0.11,
"max_iter": 10000
},
"parkinsons": {},
"pima": {},
"pittsburg-bridges-MATERIAL": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"pittsburg-bridges-REL-L": {},
"pittsburg-bridges-SPAN": {
"C": 0.05,
"max_iter": 10000
},
"pittsburg-bridges-T-OR-D": {},
"planning": {
"C": 7,
"gamma": 10.0,
"kernel": "rbf",
"max_iter": 10000
},
"post-operative": {
"C": 55,
"degree": 5,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"seeds": {
"C": 10000.0,
"max_iter": 10000
},
"statlog-australian-credit": {
"C": 0.05,
"max_features": "auto",
"max_iter": 10000
},
"statlog-german-credit": {},
"statlog-heart": {},
"statlog-image": {
"C": 7,
"max_iter": 10000
},
"statlog-vehicle": {},
"synthetic-control": {
"C": 0.55,
"max_iter": 10000
},
"tic-tac-toe": {
"C": 0.2,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"vertebral-column-2clases": {},
"wine": {
"C": 0.55,
"max_iter": 10000
},
"zoo": {
"C": 0.1,
"max_iter": 10000
}
}

View File

@@ -4,11 +4,9 @@
#include <map>
#include <iostream>
using namespace std;
ArffFiles::ArffFiles() = default;
vector<string> ArffFiles::getLines() const
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
@@ -18,48 +16,48 @@ unsigned long int ArffFiles::getSize() const
return lines.size();
}
vector<pair<string, string>> ArffFiles::getAttributes() const
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
string ArffFiles::getClassName() const
std::string ArffFiles::getClassName() const
{
return className;
}
string ArffFiles::getClassType() const
std::string ArffFiles::getClassType() const
{
return classType;
}
vector<vector<float>>& ArffFiles::getX()
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
vector<int>& ArffFiles::getY()
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(string fileName)
void ArffFiles::loadCommon(std::string fileName)
{
ifstream file(fileName);
std::ifstream file(fileName);
if (!file.is_open()) {
throw invalid_argument("Unable to open file");
throw std::invalid_argument("Unable to open file");
}
string line;
string keyword;
string attribute;
string type;
string type_w;
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
stringstream ss(line);
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
@@ -74,35 +72,35 @@ void ArffFiles::loadCommon(string fileName)
}
file.close();
if (attributes.empty())
throw invalid_argument("No attributes found");
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const string& fileName, bool classLast)
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = get<0>(attributes.back());
classType = get<1>(attributes.back());
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = get<0>(attributes.front());
classType = get<1>(attributes.front());
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const string& fileName, const string& name)
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = get<0>(attributes[i]);
classType = get<1>(attributes[i]);
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
@@ -110,19 +108,19 @@ void ArffFiles::load(const string& fileName, const string& name)
}
}
if (!found) {
throw invalid_argument("Class name not found");
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
auto yy = vector<string>(lines.size(), "");
auto removeLines = vector<int>(); // Lines with missing values
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
stringstream ss(lines[i]);
string value;
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
@@ -146,21 +144,21 @@ void ArffFiles::generateDataset(int labelIndex)
y = factorize(yy);
}
string ArffFiles::trim(const string& source)
std::string ArffFiles::trim(const std::string& source)
{
string s(source);
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
vector<int> yy;
std::vector<int> yy;
yy.reserve(labels_t.size());
map<string, int> labelMap;
std::map<std::string, int> labelMap;
int i = 0;
for (const string& label : labels_t) {
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}

View File

@@ -4,31 +4,29 @@
#include <string>
#include <vector>
using namespace std;
class ArffFiles {
private:
vector<string> lines;
vector<pair<string, string>> attributes;
string className;
string classType;
vector<vector<float>> X;
vector<int> y;
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
void generateDataset(int);
void loadCommon(string);
void loadCommon(std::string);
public:
ArffFiles();
void load(const string&, bool = true);
void load(const string&, const string&);
vector<string> getLines() const;
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
string getClassName() const;
string getClassType() const;
static string trim(const string&);
vector<vector<float>>& getX();
vector<int>& getY();
vector<pair<string, string>> getAttributes() const;
static vector<int> factorize(const vector<string>& labels_t);
std::string getClassName() const;
std::string getClassType() const;
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
};
#endif

View File

@@ -1,8 +1,10 @@
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
include_directories(${Python3_INCLUDE_DIRS})
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)

View File

@@ -12,14 +12,12 @@
#include "modelRegister.h"
#include <fstream>
using namespace std;
const std::string PATH = "../../data/";
const string PATH = "../../data/";
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
std::vector<mdlp::labels_t>Xd;
map<std::string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
@@ -40,12 +38,12 @@ bool file_exists(const std::string& name)
return false;
}
}
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
pair<std::vector<std::vector<int>>, std::vector<int>> extract_indices(std::vector<int> indices, std::vector<std::vector<int>> X, std::vector<int> y)
{
vector<vector<int>> Xr; // nxm
vector<int> yr;
std::vector<std::vector<int>> Xr; // nxm
std::vector<int> yr;
for (int col = 0; col < X.size(); ++col) {
Xr.push_back(vector<int>());
Xr.push_back(std::vector<int>());
}
for (auto index : indices) {
for (int col = 0; col < X.size(); ++col) {
@@ -58,53 +56,7 @@ pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vect
int main(int argc, char** argv)
{
torch::Tensor weights_ = torch::full({ 10 }, 1.0 / 10, torch::kFloat64);
torch::Tensor y_ = torch::tensor({ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }, torch::kInt32);
torch::Tensor ypred = torch::tensor({ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0 }, torch::kInt32);
cout << "Initial weights_: " << endl;
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << ", ";
}
cout << "end." << endl;
cout << "y_: " << endl;
for (int i = 0; i < 10; i++) {
cout << y_.index({ i }).item<int>() << ", ";
}
cout << "end." << endl;
cout << "ypred: " << endl;
for (int i = 0; i < 10; i++) {
cout << ypred.index({ i }).item<int>() << ", ";
}
cout << "end." << endl;
auto mask_wrong = ypred != y_;
auto mask_right = ypred == y_;
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
double epsilon_t = masked_weights.sum().item<double>();
cout << "epsilon_t: " << epsilon_t << endl;
double wt = (1 - epsilon_t) / epsilon_t;
cout << "wt: " << wt << endl;
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
cout << "alpha_t: " << alpha_t << endl;
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
cout << "exp(alpha_t): " << exp(alpha_t) << endl;
cout << "exp(-alpha_t): " << exp(-alpha_t) << endl;
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
// Step 3.2.2: Update weights of right samples
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights_).item<double>();
cout << "totalWeights: " << totalWeights << endl;
cout << "Before normalization: " << endl;
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << endl;
}
weights_ = weights_ / totalWeights;
cout << "After normalization: " << endl;
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << endl;
}
map<string, bool> datasets = {
map<std::string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
@@ -114,9 +66,9 @@ int main(int argc, char** argv)
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
auto valid_datasets = std::vector<std::string>();
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<string, bool>& pair) { return pair.first; });
[](const pair<std::string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
@@ -129,23 +81,23 @@ int main(int argc, char** argv)
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(string{ PATH }
.default_value(std::string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const vector<string> choices = platform::Models::instance()->getNames();
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
@@ -161,13 +113,13 @@ int main(int argc, char** argv)
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name;
std::string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
file_name = program.get<std::string>("dataset");
path = program.get<std::string>("path");
model_name = program.get<std::string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
@@ -180,7 +132,7 @@ int main(int argc, char** argv)
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
@@ -191,50 +143,50 @@ int main(int argc, char** argv)
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<string, string>& item) { return item.first; });
[](const pair<std::string, std::string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
map<std::string, std::vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
states[feature] = std::vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
states[className] = std::vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
cout << line << endl;
std::cout << line << std::endl;
}
cout << "--- Topological Order ---" << endl;
std::cout << "--- Topological Order ---" << std::endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
std::cout << name << ", ";
}
cout << "end." << endl;
std::cout << "end." << std::endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl;
std::cout << "Score: " << score << std::endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl;
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
@@ -248,7 +200,7 @@ int main(int argc, char** argv)
fold = new platform::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl;
std::cout << "Fold: " << i + 1 << std::endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
@@ -268,16 +220,16 @@ int main(int argc, char** argv)
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
cout << "Score Train: " << score_train << endl;
cout << "Score Test : " << score_test << endl;
cout << "-------------------------------------------------------------------------------" << endl;
std::cout << "Score Train: " << score_train << std::endl;
std::cout << "Score Test : " << score_test << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
}
cout << "**********************************************************************************" << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
std::cout << "**********************************************************************************" << std::endl;
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
}

View File

@@ -9,9 +9,9 @@ namespace bayesnet {
models.push_back(std::make_unique<SPODE>(i));
}
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
significanceModels = std::vector<double>(n_models, 1.0);
}
vector<string> AODE::graph(const string& title) const
std::vector<std::string> AODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}

View File

@@ -9,7 +9,7 @@ namespace bayesnet {
public:
AODE();
virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") const override;
std::vector<std::string> graph(const std::string& title = "AODE") const override;
};
}
#endif

View File

@@ -1,17 +1,15 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
@@ -26,7 +24,7 @@ namespace bayesnet {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
significanceModels = std::vector<double>(n_models, 1.0);
}
void AODELd::trainModel(const torch::Tensor& weights)
{
@@ -34,7 +32,7 @@ namespace bayesnet {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
std::vector<std::string> AODELd::graph(const std::string& name) const
{
return Ensemble::graph(name);
}

View File

@@ -5,17 +5,16 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_) override;
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODELd") const override;
static inline string version() { return "0.0.1"; };
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -4,33 +4,34 @@
#include <nlohmann/json.hpp>
#include <vector>
namespace bayesnet {
using namespace std;
enum status_t { NORMAL, WARNING, ERROR };
class BaseClassifier {
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
public:
// X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
// X is nxm std::vector, y is nx1 std::vector
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0;
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
status_t virtual getStatus() const = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.2.0"; };
vector<string> virtual topological_order() = 0;
std::vector<std::string> virtual show() const = 0;
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
virtual std::string getVersion() = 0;
std::vector<std::string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
std::vector<std::string> validHyperparameters;
};
}
#endif

View File

@@ -1,16 +1,16 @@
#include "BayesMetrics.h"
#include "Mst.h"
namespace bayesnet {
//samples is nxm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
, classNumStates(classNumStates)
{
}
//samples is nxm vector used to fit the model
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
//samples is nxm std::vector used to fit the model
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
@@ -21,7 +21,7 @@ namespace bayesnet {
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
}
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
@@ -56,25 +56,15 @@ namespace bayesnet {
}
return featuresKBest;
}
vector<double> Metrics::getScoresKBest() const
std::vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = vector<double>();
auto source = vector<string>(features);
auto result = std::vector<double>();
auto source = std::vector<std::string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
// Compute class prior
@@ -110,7 +100,7 @@ namespace bayesnet {
return matrix;
}
// To use in Python
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
{
const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
@@ -131,7 +121,7 @@ namespace bayesnet {
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(weights);
unordered_map<int, unordered_map<int, double>> jointCounts;
std::unordered_map<int, std::unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
@@ -165,7 +155,7 @@ namespace bayesnet {
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
std::vector<std::pair<int, int>> Metrics::maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();

View File

@@ -4,29 +4,46 @@
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
using namespace torch;
class Metrics {
private:
Tensor samples; // nxm tensor used to fit the model
vector<string> features;
string className;
int classNumStates = 0;
vector<double> scoresKBest;
vector<int> featuresKBest; // sorted indices of the features
double entropy(const Tensor& feature, const Tensor& weights);
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<pair<string, string>> doCombinations(const vector<string>&);
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className;
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
std::vector<std::string> features;
template <class T>
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
{
std::vector<std::pair<T, T>> result;
for (int i = 0; i < source.size(); ++i) {
T temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
template <class T>
T pop_first(std::vector<T>& v)
{
T temp = v[0];
v.erase(v.begin());
return temp;
}
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
vector<double> getScoresKBest() const;
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
Tensor conditionalEdge(const torch::Tensor& weights);
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
};
}
#endif

View File

@@ -1,36 +1,26 @@
#include "BoostAODE.h"
#include <set>
#include "BayesMetrics.h"
#include <functional>
#include <limits.h>
#include "BoostAODE.h"
#include "Colors.h"
#include "Folding.h"
#include <limits.h>
#include "Paths.h"
#include "CFS.h"
#include "FCBF.h"
#include "IWSS.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
BoostAODE::BoostAODE() : Ensemble()
{
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
}
}
void BoostAODE::validationInit()
{
models.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
@@ -56,46 +46,117 @@ namespace bayesnet {
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
hyperparameters.erase("repeatSparent");
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
hyperparameters.erase("maxModels");
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
hyperparameters.erase("ascending");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("tolerance")) {
tolerance = hyperparameters["tolerance"];
hyperparameters.erase("tolerance");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
std::vector<std::string> algos = { "IWSS", "FCBF", "CFS" };
selectFeatures = true;
algorithm = selectedAlgorithm;
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
}
hyperparameters.erase("select_features");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
std::unordered_set<int> BoostAODE::initializeModels()
{
std::unordered_set<int> featuresUsed;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (algorithm == "CFS") {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (algorithm == "IWSS") {
if (threshold < 0 || threshold >0.5) {
throw std::invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (algorithm == "FCBF") {
if (threshold < 1e-7 || threshold > 1) {
throw std::invalid_argument("Invalid threshold value [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
for (const int& feature : cfsFeatures) {
// std::cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << std::endl;
featuresUsed.insert(feature);
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0);
n_models++;
}
delete featureSelector;
return featuresUsed;
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
models.clear();
n_models = 0;
std::unordered_set<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
}
if (maxModels == 0)
maxModels = .1 * n > 10 ? .1 * n : n;
validationInit();
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool exitCondition = false;
unordered_set<int> featuresUsed;
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double delta = 1.0;
double threshold = 1e-4;
int tolerance = 5; // number of times the accuracy can be lower than the threshold
int count = 0; // number of times the accuracy is lower than the threshold
fitted = true; // to enable predict
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == maxModels
// epsiolon sub t > 0.5 => inverse the weights policy
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
while (!exitCondition) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
unique_ptr<Classifier> model;
std::unique_ptr<Classifier> model;
auto feature = featureSelection[0];
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
bool found = false;
for (auto feat : featureSelection) {
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
bool used = true;
for (const auto& feat : featureSelection) {
if (std::find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
continue;
}
found = true;
used = false;
feature = feat;
break;
}
if (!found) {
if (used) {
exitCondition = true;
continue;
}
@@ -135,13 +196,13 @@ namespace bayesnet {
count++;
}
}
exitCondition = n_models == maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
}
if (featuresUsed.size() != features.size()) {
status = WARNING;
}
}
vector<string> BoostAODE::graph(const string& title) const
std::vector<std::string> BoostAODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}

View File

@@ -1,25 +1,33 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include "Ensemble.h"
#include <map>
#include "SPODE.h"
#include "FeatureSelect.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
public:
BoostAODE();
virtual ~BoostAODE() {};
vector<string> graph(const string& title = "BoostAODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
virtual ~BoostAODE() = default;
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
torch::Tensor dataset_;
torch::Tensor X_train, y_train, X_test, y_test;
void validationInit();
bool repeatSparent = false;
std::unordered_set<int> initializeModels();
// Hyperparameters
bool repeatSparent = false; // if true, a feature can be selected more than once
int maxModels = 0;
int tolerance = 0;
bool ascending = false; //Process KBest features ascending or descending order
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection
std::string algorithm = ""; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
};
}
#endif

72
src/BayesNet/CFS.cc Normal file
View File

@@ -0,0 +1,72 @@
#include "CFS.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
void CFS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto continueCondition = true;
auto feature = featureOrder[0];
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
selectedFeatures.erase(selectedFeatures.begin());
while (continueCondition) {
double merit = std::numeric_limits<double>::lowest();
int bestFeature = -1;
for (auto feature : featureOrder) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
if (meritNew > merit) {
merit = meritNew;
bestFeature = feature;
}
selectedFeatures.pop_back();
}
if (bestFeature == -1) {
// meritNew has to be nan due to constant features
break;
}
selectedFeatures.push_back(bestFeature);
selectedScores.push_back(merit);
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
continueCondition = computeContinueCondition(featureOrder);
}
fitted = true;
}
bool CFS::computeContinueCondition(const std::vector<int>& featureOrder)
{
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
return false;
}
if (selectedScores.size() >= 5) {
/*
"To prevent the best first search from exploring the entire
feature subset search space, a stopping criterion is imposed.
The search will terminate if five consecutive fully expanded
subsets show no improvement over the current best subset."
as stated in Mark A.Hall Thesis
*/
double item_ant = std::numeric_limits<double>::lowest();
int num = 0;
std::vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
for (auto item : lastFive) {
if (item_ant == std::numeric_limits<double>::lowest()) {
item_ant = item;
}
if (item > item_ant) {
break;
} else {
num++;
item_ant = item;
}
}
if (num == 5) {
return false;
}
}
return true;
}
}

20
src/BayesNet/CFS.h Normal file
View File

@@ -0,0 +1,20 @@
#ifndef CFS_H
#define CFS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
namespace bayesnet {
class CFS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
CFS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
{
}
virtual ~CFS() {};
void fit() override;
private:
bool computeContinueCondition(const std::vector<int>& featureOrder);
};
}
#endif

View File

@@ -3,7 +3,10 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
include_directories(${Python3_INCLUDE_DIRS})
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -2,10 +2,8 @@
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
@@ -21,7 +19,7 @@ namespace bayesnet {
fitted = true;
return *this;
}
void Classifier::buildDataset(Tensor& ytmp)
void Classifier::buildDataset(torch::Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
@@ -29,8 +27,8 @@ namespace bayesnet {
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
std::cout << "X dimensions: " << dataset.sizes() << "\n";
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
@@ -39,7 +37,7 @@ namespace bayesnet {
model.fit(dataset, weights, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
dataset = X;
buildDataset(y);
@@ -47,24 +45,24 @@ namespace bayesnet {
return build(features, className, states, weights);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
for (int i = 0; i < X.size(); ++i) {
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
dataset.index_put_({ i, "..." }, torch::tensor(X[i], torch::kInt32));
}
auto ytmp = torch::tensor(y, kInt32);
auto ytmp = torch::tensor(y, torch::kInt32);
buildDataset(ytmp);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states)
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
@@ -72,57 +70,57 @@ namespace bayesnet {
void Classifier::checkFitParameters()
{
if (torch::is_floating_point(dataset)) {
throw invalid_argument("dataset (X, y) must be of type Integer");
throw std::invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) {
throw invalid_argument("Classifier: X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
throw std::invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw invalid_argument("feature [" + feature + "] not found in states");
throw std::invalid_argument("feature [" + feature + "] not found in states");
}
}
}
Tensor Classifier::predict(Tensor& X)
torch::Tensor Classifier::predict(torch::Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error("Classifier has not been fitted");
}
return model.predict(X);
}
vector<int> Classifier::predict(vector<vector<int>>& X)
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error("Classifier has not been fitted");
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
float Classifier::score(Tensor& X, Tensor& y)
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error("Classifier has not been fitted");
}
Tensor y_pred = predict(X);
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error("Classifier has not been fitted");
}
return model.score(X, y);
}
vector<string> Classifier::show() const
std::vector<std::string> Classifier::show() const
{
return model.show();
}
@@ -137,7 +135,7 @@ namespace bayesnet {
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
return fitted ? model.getFeatures().size() : 0;
}
int Classifier::getNumberOfEdges() const
{
@@ -147,7 +145,7 @@ namespace bayesnet {
{
return fitted ? model.getStates() : 0;
}
vector<string> Classifier::topological_order()
std::vector<std::string> Classifier::topological_order()
{
return model.topological_sort();
}
@@ -155,18 +153,8 @@ namespace bayesnet {
{
model.dump_cpt();
}
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const vector<string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
//For classifiers that don't have hyperparameters
}
}

View File

@@ -4,48 +4,46 @@
#include "BaseClassifier.h"
#include "Network.h"
#include "BayesMetrics.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
Classifier& build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights);
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
protected:
bool fitted;
int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
Tensor dataset; // (n+1)xm tensor
std::vector<std::string> features;
std::string className;
std::map<std::string, std::vector<int>> states;
torch::Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
void buildDataset(torch::Tensor& y);
public:
Classifier(Network model);
virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
void addNodes();
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
Tensor predict(Tensor& X) override;
torch::Tensor predict(torch::Tensor& X) override;
status_t getStatus() const override { return status; }
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() const override;
vector<string> topological_order() override;
std::string getVersion() override { return "0.2.0"; };
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
std::vector<std::string> show() const override;
std::vector<std::string> topological_order() override;
void dump_cpt() const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
};
}
#endif

View File

@@ -1,7 +1,6 @@
#include "Ensemble.h"
namespace bayesnet {
using namespace torch;
Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
@@ -9,20 +8,20 @@ namespace bayesnet {
{
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
// fit with vectors
// fit with std::vectors
models[i]->fit(dataset, features, className, states);
}
}
vector<int> Ensemble::voting(Tensor& y_pred)
std::vector<int> Ensemble::voting(torch::Tensor& y_pred)
{
auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final;
std::vector<int> y_pred_final;
int numClasses = states.at(className).size();
// y_pred is m x n_models with the prediction of every model for each sample
for (int i = 0; i < y_pred.size(0); ++i) {
// votes store in each index (value of class) the significance added by each model
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
vector<double> votes(numClasses, 0.0);
std::vector<double> votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
votes[y_pred_[i][j]] += significanceModels.at(j);
}
@@ -32,18 +31,18 @@ namespace bayesnet {
}
return y_pred_final;
}
Tensor Ensemble::predict(Tensor& X)
torch::Tensor Ensemble::predict(torch::Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
throw std::logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
auto threads{ vector<thread>() };
mutex mtx;
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(thread([&, i]() {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict(X);
lock_guard<mutex> lock(mtx);
std::lock_guard<std::mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
@@ -52,27 +51,27 @@ namespace bayesnet {
}
return torch::tensor(voting(y_pred));
}
vector<int> Ensemble::predict(vector<vector<int>>& X)
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
throw std::logic_error("Ensemble has not been fitted");
}
long m_ = X[0].size();
long n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
Tensor y_pred = torch::zeros({ m_, n_models }, kInt32);
torch::Tensor y_pred = torch::zeros({ m_, n_models }, torch::kInt32);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), kInt32));
y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), torch::kInt32));
}
return voting(y_pred);
}
float Ensemble::score(Tensor& X, Tensor& y)
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
throw std::logic_error("Ensemble has not been fitted");
}
auto y_pred = predict(X);
int correct = 0;
@@ -83,10 +82,10 @@ namespace bayesnet {
}
return (double)correct / y_pred.size(0);
}
float Ensemble::score(vector<vector<int>>& X, vector<int>& y)
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
throw std::logic_error("Ensemble has not been fitted");
}
auto y_pred = predict(X);
int correct = 0;
@@ -97,20 +96,20 @@ namespace bayesnet {
}
return (double)correct / y_pred.size();
}
vector<string> Ensemble::show() const
std::vector<std::string> Ensemble::show() const
{
auto result = vector<string>();
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->show();
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
vector<string> Ensemble::graph(const string& title) const
std::vector<std::string> Ensemble::graph(const std::string& title) const
{
auto result = vector<string>();
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->graph(title + "_" + to_string(i));
auto res = models[i]->graph(title + "_" + std::to_string(i));
result.insert(result.end(), res.begin(), res.end());
}
return result;

View File

@@ -4,34 +4,32 @@
#include "Classifier.h"
#include "BayesMetrics.h"
#include "bayesnetUtils.h"
using namespace std;
using namespace torch;
namespace bayesnet {
class Ensemble : public Classifier {
private:
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
Ensemble& build(std::vector<std::string>& features, std::string className, std::map<std::string, std::vector<int>>& states);
protected:
unsigned n_models;
vector<unique_ptr<Classifier>> models;
vector<double> significanceModels;
std::vector<std::unique_ptr<Classifier>> models;
std::vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
vector<int> voting(Tensor& y_pred);
std::vector<int> voting(torch::Tensor& y_pred);
public:
Ensemble();
virtual ~Ensemble() = default;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
vector<string> show() const override;
vector<string> graph(const string& title) const override;
vector<string> topological_order() override
std::vector<std::string> show() const override;
std::vector<std::string> graph(const std::string& title) const override;
std::vector<std::string> topological_order() override
{
return vector<string>();
return std::vector<std::string>();
}
void dump_cpt() const override
{

44
src/BayesNet/FCBF.cc Normal file
View File

@@ -0,0 +1,44 @@
#include "bayesnetUtils.h"
#include "FCBF.h"
namespace bayesnet {
FCBF::FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 1e-7) {
throw std::invalid_argument("Threshold cannot be less than 1e-7");
}
}
void FCBF::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
for (const auto& feature : featureOrder) {
// Don't self compare
featureOrderCopy.erase(featureOrderCopy.begin());
if (suLabels.at(feature) == 0.0) {
// The feature has been removed from the list
continue;
}
if (suLabels.at(feature) < threshold) {
break;
}
// Remove redundant features
for (const auto& featureCopy : featureOrderCopy) {
double value = computeSuFeatures(feature, featureCopy);
if (value >= suLabels.at(featureCopy)) {
// Remove feature from list
suLabels[featureCopy] = 0.0;
}
}
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

17
src/BayesNet/FCBF.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef FCBF_H
#define FCBF_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
namespace bayesnet {
class FCBF : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~FCBF() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -0,0 +1,79 @@
#include "FeatureSelect.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
{
}
void FeatureSelect::initialize()
{
selectedFeatures.clear();
selectedScores.clear();
}
double FeatureSelect::symmetricalUncertainty(int a, int b)
{
/*
Compute symmetrical uncertainty. Normalize* information gain (mutual
information) with the entropies of the features in order to compensate
the bias due to high cardinality features. *Range [0, 1]
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
*/
auto x = samples.index({ a, "..." });
auto y = samples.index({ b, "..." });
auto mu = mutualInformation(x, y, weights);
auto hx = entropy(x, weights);
auto hy = entropy(y, weights);
return 2.0 * mu / (hx + hy);
}
void FeatureSelect::computeSuLabels()
{
// Compute Simmetrical Uncertainty between features and labels
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
for (int i = 0; i < features.size(); ++i) {
suLabels.push_back(symmetricalUncertainty(i, -1));
}
}
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
{
// Compute Simmetrical Uncertainty between features
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
try {
return suFeatures.at({ firstFeature, secondFeature });
}
catch (const std::out_of_range& e) {
double result = symmetricalUncertainty(firstFeature, secondFeature);
suFeatures[{firstFeature, secondFeature}] = result;
return result;
}
}
double FeatureSelect::computeMeritCFS()
{
double result;
double rcf = 0;
for (auto feature : selectedFeatures) {
rcf += suLabels[feature];
}
double rff = 0;
int n = selectedFeatures.size();
for (const auto& item : doCombinations(selectedFeatures)) {
rff += computeSuFeatures(item.first, item.second);
}
return rcf / sqrt(n + (n * n - n) * rff);
}
std::vector<int> FeatureSelect::getFeatures() const
{
if (!fitted) {
throw std::runtime_error("FeatureSelect not fitted");
}
return selectedFeatures;
}
std::vector<double> FeatureSelect::getScores() const
{
if (!fitted) {
throw std::runtime_error("FeatureSelect not fitted");
}
return selectedScores;
}
}

View File

@@ -0,0 +1,30 @@
#ifndef FEATURE_SELECT_H
#define FEATURE_SELECT_H
#include <torch/torch.h>
#include <vector>
#include "BayesMetrics.h"
namespace bayesnet {
class FeatureSelect : public Metrics {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
virtual ~FeatureSelect() {};
virtual void fit() = 0;
std::vector<int> getFeatures() const;
std::vector<double> getScores() const;
protected:
void initialize();
void computeSuLabels();
double computeSuFeatures(const int a, const int b);
double symmetricalUncertainty(int a, int b);
double computeMeritCFS();
const torch::Tensor& weights;
int maxFeatures;
std::vector<int> selectedFeatures;
std::vector<double> selectedScores;
std::vector<double> suLabels;
std::map<std::pair<int, int>, double> suFeatures;
bool fitted = false;
};
}
#endif

47
src/BayesNet/IWSS.cc Normal file
View File

@@ -0,0 +1,47 @@
#include "IWSS.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 0 || threshold > .5) {
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
}
}
void IWSS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
// Add first and second features to result
// First with its own score
auto first_feature = pop_first(featureOrderCopy);
selectedFeatures.push_back(first_feature);
selectedScores.push_back(suLabels.at(first_feature));
// Second with the score of the candidates
selectedFeatures.push_back(pop_first(featureOrderCopy));
auto merit = computeMeritCFS();
selectedScores.push_back(merit);
for (const auto feature : featureOrderCopy) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
if (meritNew > merit || delta < threshold) {
if (meritNew > merit) {
merit = meritNew;
}
selectedScores.push_back(meritNew);
} else {
selectedFeatures.pop_back();
break;
}
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

17
src/BayesNet/IWSS.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef IWSS_H
#define IWSS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
namespace bayesnet {
class IWSS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~IWSS() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -1,14 +1,13 @@
#include "KDB.h"
namespace bayesnet {
using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
{
validHyperparameters = { "k", "theta" };
}
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "k", "theta" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
}
@@ -40,16 +39,16 @@ namespace bayesnet {
// 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class.
addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector<double> mi;
const torch::Tensor& y = dataset.index({ -1, "..." });
std::vector<double> mi;
for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = dataset.index({ i, "..." });
torch::Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
}
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
// 3. Let the used variable list, S, be empty.
vector<int> S;
std::vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single
// class node, C.
// 5. Repeat until S includes all domain features
@@ -67,9 +66,9 @@ namespace bayesnet {
S.push_back(idx);
}
}
void KDB::add_m_edges(int idx, vector<int>& S, Tensor& weights)
void KDB::add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights)
{
auto n_edges = min(k, static_cast<int>(S.size()));
auto n_edges = std::min(k, static_cast<int>(S.size()));
auto cond_w = clone(weights);
bool exit_cond = k == 0;
int num = 0;
@@ -81,7 +80,7 @@ namespace bayesnet {
model.addEdge(features[max_minfo], features[idx]);
num++;
}
catch (const invalid_argument& e) {
catch (const std::invalid_argument& e) {
// Loops are not allowed
}
}
@@ -91,11 +90,11 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0;
}
}
vector<string> KDB::graph(const string& title) const
std::vector<std::string> KDB::graph(const std::string& title) const
{
string header{ title };
std::string header{ title };
if (title == "KDB") {
header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
header += " (k=" + std::to_string(k) + ", theta=" + std::to_string(theta) + ")";
}
return model.graph(header);
}

View File

@@ -4,20 +4,18 @@
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
class KDB : public Classifier {
private:
int k;
float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
protected:
void buildModel(const torch::Tensor& weights) override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override;
vector<string> graph(const string& name = "KDB") const override;
virtual ~KDB() = default;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
};
}
#endif

View File

@@ -1,16 +1,15 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
@@ -18,12 +17,12 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
torch::Tensor KDBLd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
std::vector<std::string> KDBLd::graph(const std::string& name) const
{
return KDB::graph(name);
}

View File

@@ -4,16 +4,15 @@
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -1,13 +1,13 @@
#include "Mst.h"
#include <vector>
#include <list>
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
*/
namespace bayesnet {
using namespace std;
Graph::Graph(int V) : V(V), parent(vector<int>(V))
Graph::Graph(int V) : V(V), parent(std::vector<int>(V))
{
for (int i = 0; i < V; i++)
parent[i] = i;
@@ -34,36 +34,45 @@ namespace bayesnet {
void Graph::kruskal_algorithm()
{
// sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second);
if (uSt != vEd) {
T.push_back(G[i]); // add to mst vector
T.push_back(G[i]); // add to mst std::vector
union_set(uSt, vEd);
}
}
}
void Graph::display_mst()
{
cout << "Edge :" << " Weight" << endl;
std::cout << "Edge :" << " Weight" << std::endl;
for (int i = 0; i < T.size(); i++) {
cout << T[i].second.first << " - " << T[i].second.second << " : "
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
<< T[i].first;
cout << endl;
std::cout << std::endl;
}
}
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
void insertElement(std::list<int>& variables, int variable)
{
auto result = vector<pair<int, int>>();
auto visited = vector<int>();
auto nextVariables = unordered_set<int>();
nextVariables.emplace(root_original);
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
variables.push_front(variable);
}
}
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
{
// Create the edges of a DAG from the MST
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
auto result = std::vector<std::pair<int, int>>();
auto visited = std::vector<int>();
auto nextVariables = std::list<int>();
nextVariables.push_front(root_original);
while (nextVariables.size() > 0) {
int root = *nextVariables.begin();
nextVariables.erase(nextVariables.begin());
int root = nextVariables.front();
nextVariables.pop_front();
for (int i = 0; i < T.size(); ++i) {
auto [weight, edge] = T[i];
auto [from, to] = edge;
@@ -71,10 +80,10 @@ namespace bayesnet {
visited.insert(visited.begin(), i);
if (from == root) {
result.push_back({ from, to });
nextVariables.emplace(to);
insertElement(nextVariables, to);
} else {
result.push_back({ to, from });
nextVariables.emplace(from);
insertElement(nextVariables, from);
}
}
}
@@ -94,12 +103,11 @@ namespace bayesnet {
return result;
}
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree()
MST::MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
std::vector<std::pair<int, int>> MST::maximumSpanningTree()
{
auto num_features = features.size();
Graph g(num_features);
// Make a complete graph
for (int i = 0; i < num_features - 1; ++i) {
for (int j = i + 1; j < num_features; ++j) {

View File

@@ -4,24 +4,22 @@
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
using namespace torch;
class MST {
private:
Tensor weights;
vector<string> features;
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
public:
MST() = default;
MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree();
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
std::vector<std::pair<int, int>> maximumSpanningTree();
};
class Graph {
private:
int V; // number of nodes in graph
vector <pair<float, pair<int, int>>> G; // vector for graph
vector <pair<float, pair<int, int>>> T; // vector for mst
vector<int> parent;
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
public:
explicit Graph(int V);
void addEdge(int u, int v, float wt);
@@ -29,7 +27,7 @@ namespace bayesnet {
void union_set(int u, int v);
void kruskal_algorithm();
void display_mst();
vector <pair<float, pair<int, int>>> get_mst() { return T; }
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
};
}
#endif

View File

@@ -3,18 +3,18 @@
#include "Network.h"
#include "bayesnetUtils.h"
namespace bayesnet {
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
{
for (const auto& pair : other.nodes) {
nodes[pair.first] = std::make_unique<Node>(*pair.second);
for (const auto& node : other.nodes) {
nodes[node.first] = std::make_unique<Node>(*node.second);
}
}
void Network::initialize()
{
features = vector<string>();
features = std::vector<std::string>();
className = "";
classNumStates = 0;
fitted = false;
@@ -29,10 +29,10 @@ namespace bayesnet {
{
return samples;
}
void Network::addNode(const string& name)
void Network::addNode(const std::string& name)
{
if (name == "") {
throw invalid_argument("Node name cannot be empty");
throw std::invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
@@ -42,7 +42,7 @@ namespace bayesnet {
}
nodes[name] = std::make_unique<Node>(name);
}
vector<string> Network::getFeatures() const
std::vector<std::string> Network::getFeatures() const
{
return features;
}
@@ -58,11 +58,11 @@ namespace bayesnet {
}
return result;
}
string Network::getClassName() const
std::string Network::getClassName() const
{
return className;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
bool Network::isCyclic(const std::string& nodeId, std::unordered_set<std::string>& visited, std::unordered_set<std::string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
@@ -78,78 +78,78 @@ namespace bayesnet {
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string& parent, const string& child)
void Network::addEdge(const std::string& parent, const std::string& child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
throw std::invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
throw std::invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child].get());
nodes[child]->addParent(nodes[parent].get());
unordered_set<string> visited;
unordered_set<string> recStack;
std::unordered_set<std::string> visited;
std::unordered_set<std::string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child].get());
nodes[child]->removeParent(nodes[parent].get());
throw invalid_argument("Adding this edge forms a cycle in the graph.");
throw std::invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, std::unique_ptr<Node>>& Network::getNodes()
std::map<std::string, std::unique_ptr<Node>>& Network::getNodes()
{
return nodes;
}
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
if (weights.size(0) != n_samples) {
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
throw std::invalid_argument("Weights (" + std::to_string(weights.size(0)) + ") must have the same number of elements as samples (" + std::to_string(n_samples) + ") in Network::fit");
}
if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
throw std::invalid_argument("X and y must have the same number of samples in Network::fit (" + std::to_string(n_samples) + " != " + std::to_string(n_samples_y) + ")");
}
if (n_features != featureNames.size()) {
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
}
if (n_features != features.size() - 1) {
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw invalid_argument("className not found in Network::features");
throw std::invalid_argument("className not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
throw std::invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
throw std::invalid_argument("Feature " + feature + " not found in states");
}
}
}
void Network::setStates(const map<string, vector<int>>& states)
void Network::setStates(const std::map<std::string, std::vector<int>>& states)
{
// Set states to every Node in the network
for_each(features.begin(), features.end(), [this, &states](const string& feature) {
for_each(features.begin(), features.end(), [this, &states](const std::string& feature) {
nodes.at(feature)->setNumStates(states.at(feature).size());
});
classNumStates = nodes.at(className)->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
this->className = className;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
torch::Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." });
}
completeFit(states, weights);
}
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
this->className = className;
@@ -157,7 +157,7 @@ namespace bayesnet {
completeFit(states, weights);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
{
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
@@ -170,11 +170,11 @@ namespace bayesnet {
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states, weights);
}
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
setStates(states);
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
vector<thread> threads;
std::vector<std::thread> threads;
for (auto& node : nodes) {
threads.emplace_back([this, &node, &weights]() {
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
@@ -188,12 +188,12 @@ namespace bayesnet {
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
throw std::logic_error("You must call fit() before calling predict()");
}
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
const Tensor sample = samples.index({ "...", i });
const torch::Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
@@ -201,36 +201,35 @@ namespace bayesnet {
}
if (proba)
return result;
else
return result.argmax(1);
return result.argmax(1);
}
// Return mxn tensor of probabilities
Tensor Network::predict_proba(const Tensor& samples)
torch::Tensor Network::predict_proba(const torch::Tensor& samples)
{
return predict_tensor(samples, true);
}
// Return mxn tensor of probabilities
Tensor Network::predict(const Tensor& samples)
torch::Tensor Network::predict(const torch::Tensor& samples)
{
return predict_tensor(samples, false);
}
// Return mx1 vector of predictions
// tsamples is nxm vector of samples
vector<int> Network::predict(const vector<vector<int>>& tsamples)
// Return mx1 std::vector of predictions
// tsamples is nxm std::vector of samples
std::vector<int> Network::predict(const std::vector<std::vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
throw std::logic_error("You must call fit() before calling predict()");
}
vector<int> predictions;
vector<int> sample;
std::vector<int> predictions;
std::vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
vector<double> classProbabilities = predict_sample(sample);
std::vector<double> classProbabilities = predict_sample(sample);
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);
@@ -238,14 +237,14 @@ namespace bayesnet {
}
return predictions;
}
// Return mxn vector of probabilities
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
// Return mxn std::vector of probabilities
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict_proba()");
throw std::logic_error("You must call fit() before calling predict_proba()");
}
vector<vector<double>> predictions;
vector<int> sample;
std::vector<std::vector<double>> predictions;
std::vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
@@ -255,9 +254,9 @@ namespace bayesnet {
}
return predictions;
}
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
double Network::score(const std::vector<std::vector<int>>& tsamples, const std::vector<int>& labels)
{
vector<int> y_pred = predict(tsamples);
std::vector<int> y_pred = predict(tsamples);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == labels[i]) {
@@ -266,35 +265,35 @@ namespace bayesnet {
}
return (double)correct / y_pred.size();
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const vector<int>& sample)
// Return 1xn std::vector of probabilities
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size() != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
std::map<std::string, int> evidence;
for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i];
}
return exactInference(evidence);
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const Tensor& sample)
// Return 1xn std::vector of probabilities
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size(0) != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
std::map<std::string, int> evidence;
for (int i = 0; i < sample.size(0); ++i) {
evidence[features[i]] = sample[i].item<int>();
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence)
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
{
double result = 1.0;
for (auto& node : getNodes()) {
@@ -302,17 +301,17 @@ namespace bayesnet {
}
return result;
}
vector<double> Network::exactInference(map<string, int>& evidence)
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
{
vector<double> result(classNumStates, 0.0);
vector<thread> threads;
mutex mtx;
std::vector<double> result(classNumStates, 0.0);
std::vector<std::thread> threads;
std::mutex mtx;
for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence);
auto completeEvidence = std::map<std::string, int>(evidence);
completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx);
std::lock_guard<std::mutex> lock(mtx);
result[i] = factor;
});
}
@@ -324,12 +323,12 @@ namespace bayesnet {
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
return result;
}
vector<string> Network::show() const
std::vector<std::string> Network::show() const
{
vector<string> result;
std::vector<std::string> result;
// Draw the network
for (auto& node : nodes) {
string line = node.first + " -> ";
std::string line = node.first + " -> ";
for (auto child : node.second->getChildren()) {
line += child->getName() + ", ";
}
@@ -337,12 +336,12 @@ namespace bayesnet {
}
return result;
}
vector<string> Network::graph(const string& title) const
std::vector<std::string> Network::graph(const std::string& title) const
{
auto output = vector<string>();
auto output = std::vector<std::string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
auto suffix = ">\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n";
string header = prefix + title + suffix;
std::string header = prefix + title + suffix;
output.push_back(header);
for (auto& node : nodes) {
auto result = node.second->graph(className);
@@ -351,9 +350,9 @@ namespace bayesnet {
output.push_back("}\n");
return output;
}
vector<pair<string, string>> Network::getEdges() const
std::vector<std::pair<std::string, std::string>> Network::getEdges() const
{
auto edges = vector<pair<string, string>>();
auto edges = std::vector<std::pair<std::string, std::string>>();
for (const auto& node : nodes) {
auto head = node.first;
for (const auto& child : node.second->getChildren()) {
@@ -367,7 +366,7 @@ namespace bayesnet {
{
return getEdges().size();
}
vector<string> Network::topological_sort()
std::vector<std::string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
auto result = features;
@@ -394,10 +393,10 @@ namespace bayesnet {
ending = false;
}
} else {
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
@@ -407,8 +406,8 @@ namespace bayesnet {
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
cout << node.second->getCPT() << endl;
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
std::cout << node.second->getCPT() << std::endl;
}
}
}

View File

@@ -7,22 +7,22 @@
namespace bayesnet {
class Network {
private:
map<string, unique_ptr<Node>> nodes;
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
vector<string> features; // Including classname
string className;
std::vector<std::string> features; // Including classname
std::string className;
double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&);
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
void setStates(const map<string, vector<int>>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
double computeFactor(std::map<std::string, int>&);
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
public:
Network();
explicit Network(float);
@@ -30,30 +30,33 @@ namespace bayesnet {
~Network() = default;
torch::Tensor& getSamples();
float getmaxThreads();
void addNode(const string&);
void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures() const;
void addNode(const std::string&);
void addEdge(const std::string&, const std::string&);
std::map<std::string, std::unique_ptr<Node>>& getNodes();
std::vector<std::string> getFeatures() const;
int getStates() const;
vector<pair<string, string>> getEdges() const;
std::vector<std::pair<std::string, std::string>> getEdges() const;
int getNumEdges() const;
int getClassNumStates() const;
string getClassName() const;
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
std::string getClassName() const;
/*
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
*/
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
std::vector<std::vector<double>> predict_proba(const std::vector<std::vector<int>>&); // Return mxn std::vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&);
vector<string> topological_sort();
vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
double score(const std::vector<std::vector<int>>&, const std::vector<int>&);
std::vector<std::string> topological_sort();
std::vector<std::string> show() const;
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline string version() { return "0.2.0"; }
inline std::string version() { return "0.2.0"; }
};
}
#endif

View File

@@ -3,7 +3,7 @@
namespace bayesnet {
Node::Node(const std::string& name)
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
{
}
void Node::clear()
@@ -14,7 +14,7 @@ namespace bayesnet {
dimensions.clear();
numStates = 0;
}
string Node::getName() const
std::string Node::getName() const
{
return name;
}
@@ -34,11 +34,11 @@ namespace bayesnet {
{
children.push_back(child);
}
vector<Node*>& Node::getParents()
std::vector<Node*>& Node::getParents()
{
return parents;
}
vector<Node*>& Node::getChildren()
std::vector<Node*>& Node::getChildren()
{
return children;
}
@@ -63,28 +63,28 @@ namespace bayesnet {
*/
unsigned Node::minFill()
{
unordered_set<string> neighbors;
std::unordered_set<std::string> neighbors;
for (auto child : children) {
neighbors.emplace(child->getName());
}
for (auto parent : parents) {
neighbors.emplace(parent->getName());
}
auto source = vector<string>(neighbors.begin(), neighbors.end());
auto source = std::vector<std::string>(neighbors.begin(), neighbors.end());
return combinations(source).size();
}
vector<pair<string, string>> Node::combinations(const vector<string>& source)
std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source)
{
vector<pair<string, string>> result;
std::vector<std::pair<std::string, std::string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
std::string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
{
dimensions.clear();
// Get dimensions of the CPT
@@ -96,7 +96,7 @@ namespace bayesnet {
// Fill table with counts
auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
throw std::logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
@@ -105,7 +105,7 @@ namespace bayesnet {
for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
@@ -116,17 +116,17 @@ namespace bayesnet {
// Normalize the counts
cpTable = cpTable / cpTable.sum(0);
}
float Node::getFactorValue(map<string, int>& evidence)
float Node::getFactorValue(std::map<std::string, int>& evidence)
{
c10::List<c10::optional<at::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(at::tensor(evidence[name]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<float>();
}
vector<string> Node::graph(const string& className)
std::vector<std::string> Node::graph(const std::string& className)
{
auto output = vector<string>();
auto output = std::vector<std::string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back(name + " [shape=circle" + suffix + "] \n");
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });

View File

@@ -5,33 +5,32 @@
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
class Node {
private:
string name;
vector<Node*> parents;
vector<Node*> children;
std::string name;
std::vector<Node*> parents;
std::vector<Node*> children;
int numStates; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
vector<int64_t> dimensions; // dimensions of the cpTable
std::vector<int64_t> dimensions; // dimensions of the cpTable
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
public:
vector<pair<string, string>> combinations(const vector<string>&);
explicit Node(const string&);
explicit Node(const std::string&);
void clear();
void addParent(Node*);
void addChild(Node*);
void removeParent(Node*);
void removeChild(Node*);
string getName() const;
vector<Node*>& getParents();
vector<Node*>& getChildren();
std::string getName() const;
std::vector<Node*>& getParents();
std::vector<Node*>& getChildren();
torch::Tensor& getCPT();
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
int getNumStates() const;
void setNumStates(int);
unsigned minFill();
vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
float getFactorValue(map<string, int>&);
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
float getFactorValue(std::map<std::string, int>&);
};
}
#endif

View File

@@ -2,7 +2,7 @@
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
@@ -18,14 +18,14 @@ namespace bayesnet {
throw std::invalid_argument("y must be an integer tensor");
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
map<std::string, std::vector<int>> states = oldStates;
std::vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
@@ -33,16 +33,16 @@ namespace bayesnet {
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
std::vector<std::string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
std::vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
std::vector<std::string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
@@ -51,16 +51,16 @@ namespace bayesnet {
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
auto xStates = std::vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
@@ -70,28 +70,28 @@ namespace bayesnet {
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
map<std::string, std::vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
map<std::string, std::vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, torch::kInt32);
auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
auto yStates = std::vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
@@ -101,7 +101,7 @@ namespace bayesnet {
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xt = std::vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}

View File

@@ -10,20 +10,20 @@
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
virtual ~Proposal();
protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
map<std::string, std::vector<int>> localDiscretizationProposal(const map<std::string, std::vector<int>>& states, Network& model);
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
map<std::string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
std::vector<std::string>& pFeatures;
std::string& pClassName;
};
}

View File

@@ -17,7 +17,7 @@ namespace bayesnet {
}
}
}
vector<string> SPODE::graph(const string& name) const
std::vector<std::string> SPODE::graph(const std::string& name) const
{
return model.graph(name);
}

View File

@@ -10,8 +10,8 @@ namespace bayesnet {
void buildModel(const torch::Tensor& weights) override;
public:
explicit SPODE(int root);
virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") const override;
virtual ~SPODE() = default;
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
};
}
#endif

View File

@@ -1,16 +1,15 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
@@ -18,7 +17,7 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
@@ -27,7 +26,7 @@ namespace bayesnet {
y = dataset.index({ -1, "..." }).clone();
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
@@ -36,12 +35,12 @@ namespace bayesnet {
return *this;
}
Tensor SPODELd::predict(Tensor& X)
torch::Tensor SPODELd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
std::vector<std::string> SPODELd::graph(const std::string& name) const
{
return SPODE::graph(name);
}

View File

@@ -4,16 +4,15 @@
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -1,8 +1,6 @@
#include "TAN.h"
namespace bayesnet {
using namespace torch;
TAN::TAN() : Classifier(Network()) {}
void TAN::buildModel(const torch::Tensor& weights)
@@ -11,10 +9,10 @@ namespace bayesnet {
addNodes();
// 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class
auto mi = vector <pair<int, float >>();
Tensor class_dataset = dataset.index({ -1, "..." });
auto mi = std::vector <std::pair<int, float >>();
torch::Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ i, "..." });
torch::Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
mi.push_back({ i, mi_value });
}
@@ -34,7 +32,7 @@ namespace bayesnet {
model.addEdge(className, feature);
}
}
vector<string> TAN::graph(const string& title) const
std::vector<std::string> TAN::graph(const std::string& title) const
{
return model.graph(title);
}

View File

@@ -2,15 +2,14 @@
#define TAN_H
#include "Classifier.h"
namespace bayesnet {
using namespace std;
class TAN : public Classifier {
private:
protected:
void buildModel(const torch::Tensor& weights) override;
public:
TAN();
virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") const override;
virtual ~TAN() = default;
std::vector<std::string> graph(const std::string& name = "TAN") const override;
};
}
#endif

View File

@@ -1,16 +1,15 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
@@ -19,12 +18,12 @@ namespace bayesnet {
return *this;
}
Tensor TANLd::predict(Tensor& X)
torch::Tensor TANLd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
std::vector<std::string> TANLd::graph(const std::string& name) const
{
return TAN::graph(name);
}

View File

@@ -4,16 +4,15 @@
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
std::vector<std::string> graph(const std::string& name = "TAN") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -1,25 +1,23 @@
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<double>& nums)
std::vector<int> argsort(std::vector<double>& nums)
{
int n = nums.size();
vector<int> indices(n);
std::vector<int> indices(n);
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices;
}
vector<vector<int>> tensorToVector(Tensor& tensor)
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor)
{
// convert mxn tensor to nxm vector
vector<vector<int>> result;
// convert mxn tensor to nxm std::vector
std::vector<std::vector<int>> result;
// Iterate over cols
for (int i = 0; i < tensor.size(1); ++i) {
auto col_tensor = tensor.index({ "...", i });
auto col = vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
auto col = std::vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
result.push_back(col);
}
return result;

View File

@@ -3,9 +3,7 @@
#include <torch/torch.h>
#include <vector>
namespace bayesnet {
using namespace std;
using namespace torch;
vector<int> argsort(vector<double>& nums);
vector<vector<int>> tensorToVector(Tensor& tensor);
std::vector<int> argsort(std::vector<double>& nums);
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor);
}
#endif //BAYESNET_UTILS_H

View File

@@ -1,37 +1,37 @@
#include <filesystem>
#include <set>
#include <fstream>
#include <iostream>
#include <sstream>
#include <set>
#include <algorithm>
#include "BestResults.h"
#include "Result.h"
#include "Colors.h"
#include "Statistics.h"
#include "BestResultsExcel.h"
#include "CLocale.h"
namespace fs = std::filesystem;
// function ftime_to_string, Code taken from
// function ftime_to_std::string, Code taken from
// https://stackoverflow.com/a/58237530/1389271
template <typename TP>
std::string ftime_to_string(TP tp)
{
using namespace std::chrono;
auto sctp = time_point_cast<system_clock::duration>(tp - TP::clock::now()
+ system_clock::now());
auto tt = system_clock::to_time_t(sctp);
auto sctp = std::chrono::time_point_cast<std::chrono::system_clock::duration>(tp - TP::clock::now()
+ std::chrono::system_clock::now());
auto tt = std::chrono::system_clock::to_time_t(sctp);
std::tm* gmt = std::gmtime(&tt);
std::stringstream buffer;
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
return buffer.str();
}
namespace platform {
string BestResults::build()
std::string BestResults::build()
{
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
exit(1);
}
json bests;
@@ -40,54 +40,53 @@ namespace platform {
auto data = result.load();
for (auto const& item : data.at("results")) {
bool update = false;
if (bests.contains(item.at("dataset").get<string>())) {
if (item.at("score").get<double>() > bests[item.at("dataset").get<string>()].at(0).get<double>()) {
// Check if results file contains only one dataset
auto datasetName = item.at("dataset").get<std::string>();
if (bests.contains(datasetName)) {
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
update = true;
}
} else {
update = true;
}
if (update) {
bests[item.at("dataset").get<string>()] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
}
}
}
string bestFileName = path + bestResultFile();
std::string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << endl;
std::cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << std::endl;
}
ofstream file(bestFileName);
std::ofstream file(bestFileName);
file << bests;
file.close();
return bestFileName;
}
string BestResults::bestResultFile()
std::string BestResults::bestResultFile()
{
return "best_results_" + score + "_" + model + ".json";
}
pair<string, string> getModelScore(string name)
std::pair<std::string, std::string> getModelScore(std::string name)
{
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
int i = 0;
auto pos = name.find("_");
auto pos2 = name.find("_", pos + 1);
string score = name.substr(pos + 1, pos2 - pos - 1);
std::string score = name.substr(pos + 1, pos2 - pos - 1);
pos = name.find("_", pos2 + 1);
string model = name.substr(pos2 + 1, pos - pos2 - 1);
std::string model = name.substr(pos2 + 1, pos - pos2 - 1);
return { model, score };
}
vector<string> BestResults::loadResultFiles()
std::vector<std::string> BestResults::loadResultFiles()
{
vector<string> files;
std::vector<std::string> files;
using std::filesystem::directory_iterator;
string fileModel, fileScore;
std::string fileModel, fileScore;
for (const auto& file : directory_iterator(path)) {
auto fileName = file.path().filename().string();
if (fileName.find(".json") != string::npos && fileName.find("results_") == 0) {
if (fileName.find(".json") != std::string::npos && fileName.find("results_") == 0) {
tie(fileModel, fileScore) = getModelScore(fileName);
if (score == fileScore && (model == fileModel || model == "any")) {
files.push_back(fileName);
@@ -96,173 +95,174 @@ namespace platform {
}
return files;
}
json BestResults::loadFile(const string& fileName)
json BestResults::loadFile(const std::string& fileName)
{
ifstream resultData(fileName);
std::ifstream resultData(fileName);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + fileName + "]");
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
}
set<string> BestResults::getModels()
std::vector<std::string> BestResults::getModels()
{
set<string> models;
std::set<std::string> models;
std::vector<std::string> result;
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
exit(1);
}
string fileModel, fileScore;
std::string fileModel, fileScore;
for (const auto& file : files) {
// extract the model from the file name
tie(fileModel, fileScore) = getModelScore(file);
// add the model to the vector of models
// add the model to the std::vector of models
models.insert(fileModel);
}
return models;
result = std::vector<std::string>(models.begin(), models.end());
return result;
}
std::vector<std::string> BestResults::getDatasets(json table)
{
std::vector<std::string> datasets;
for (const auto& dataset : table.items()) {
datasets.push_back(dataset.key());
}
return datasets;
}
void BestResults::buildAll()
{
auto models = getModels();
for (const auto& model : models) {
cout << "Building best results for model: " << model << endl;
std::cout << "Building best results for model: " << model << std::endl;
this->model = model;
build();
}
model = "any";
}
void BestResults::reportSingle()
void BestResults::listFile()
{
string bestFileName = path + bestResultFile();
std::string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
exit(1);
}
auto date = ftime_to_string(filesystem::last_write_time(bestFileName));
auto temp = ConfigLocale();
auto date = ftime_to_string(std::filesystem::last_write_time(bestFileName));
auto data = loadFile(bestFileName);
cout << Colors::GREEN() << "Best results for " << model << " and " << score << " as of " << date << endl;
cout << "--------------------------------------------------------" << endl;
cout << Colors::GREEN() << " # Dataset Score File Hyperparameters" << endl;
cout << "=== ========================= =========== ================================================================== ================================================= " << endl;
auto datasets = getDatasets(data);
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
int maxFileName = 0;
int maxHyper = 15;
for (auto const& item : data.items()) {
maxHyper = std::max(maxHyper, (int)item.value().at(1).dump().size());
maxFileName = std::max(maxFileName, (int)item.value().at(2).get<std::string>().size());
}
std::stringstream oss;
oss << Colors::GREEN() << "Best results for " << model << " as of " << date << std::endl;
std::cout << oss.str();
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << "Dataset" << "Score " << std::setw(maxFileName) << "File" << " Hyperparameters" << std::endl;
std::cout << "=== " << std::string(maxDatasetName, '=') << " =========== " << std::string(maxFileName, '=') << " " << std::string(maxHyper, '=') << std::endl;
auto i = 0;
bool odd = true;
double total = 0;
for (auto const& item : data.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(25) << left << item.key() << " ";
cout << setw(11) << setprecision(9) << fixed << item.value().at(0).get<double>() << " ";
cout << setw(66) << item.value().at(2).get<string>() << " ";
cout << item.value().at(1) << " ";
cout << endl;
double value = item.value().at(0).get<double>();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << std::setw(maxDatasetName) << std::left << item.key() << " ";
std::cout << std::setw(11) << std::setprecision(9) << std::fixed << value << " ";
std::cout << std::setw(maxFileName) << item.value().at(2).get<std::string>() << " ";
std::cout << item.value().at(1) << " ";
std::cout << std::endl;
total += value;
odd = !odd;
}
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ===========" << std::endl;
std::cout << std::setw(5 + maxDatasetName) << "Total.................. " << std::setw(11) << std::setprecision(8) << std::fixed << total << std::endl;
}
json BestResults::buildTableResults(set<string> models)
json BestResults::buildTableResults(std::vector<std::string> models)
{
int numberOfDatasets = 0;
bool first = true;
json origin;
json table;
auto maxDate = filesystem::file_time_type::max();
auto maxDate = std::filesystem::file_time_type::max();
for (const auto& model : models) {
this->model = model;
string bestFileName = path + bestResultFile();
std::string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
exit(1);
}
auto dateWrite = filesystem::last_write_time(bestFileName);
auto dateWrite = std::filesystem::last_write_time(bestFileName);
if (dateWrite < maxDate) {
maxDate = dateWrite;
}
auto data = loadFile(bestFileName);
if (first) {
// Get the number of datasets of the first file and check that is the same for all the models
first = false;
numberOfDatasets = data.size();
origin = data;
} else {
if (numberOfDatasets != data.size()) {
cerr << Colors::MAGENTA() << "The number of datasets in the best results files is not the same for all the models." << Colors::RESET() << endl;
exit(1);
}
}
table[model] = data;
}
table["dateTable"] = ftime_to_string(maxDate);
return table;
}
void BestResults::printTableResults(set<string> models, json table)
void BestResults::printTableResults(std::vector<std::string> models, json table)
{
cout << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<string>() << endl;
cout << "------------------------------------------------" << endl;
cout << Colors::GREEN() << " # Dataset ";
std::stringstream oss;
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
std::cout << oss.str();
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << std::string("Dataset");
for (const auto& model : models) {
cout << setw(12) << left << model << " ";
std::cout << std::setw(maxModelName) << std::left << model << " ";
}
cout << endl;
cout << "=== ========================= ";
std::cout << std::endl;
std::cout << "=== " << std::string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
cout << "============ ";
std::cout << std::string(maxModelName, '=') << " ";
}
cout << endl;
std::cout << std::endl;
auto i = 0;
bool odd = true;
map<string, double> totals;
map<string, int> ranks;
std::map<std::string, double> totals;
int nDatasets = table.begin().value().size();
for (const auto& model : models) {
totals[model] = 0.0;
}
json origin = table.begin().value();
for (auto const& item : origin.items()) {
auto datasets = getDatasets(table.begin().value());
for (auto const& dataset : datasets) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(25) << left << item.key() << " ";
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << std::setw(maxDatasetName) << std::left << dataset << " ";
double maxValue = 0;
vector<pair<string, double>> ranksOrder;
// Find out the max value for this dataset
for (const auto& model : models) {
double value = table[model].at(item.key()).at(0).get<double>();
double value = table[model].at(dataset).at(0).get<double>();
if (value > maxValue) {
maxValue = value;
}
ranksOrder.push_back({ model, value });
}
// sort the ranksOrder vector by value
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, double>& a, const pair<string, double>& b) {
return a.second > b.second;
});
// Assign the ranks
for (int i = 0; i < ranksOrder.size(); i++) {
ranks[ranksOrder[i].first] = i + 1;
}
// Print the row with red colors on max values
for (const auto& model : models) {
string efectiveColor = color;
double value = table[model].at(item.key()).at(0).get<double>();
std::string efectiveColor = color;
double value = table[model].at(dataset).at(0).get<double>();
if (value == maxValue) {
efectiveColor = Colors::RED();
}
totals[model] += value;
cout << efectiveColor << setw(12) << setprecision(10) << fixed << value << " ";
std::cout << efectiveColor << std::setw(maxModelName) << std::setprecision(maxModelName - 2) << std::fixed << value << " ";
}
cout << endl;
std::cout << std::endl;
odd = !odd;
}
cout << Colors::GREEN() << "=== ========================= ";
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
cout << "============ ";
std::cout << std::string(maxModelName, '=') << " ";
}
cout << endl;
cout << Colors::GREEN() << setw(30) << " Totals...................";
std::cout << std::endl;
std::cout << Colors::GREEN() << std::setw(5 + maxDatasetName) << " Totals...................";
double max = 0.0;
for (const auto& total : totals) {
if (total.second > max) {
@@ -270,36 +270,74 @@ namespace platform {
}
}
for (const auto& model : models) {
string efectiveColor = Colors::GREEN();
std::string efectiveColor = Colors::GREEN();
if (totals[model] == max) {
efectiveColor = Colors::RED();
}
cout << efectiveColor << setw(12) << setprecision(9) << fixed << totals[model] << " ";
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << totals[model] << " ";
}
// Output the averaged ranks
cout << endl;
int min = 1;
for (const auto& rank : ranks) {
if (rank.second < min) {
min = rank.second;
}
}
cout << Colors::GREEN() << setw(30) << " Averaged ranks...........";
for (const auto& model : models) {
string efectiveColor = Colors::GREEN();
if (ranks[model] == min) {
efectiveColor = Colors::RED();
}
cout << efectiveColor << setw(12) << setprecision(10) << fixed << (double)ranks[model] / (double)origin.size() << " ";
}
cout << endl;
std::cout << std::endl;
}
void BestResults::reportAll()
void BestResults::reportSingle(bool excel)
{
listFile();
if (excel) {
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
BestResultsExcel excel(score, datasets);
excel.reportSingle(model, path + bestResultFile());
messageExcelFile(excel.getFileName());
}
}
void BestResults::reportAll(bool excel)
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
maxModelName = (*max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxModelName = std::max(12, maxModelName);
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxDatasetName = std::max(25, maxDatasetName);
// Print the table of results
printTableResults(models, table);
// Compute the Friedman test
std::map<std::string, std::map<std::string, float>> ranksModels;
if (friedman) {
Statistics stats(models, datasets, table, significance);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
ranksModels = stats.getRanks();
}
if (excel) {
BestResultsExcel excel(score, datasets);
excel.reportAll(models, table, ranksModels, friedman, significance);
if (friedman) {
int idx = -1;
double min = 2000;
// Find out the control model
auto totals = std::vector<double>(models.size(), 0.0);
for (const auto& dataset : datasets) {
for (int i = 0; i < models.size(); ++i) {
totals[i] += ranksModels[dataset][models[i]];
}
}
for (int i = 0; i < models.size(); ++i) {
if (totals[i] < min) {
min = totals[i];
idx = i;
}
}
model = models.at(idx);
excel.reportSingle(model, path + bestResultFile());
}
messageExcelFile(excel.getFileName());
}
}
void BestResults::messageExcelFile(const std::string& fileName)
{
std::cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << std::endl;
}
}

View File

@@ -1,28 +1,36 @@
#ifndef BESTRESULTS_H
#define BESTRESULTS_H
#include <string>
#include <set>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
class BestResults {
public:
explicit BestResults(const string& path, const string& score, const string& model) : path(path), score(score), model(model) {}
string build();
void reportSingle();
void reportAll();
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, bool friedman, double significance = 0.05)
: path(path), score(score), model(model), friedman(friedman), significance(significance)
{
}
std::string build();
void reportSingle(bool excel);
void reportAll(bool excel);
void buildAll();
private:
set<string> getModels();
vector<string> loadResultFiles();
json buildTableResults(set<string> models);
void printTableResults(set<string> models, json table);
string bestResultFile();
json loadFile(const string& fileName);
string path;
string score;
string model;
std::vector<std::string> getModels();
std::vector<std::string> getDatasets(json table);
std::vector<std::string> loadResultFiles();
void messageExcelFile(const std::string& fileName);
json buildTableResults(std::vector<std::string> models);
void printTableResults(std::vector<std::string> models, json table);
std::string bestResultFile();
json loadFile(const std::string& fileName);
void listFile();
std::string path;
std::string score;
std::string model;
bool friedman;
double significance;
int maxModelName = 0;
int maxDatasetName = 0;
};
}
#endif //BESTRESULTS_H

View File

@@ -0,0 +1,300 @@
#include <sstream>
#include "BestResultsExcel.h"
#include "Paths.h"
#include <map>
#include <nlohmann/json.hpp>
#include "Statistics.h"
#include "ReportExcel.h"
namespace platform {
json loadResultData(const std::string& fileName)
{
json data;
std::ifstream resultData(fileName);
if (resultData.is_open()) {
data = json::parse(resultData);
} else {
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
}
return data;
}
std::string getColumnName(int colNum)
{
std::string columnName = "";
if (colNum == 0)
return "A";
while (colNum > 0) {
int modulo = colNum % 26;
columnName = char(65 + modulo) + columnName;
colNum = (int)((colNum - modulo) / 26);
}
return columnName;
}
BestResultsExcel::BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets) : score(score), datasets(datasets)
{
workbook = workbook_new((Paths::excel() + fileName).c_str());
setProperties("Best Results");
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
datasetNameSize = std::max(datasetNameSize, maxDatasetName);
createFormats();
}
void BestResultsExcel::reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance)
{
this->table = table;
this->models = models;
ranksModels = ranks;
this->friedman = friedman;
this->significance = significance;
worksheet = workbook_add_worksheet(workbook, "Best Results");
int maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
modelNameSize = std::max(modelNameSize, maxModelName);
formatColumns();
build();
}
void BestResultsExcel::reportSingle(const std::string& model, const std::string& fileName)
{
worksheet = workbook_add_worksheet(workbook, "Report");
if (FILE* fileTest = fopen(fileName.c_str(), "r")) {
fclose(fileTest);
} else {
std::cerr << "File " << fileName << " doesn't exist." << std::endl;
exit(1);
}
json data = loadResultData(fileName);
std::string title = "Best results for " + model;
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
writeString(row, 2, "Score", "bodyHeader");
writeString(row, 3, "File", "bodyHeader");
writeString(row, 4, "Hyperparameters", "bodyHeader");
auto i = 0;
std::string hyperparameters;
int hypSize = 22;
std::map<std::string, std::string> files; // map of files imported and their tabs
for (auto const& item : data.items()) {
row++;
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
writeDouble(row, 2, item.value().at(0).get<double>(), "result");
auto fileName = item.value().at(2).get<std::string>();
std::string hyperlink = "";
try {
hyperlink = files.at(fileName);
}
catch (const std::out_of_range& oor) {
auto tabName = "table_" + std::to_string(i);
auto worksheetNew = workbook_add_worksheet(workbook, tabName.c_str());
json data = loadResultData(Paths::results() + fileName);
auto report = ReportExcel(data, false, workbook, worksheetNew);
report.show();
hyperlink = "#table_" + std::to_string(i);
files[fileName] = hyperlink;
}
hyperlink += "!H" + std::to_string(i + 6);
std::string fileNameText = "=HYPERLINK(\"" + hyperlink + "\",\"" + fileName + "\")";
worksheet_write_formula(worksheet, row, 3, fileNameText.c_str(), efectiveStyle("text"));
hyperparameters = item.value().at(1).dump();
if (hyperparameters.size() > hypSize) {
hypSize = hyperparameters.size();
}
writeString(row, 4, hyperparameters, "text");
}
row++;
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
std::stringstream oss;
auto colName = getColumnName(2);
oss << "=sum(" << colName << "5:" << colName << row << ")";
worksheet_write_formula(worksheet, row, 2, oss.str().c_str(), styles["bodyHeader_odd"]);
// Set format
worksheet_freeze_panes(worksheet, 4, 2);
std::vector<int> columns_sizes = { 5, datasetNameSize, modelNameSize, 66, hypSize + 1 };
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
BestResultsExcel::~BestResultsExcel()
{
workbook_close(workbook);
}
void BestResultsExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 4, 2);
std::vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void BestResultsExcel::addConditionalFormat(std::string formula)
{
// Add conditional format for max/min values in scores/ranks sheets
lxw_format* custom_format = workbook_add_format(workbook);
format_set_bg_color(custom_format, 0xFFC7CE);
format_set_font_color(custom_format, 0x9C0006);
// Create a conditional format object. A static object would also work.
lxw_conditional_format* conditional_format = (lxw_conditional_format*)calloc(1, sizeof(lxw_conditional_format));
conditional_format->type = LXW_CONDITIONAL_TYPE_FORMULA;
std::string col = getColumnName(models.size() + 1);
std::stringstream oss;
oss << "=C5=" << formula << "($C5:$" << col << "5)";
auto formulaValue = oss.str();
conditional_format->value_string = formulaValue.c_str();
conditional_format->format = custom_format;
worksheet_conditional_format_range(worksheet, 4, 2, datasets.size() + 3, models.size() + 1, conditional_format);
}
void BestResultsExcel::build()
{
// Create Sheet with scores
header(false);
body(false);
// Add conditional format for max values
addConditionalFormat("max");
footer(false);
if (friedman) {
// Create Sheet with ranks
worksheet = workbook_add_worksheet(workbook, "Ranks");
formatColumns();
header(true);
body(true);
addConditionalFormat("min");
footer(true);
// Create Sheet with Friedman Test
doFriedman();
}
}
std::string BestResultsExcel::getFileName()
{
return Paths::excel() + fileName;
}
void BestResultsExcel::header(bool ranks)
{
row = 0;
std::string message = ranks ? "Ranks for score " + score : "Best results for " + score;
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
for (const auto& model : models) {
writeString(row, ++col, model.c_str(), "bodyHeader");
}
}
void BestResultsExcel::body(bool ranks)
{
row = 4;
int i = 0;
json origin = table.begin().value();
for (auto const& item : origin.items()) {
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
int col = 1;
for (const auto& model : models) {
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
writeDouble(row, ++col, value, "result");
}
++row;
}
}
void BestResultsExcel::footer(bool ranks)
{
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
int col = 1;
for (const auto& model : models) {
std::stringstream oss;
auto colName = getColumnName(col + 1);
oss << "=SUM(" << colName << "5:" << colName << row << ")";
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
if (ranks) {
row++;
writeString(row, 1, "Average ranks", "bodyHeader");
int col = 1;
for (const auto& model : models) {
auto colName = getColumnName(col + 1);
std::stringstream oss;
oss << "=SUM(" << colName << "5:" << colName << row - 1 << ")/" << datasets.size();
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
}
}
void BestResultsExcel::doFriedman()
{
worksheet = workbook_add_worksheet(workbook, "Friedman");
std::vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
row = 2;
Statistics stats(models, datasets, table, significance, false);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
auto friedmanResult = stats.getFriedmanResult();
auto holmResult = stats.getHolmResult();
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
row += 2;
writeString(row, 1, "Friedman Q", "bodyHeader");
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
row++;
writeString(row, 1, "Critical χ2 value", "bodyHeader");
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
row++;
writeString(row, 1, "p-value", "bodyHeader");
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
writeDouble(row, 4, significance, "bodyHeader");
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
row += 3;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
row += 2;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
row += 2;
std::string controlModel = "Control Model: " + holmResult.model;
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
row++;
writeString(row, 1, "Model", "bodyHeader");
writeString(row, 2, "p-value", "bodyHeader");
writeString(row, 3, "Rank", "bodyHeader");
writeString(row, 4, "Win", "bodyHeader");
writeString(row, 5, "Tie", "bodyHeader");
writeString(row, 6, "Loss", "bodyHeader");
writeString(row, 7, "Reject H0", "bodyHeader");
row++;
bool first = true;
for (const auto& item : holmResult.holmLines) {
writeString(row, 1, item.model, "text");
if (first) {
// Control model info
first = false;
writeString(row, 2, "", "text");
writeDouble(row, 3, item.rank, "result");
writeString(row, 4, "", "text");
writeString(row, 5, "", "text");
writeString(row, 6, "", "text");
writeString(row, 7, "", "textCentered");
} else {
// Rest of the models info
writeDouble(row, 2, item.pvalue, "result");
writeDouble(row, 3, item.rank, "result");
writeInt(row, 4, item.wtl.win, "ints");
writeInt(row, 5, item.wtl.tie, "ints");
writeInt(row, 6, item.wtl.loss, "ints");
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
}
row++;
}
}
}

View File

@@ -0,0 +1,39 @@
#ifndef BESTRESULTS_EXCEL_H
#define BESTRESULTS_EXCEL_H
#include "ExcelFile.h"
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
class BestResultsExcel : ExcelFile {
public:
BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets);
~BestResultsExcel();
void reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance);
void reportSingle(const std::string& model, const std::string& fileName);
std::string getFileName();
private:
void build();
void header(bool ranks);
void body(bool ranks);
void footer(bool ranks);
void formatColumns();
void doFriedman();
void addConditionalFormat(std::string formula);
const std::string fileName = "BestResults.xlsx";
std::string score;
std::vector<std::string> models;
std::vector<std::string> datasets;
json table;
std::map<std::string, std::map<std::string, float>> ranksModels;
bool friedman;
double significance;
int modelNameSize = 12; // Min size of the column
int datasetNameSize = 25; // Min size of the column
};
}
#endif //BESTRESULTS_EXCEL_H

View File

@@ -1,10 +1,28 @@
#ifndef BESTSCORE_H
#define BESTSCORE_H
#include <string>
class BestScore {
public:
static std::string title() { return "STree_default (linear-ovo)"; }
static double score() { return 22.109799; }
static std::string scoreName() { return "accuracy"; }
};
#include <map>
#include <utility>
#include "DotEnv.h"
namespace platform {
class BestScore {
public:
static std::pair<std::string, double> getScore(const std::string& metric)
{
static std::map<std::pair<std::string, std::string>, std::pair<std::string, double>> data = {
{{"discretiz", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
{{"odte", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
};
auto env = platform::DotEnv();
std::string experiment = env.get("experiment");
try {
return data[{experiment, metric}];
}
catch (...) {
return { "", 0.0 };
}
}
};
}
#endif

22
src/Platform/CLocale.h Normal file
View File

@@ -0,0 +1,22 @@
#ifndef LOCALE_H
#define LOCALE_H
#include <locale>
#include <iostream>
#include <string>
namespace platform {
struct separation : std::numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
std::string do_grouping() const { return "\03"; }
};
class ConfigLocale {
public:
explicit ConfigLocale()
{
std::locale mylocale(std::cout.getloc(), new separation);
std::locale::global(mylocale);
std::cout.imbue(mylocale);
}
};
}
#endif

View File

@@ -1,19 +1,22 @@
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(manage manage.cc Results.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc platformUtils.cc)
add_executable(list list.cc platformUtils Datasets.cc)
add_executable(best best.cc BestResults.cc Result.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
if (${CMAKE_HOST_SYSTEM_NAME} MATCHES "Linux")
target_link_libraries(manage "${TORCH_LIBRARIES}" libxlsxwriter.so ArffFiles mdlp stdc++fs)
target_link_libraries(best stdc++fs)
else()
target_link_libraries(manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
endif()
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
include_directories(${Python3_INCLUDE_DIRS})
include_directories(${MPI_CXX_INCLUDE_DIRS})
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)

View File

@@ -9,6 +9,7 @@ public:
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string IBLUE() { return "\033[0;94m"; }
static std::string RESET() { return "\033[0m"; }
};
#endif // COLORS_H

View File

@@ -0,0 +1,87 @@
#include "CommandParser.h"
#include <iostream>
#include <sstream>
#include <algorithm>
#include "Colors.h"
#include "Utils.h"
namespace platform {
void CommandParser::messageError(const std::string& message)
{
std::cout << Colors::RED() << message << Colors::RESET() << std::endl;
}
std::pair<char, int> CommandParser::parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex)
{
bool finished = false;
while (!finished) {
std::stringstream oss;
std::string line;
oss << color << "Choose option (";
bool first = true;
for (auto& option : options) {
if (first) {
first = false;
} else {
oss << ", ";
}
oss << std::get<char>(option) << "=" << std::get<std::string>(option);
}
oss << "): ";
std::cout << oss.str();
getline(std::cin, line);
std::cout << Colors::RESET();
line = trim(line);
if (line.size() == 0)
continue;
if (all_of(line.begin(), line.end(), ::isdigit)) {
command = defaultCommand;
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
continue;
}
finished = true;
break;
}
bool found = false;
for (auto& option : options) {
if (line[0] == std::get<char>(option)) {
found = true;
// it's a match
line.erase(line.begin());
line = trim(line);
if (std::get<bool>(option)) {
// The option requires a value
if (line.size() == 0) {
messageError("Option " + std::get<std::string>(option) + " requires a value");
break;
}
try {
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
break;
}
}
catch (const std::invalid_argument& ia) {
messageError("Invalid value: " + line);
break;
}
} else {
if (line.size() > 0) {
messageError("option " + std::get<std::string>(option) + " doesn't accept values");
break;
}
}
command = std::get<char>(option);
finished = true;
break;
}
}
if (!found) {
messageError("I don't know " + line);
}
}
return { command, index };
}
} /* namespace platform */

View File

@@ -0,0 +1,20 @@
#ifndef COMMAND_PARSER_H
#define COMMAND_PARSER_H
#include <string>
#include <vector>
#include <tuple>
namespace platform {
class CommandParser {
public:
CommandParser() = default;
std::pair<char, int> parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex);
char getCommand() const { return command; };
int getIndex() const { return index; };
private:
void messageError(const std::string& message);
char command;
int index;
};
} /* namespace platform */
#endif /* COMMAND_PARSER_H */

215
src/Platform/Dataset.cc Normal file
View File

@@ -0,0 +1,215 @@
#include "Dataset.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
std::string Dataset::getName() const
{
return name;
}
std::string Dataset::getClassName() const
{
return className;
}
std::vector<std::string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
std::map<std::string, std::vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<float>>&, std::vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<int>>&, std::vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
std::string line;
getline(file, line);
std::vector<std::string> tokens = split(line, ',');
features = std::vector<std::string>(tokens.begin(), tokens.end() - 1);
if (className == "-1") {
className = tokens.back();
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw std::invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = std::vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = std::vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
std::vector<std::string> tokenize(std::string line)
{
std::vector<std::string> tokens;
for (auto i = 0; i < line.size(); ++i) {
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
std::string token = line.substr(0, i);
tokens.push_back(token);
line.erase(line.begin(), line.begin() + i + 1);
i = 0;
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
line.erase(line.begin(), line.begin() + i + 1);
}
}
if (line.size() > 0) {
tokens.push_back(line);
}
return tokens;
}
void Dataset::load_rdata()
{
ifstream file(path + "/" + name + "_R.dat");
if (file.is_open()) {
std::string line;
getline(file, line);
line = ArffFiles::trim(line);
std::vector<std::string> tokens = tokenize(line);
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
if (className == "-1") {
className = ArffFiles::trim(tokens.back());
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = tokenize(line);
// We have to skip the first token, which is the instance number.
for (auto i = 1; i < features.size() + 1; ++i) {
const float value = stof(tokens[i]);
Xv[i - 1].push_back(value);
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw std::invalid_argument("Unable to open dataset file.");
}
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
} else if (fileType == RDATA) {
load_rdata();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
std::vector<mdlp::labels_t> Dataset::discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
std::vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
}

78
src/Platform/Dataset.h Normal file
View File

@@ -0,0 +1,78 @@
#ifndef DATASET_H
#define DATASET_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
#include "CPPFImdlp.h"
#include "Utils.h"
namespace platform {
enum fileType_t { CSV, ARFF, RDATA };
class SourceData {
public:
SourceData(std::string source)
{
if (source == "Surcov") {
path = "datasets/";
fileType = CSV;
} else if (source == "Arff") {
path = "datasets/";
fileType = ARFF;
} else if (source == "Tanveer") {
path = "data/";
fileType = RDATA;
} else {
throw std::invalid_argument("Unknown source.");
}
}
std::string getPath()
{
return path;
}
fileType_t getFileType()
{
return fileType;
}
private:
std::string path;
fileType_t fileType;
};
class Dataset {
private:
std::string path;
std::string name;
fileType_t fileType;
std::string className;
int n_samples{ 0 }, n_features{ 0 };
std::vector<std::string> features;
std::map<std::string, std::vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
std::vector<std::vector<float>> Xv;
std::vector<std::vector<int>> Xd;
std::vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void load_rdata();
void computeStates();
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
public:
Dataset(const std::string& path, const std::string& name, const std::string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
std::string getName() const;
std::string getClassName() const;
std::vector<string> getFeatures() const;
std::map<std::string, std::vector<int>> getStates() const;
std::pair<vector<std::vector<float>>&, std::vector<int>&> getVectors();
std::pair<vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized();
std::pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
};
#endif

View File

@@ -1,47 +1,56 @@
#include "Datasets.h"
#include "platformUtils.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
void Datasets::load()
{
ifstream catalog(path + "/all.txt");
auto sd = SourceData(sfileType);
fileType = sd.getFileType();
path = sd.getPath();
ifstream catalog(path + "all.txt");
if (catalog.is_open()) {
string line;
std::string line;
while (getline(catalog, line)) {
vector<string> tokens = split(line, ',');
string name = tokens[0];
string className = tokens[1];
if (line.empty() || line[0] == '#') {
continue;
}
std::vector<std::string> tokens = split(line, ',');
std::string name = tokens[0];
std::string className;
if (tokens.size() == 1) {
className = "-1";
} else {
className = tokens[1];
}
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
}
catalog.close();
} else {
throw invalid_argument("Unable to open catalog file. [" + path + "/all.txt" + "]");
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
}
vector<string> Datasets::getNames()
std::vector<std::string> Datasets::getNames()
{
vector<string> result;
std::vector<std::string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
vector<string> Datasets::getFeatures(const string& name) const
std::vector<std::string> Datasets::getFeatures(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getFeatures();
} else {
throw invalid_argument("Dataset not loaded.");
throw std::invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Datasets::getStates(const string& name) const
map<std::string, std::vector<int>> Datasets::getStates(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getStates();
} else {
throw invalid_argument("Dataset not loaded.");
throw std::invalid_argument("Dataset not loaded.");
}
}
void Datasets::loadDataset(const string& name) const
void Datasets::loadDataset(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return;
@@ -49,23 +58,23 @@ namespace platform {
datasets.at(name)->load();
}
}
string Datasets::getClassName(const string& name) const
std::string Datasets::getClassName(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else {
throw invalid_argument("Dataset not loaded.");
throw std::invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNSamples(const string& name) const
int Datasets::getNSamples(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getNSamples();
} else {
throw invalid_argument("Dataset not loaded.");
throw std::invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNClasses(const string& name)
int Datasets::getNClasses(const std::string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
@@ -74,195 +83,47 @@ namespace platform {
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *max_element(yv.begin(), yv.end()) + 1;
return *std::max_element(yv.begin(), yv.end()) + 1;
} else {
throw invalid_argument("Dataset not loaded.");
throw std::invalid_argument("Dataset not loaded.");
}
}
vector<int> Datasets::getClassesCounts(const string& name) const
std::vector<int> Datasets::getClassesCounts(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
std::vector<int> counts(*std::max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw invalid_argument("Dataset not loaded.");
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
pair<std::vector<std::vector<float>>&, std::vector<int>&> Datasets::getVectors(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectors();
}
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
pair<std::vector<std::vector<int>>&, std::vector<int>&> Datasets::getVectorsDiscretized(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectorsDiscretized();
}
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(const string& name) const
bool Datasets::isDataset(const std::string& name) const
{
return datasets.find(name) != datasets.end();
}
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
string Dataset::getName() const
{
return name;
}
string Dataset::getClassName() const
{
return className;
}
vector<string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
string line;
getline(file, line);
vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1);
className = tokens.back();
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
}

View File

@@ -1,67 +1,29 @@
#ifndef DATASETS_H
#define DATASETS_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
#include "Dataset.h"
namespace platform {
using namespace std;
enum fileType_t { CSV, ARFF };
class Dataset {
private:
string path;
string name;
fileType_t fileType;
string className;
int n_samples{ 0 }, n_features{ 0 };
vector<string> features;
map<string, vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
vector<vector<float>> Xv;
vector<vector<int>> Xd;
vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void computeStates();
public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName() const;
string getClassName() const;
vector<string> getFeatures() const;
map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
class Datasets {
private:
string path;
std::string path;
fileType_t fileType;
map<string, unique_ptr<Dataset>> datasets;
std::string sfileType;
std::map<std::string, std::unique_ptr<Dataset>> datasets;
bool discretize;
void load(); // Loads the list of datasets
public:
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
vector<string> getNames();
vector<string> getFeatures(const string& name) const;
int getNSamples(const string& name) const;
string getClassName(const string& name) const;
int getNClasses(const string& name);
vector<int> getClassesCounts(const string& name) const;
map<string, vector<int>> getStates(const string& name) const;
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
bool isDataset(const string& name) const;
void loadDataset(const string& name) const;
explicit Datasets(bool discretize, std::string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
std::vector<string> getNames();
std::vector<string> getFeatures(const std::string& name) const;
int getNSamples(const std::string& name) const;
std::string getClassName(const std::string& name) const;
int getNClasses(const std::string& name);
std::vector<int> getClassesCounts(const std::string& name) const;
std::map<std::string, std::vector<int>> getStates(const std::string& name) const;
std::pair<std::vector<std::vector<float>>&, std::vector<int>&> getVectors(const std::string& name);
std::pair<std::vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized(const std::string& name);
std::pair<torch::Tensor&, torch::Tensor&> getTensors(const std::string& name);
bool isDataset(const std::string& name) const;
void loadDataset(const std::string& name) const;
};
};

View File

@@ -4,22 +4,15 @@
#include <map>
#include <fstream>
#include <sstream>
#include "platformUtils.h"
#include <algorithm>
#include <iostream>
#include "Utils.h"
//#include "Dataset.h"
namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
public:
DotEnv()
{
@@ -43,7 +36,7 @@ namespace platform {
}
std::string get(const std::string& key)
{
return env[key];
return env.at(key);
}
std::vector<int> getSeeds()
{

168
src/Platform/ExcelFile.cc Normal file
View File

@@ -0,0 +1,168 @@
#include "ExcelFile.h"
namespace platform {
ExcelFile::ExcelFile()
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet) : workbook(workbook), worksheet(worksheet)
{
setDefault();
}
void ExcelFile::setDefault()
{
normalSize = 14; //font size for report body
row = 0;
colorTitle = 0xB1A0C7;
colorOdd = 0xDCE6F1;
colorEven = 0xFDE9D9;
}
lxw_workbook* ExcelFile::getWorkbook()
{
return workbook;
}
void ExcelFile::setProperties(std::string title)
{
char line[title.size() + 1];
strcpy(line, title.c_str());
lxw_doc_properties properties = {
.title = line,
.subject = (char*)"Machine learning results",
.author = (char*)"Ricardo Montañana Gómez",
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = (char*)"UCLM",
.comments = (char*)"Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
lxw_format* ExcelFile::efectiveStyle(const std::string& style)
{
lxw_format* efectiveStyle = NULL;
if (style != "") {
std::string suffix = row % 2 ? "_odd" : "_even";
try {
efectiveStyle = styles.at(style + suffix);
}
catch (const std::out_of_range& oor) {
try {
efectiveStyle = styles.at(style);
}
catch (const std::out_of_range& oor) {
throw std::invalid_argument("Style " + style + " not found");
}
}
}
return efectiveStyle;
}
void ExcelFile::writeString(int row, int col, const std::string& text, const std::string& style)
{
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
}
void ExcelFile::writeInt(int row, int col, const int number, const std::string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::writeDouble(int row, int col, const double number, const std::string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::addColor(lxw_format* style, bool odd)
{
uint32_t efectiveColor = odd ? colorEven : colorOdd;
format_set_bg_color(style, lxw_color_t(efectiveColor));
}
void ExcelFile::createStyle(const std::string& name, lxw_format* style, bool odd)
{
addColor(style, odd);
if (name == "textCentered") {
format_set_align(style, LXW_ALIGN_CENTER);
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "text") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "bodyHeader") {
format_set_bold(style);
format_set_font_size(style, normalSize);
format_set_align(style, LXW_ALIGN_CENTER);
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(style, LXW_BORDER_THIN);
format_set_bg_color(style, lxw_color_t(colorTitle));
} else if (name == "result") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "0.0000000");
} else if (name == "time") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "#,##0.000000");
} else if (name == "ints") {
format_set_font_size(style, normalSize);
format_set_num_format(style, "###,##0");
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "floats") {
format_set_border(style, LXW_BORDER_THIN);
format_set_font_size(style, normalSize);
format_set_num_format(style, "#,##0.00");
}
}
void ExcelFile::createFormats()
{
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
lxw_format* style;
for (std::string name : styleNames) {
lxw_format* style = workbook_add_format(workbook);
style = workbook_add_format(workbook);
createStyle(name, style, true);
styles[name + "_odd"] = style;
style = workbook_add_format(workbook);
createStyle(name, style, false);
styles[name + "_even"] = style;
}
// Header 1st line
lxw_format* headerFirst = workbook_add_format(workbook);
format_set_bold(headerFirst);
format_set_font_size(headerFirst, 18);
format_set_align(headerFirst, LXW_ALIGN_CENTER);
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerFirst, LXW_BORDER_THIN);
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
// Header rest
lxw_format* headerRest = workbook_add_format(workbook);
format_set_bold(headerRest);
format_set_align(headerRest, LXW_ALIGN_CENTER);
format_set_font_size(headerRest, 16);
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerRest, LXW_BORDER_THIN);
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
// Header small
lxw_format* headerSmall = workbook_add_format(workbook);
format_set_bold(headerSmall);
format_set_align(headerSmall, LXW_ALIGN_LEFT);
format_set_font_size(headerSmall, 12);
format_set_border(headerSmall, LXW_BORDER_THIN);
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
// Summary style
lxw_format* summaryStyle = workbook_add_format(workbook);
format_set_bold(summaryStyle);
format_set_font_size(summaryStyle, 16);
format_set_border(summaryStyle, LXW_BORDER_THIN);
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
styles["headerFirst"] = headerFirst;
styles["headerRest"] = headerRest;
styles["headerSmall"] = headerSmall;
styles["summaryStyle"] = summaryStyle;
}
}

43
src/Platform/ExcelFile.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef EXCELFILE_H
#define EXCELFILE_H
#include <locale>
#include <string>
#include <map>
#include "xlsxwriter.h"
namespace platform {
struct separated : std::numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
std::string do_grouping() const { return "\03"; }
};
class ExcelFile {
public:
ExcelFile();
ExcelFile(lxw_workbook* workbook);
ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet);
lxw_workbook* getWorkbook();
protected:
void setProperties(std::string title);
void writeString(int row, int col, const std::string& text, const std::string& style = "");
void writeInt(int row, int col, const int number, const std::string& style = "");
void writeDouble(int row, int col, const double number, const std::string& style = "");
void createFormats();
void createStyle(const std::string& name, lxw_format* style, bool odd);
void addColor(lxw_format* style, bool odd);
lxw_format* efectiveStyle(const std::string& name);
lxw_workbook* workbook;
lxw_worksheet* worksheet;
std::map<std::string, lxw_format*> styles;
int row;
int normalSize; //font size for report body
uint32_t colorTitle;
uint32_t colorOdd;
uint32_t colorEven;
private:
void setDefault();
};
}
#endif // !EXCELFILE_H

View File

@@ -1,11 +1,12 @@
#include <fstream>
#include "Experiment.h"
#include "Datasets.h"
#include "Models.h"
#include "ReportConsole.h"
#include <fstream>
#include "Paths.h"
namespace platform {
using json = nlohmann::json;
string get_date()
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
@@ -15,7 +16,7 @@ namespace platform {
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
string get_time()
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
@@ -25,10 +26,9 @@ namespace platform {
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
string Experiment::get_file_name()
std::string Experiment::get_file_name()
{
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
return result;
}
@@ -80,7 +80,7 @@ namespace platform {
}
return result;
}
void Experiment::save(const string& path)
void Experiment::save(const std::string& path)
{
json data = build_json();
ofstream file(path + "/" + get_file_name());
@@ -98,20 +98,20 @@ namespace platform {
void Experiment::show()
{
json data = build_json();
cout << data.dump(4) << endl;
std::cout << data.dump(4) << std::endl;
}
void Experiment::go(vector<string> filesToProcess, const string& path)
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet)
{
cout << "*** Starting experiment: " << title << " ***" << endl;
std::cout << "*** Starting experiment: " << title << " ***" << std::endl;
for (auto fileName : filesToProcess) {
cout << "- " << setw(20) << left << fileName << " " << right << flush;
cross_validation(path, fileName);
cout << endl;
std::cout << "- " << setw(20) << left << fileName << " " << right << flush;
cross_validation(fileName, quiet);
std::cout << std::endl;
}
}
string getColor(bayesnet::status_t status)
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
@@ -125,28 +125,30 @@ namespace platform {
}
}
void showProgress(int fold, const string& color, const string& phase)
void showProgress(int fold, const std::string& color, const std::string& phase)
{
string prefix = phase == "a" ? "" : "\b\b\b\b";
cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
void Experiment::cross_validation(const string& path, const string& fileName)
void Experiment::cross_validation(const std::string& fileName, bool quiet)
{
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
auto datasets = Datasets(discretized, Paths::datasets());
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
if (!quiet) {
std::cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
}
// Prepare Result
auto result = Result();
auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
result.setHyperparameters(hyperparameters);
// Initialize results vectors
result.setHyperparameters(hyperparameters.get(fileName));
// Initialize results std::vectors
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
@@ -158,7 +160,8 @@ namespace platform {
Timer train_timer, test_timer;
int item = 0;
for (auto seed : randomSeeds) {
cout << "(" << seed << ") doing Fold: " << flush;
if (!quiet)
std::cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (stratified)
fold = new StratifiedKFold(nfolds, y, seed);
@@ -167,9 +170,9 @@ namespace platform {
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(model);
setModelVersion(clf->getVersion());
if (hyperparameters.size() != 0) {
clf->setHyperparameters(hyperparameters);
}
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
// Split train - test dataset
train_timer.start();
auto [train, test] = fold->getFold(nfold);
@@ -179,10 +182,12 @@ namespace platform {
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
// Train model
clf->fit(X_train, y_train, features, className, states);
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates();
@@ -190,22 +195,24 @@ namespace platform {
// Score train
auto accuracy_train_value = clf->score(X_train, y_train);
// Test model
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
cout << "\b\b\b, " << flush;
// Store results and times in vector
if (!quiet)
std::cout << "\b\b\b, " << flush;
// Store results and times in std::vector
result.addScoreTrain(accuracy_train_value);
result.addScoreTest(accuracy_test_value);
result.addTimeTrain(train_time[item].item<double>());
result.addTimeTest(test_time[item].item<double>());
item++;
clf.reset();
}
cout << "end. " << flush;
if (!quiet)
std::cout << "end. " << flush;
delete fold;
}
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());

View File

@@ -3,41 +3,27 @@
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <string>
#include <chrono>
#include "Folding.h"
#include "BaseClassifier.h"
#include "HyperParameters.h"
#include "TAN.h"
#include "KDB.h"
#include "AODE.h"
#include "Timer.h"
using namespace std;
namespace platform {
using json = nlohmann::json;
class Timer {
private:
chrono::high_resolution_clock::time_point begin;
public:
Timer() = default;
~Timer() = default;
void start() { begin = chrono::high_resolution_clock::now(); }
double getDuration()
{
chrono::high_resolution_clock::time_point end = chrono::high_resolution_clock::now();
chrono::duration<double> time_span = chrono::duration_cast<chrono::duration<double>>(end - begin);
return time_span.count();
}
};
class Result {
private:
string dataset, model_version;
std::string dataset, model_version;
json hyperparameters;
int samples{ 0 }, features{ 0 }, classes{ 0 };
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
vector<double> scores_train, scores_test, times_train, times_test;
std::vector<double> scores_train, scores_test, times_train, times_test;
public:
Result() = default;
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
Result& setDataset(const std::string& dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; }
@@ -59,7 +45,7 @@ namespace platform {
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
const float get_score_train() const { return score_train; }
float get_score_test() { return score_test; }
const string& getDataset() const { return dataset; }
const std::string& getDataset() const { return dataset; }
const json& getHyperparameters() const { return hyperparameters; }
const int getSamples() const { return samples; }
const int getFeatures() const { return features; }
@@ -75,43 +61,43 @@ namespace platform {
const float getNodes() const { return nodes; }
const float getLeaves() const { return leaves; }
const float getDepth() const { return depth; }
const vector<double>& getScoresTrain() const { return scores_train; }
const vector<double>& getScoresTest() const { return scores_test; }
const vector<double>& getTimesTrain() const { return times_train; }
const vector<double>& getTimesTest() const { return times_test; }
const std::vector<double>& getScoresTrain() const { return scores_train; }
const std::vector<double>& getScoresTest() const { return scores_test; }
const std::vector<double>& getTimesTrain() const { return times_train; }
const std::vector<double>& getTimesTest() const { return times_test; }
};
class Experiment {
private:
string title, model, platform, score_name, model_version, language_version, language;
bool discretized{ false }, stratified{ false };
vector<Result> results;
vector<int> randomSeeds;
json hyperparameters = "{}";
int nfolds{ 0 };
float duration{ 0 };
json build_json();
public:
Experiment();
Experiment& setTitle(const string& title) { this->title = title; return *this; }
Experiment& setModel(const string& model) { this->model = model; return *this; }
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
Experiment& setScoreName(const string& score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(const string& model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(const string& language) { this->language = language; return *this; }
Experiment& setLanguageVersion(const string& language_version) { this->language_version = language_version; return *this; }
Experiment() = default;
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
Experiment& setScoreName(const std::string& score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(const std::string& model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(const std::string& language) { this->language = language; return *this; }
Experiment& setLanguageVersion(const std::string& language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
string get_file_name();
void save(const string& path);
void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path);
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
std::string get_file_name();
void save(const std::string& path);
void cross_validation(const std::string& fileName, bool quiet);
void go(std::vector<std::string> filesToProcess, bool quiet);
void show();
void report();
private:
std::string title, model, platform, score_name, model_version, language_version, language;
bool discretized{ false }, stratified{ false };
std::vector<Result> results;
std::vector<int> randomSeeds;
HyperParameters hyperparameters;
int nfolds{ 0 };
float duration{ 0 };
json build_json();
};
}
#endif

View File

@@ -4,23 +4,23 @@
namespace platform {
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
{
random_device rd;
random_seed = default_random_engine(seed == -1 ? rd() : seed);
srand(seed == -1 ? time(0) : seed);
std::random_device rd;
random_seed = std::default_random_engine(seed == -1 ? rd() : seed);
std::srand(seed == -1 ? time(0) : seed);
}
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(std::vector<int>(n))
{
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
std::iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
shuffle(indices.begin(), indices.end(), random_seed);
}
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
std::pair<std::vector<int>, std::vector<int>> KFold::getFold(int nFold)
{
if (nFold >= k || nFold < 0) {
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
}
int nTest = n / k;
auto train = vector<int>();
auto test = vector<int>();
auto train = std::vector<int>();
auto test = std::vector<int>();
for (int i = 0; i < n; i++) {
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
test.push_back(indices[i]);
@@ -33,10 +33,10 @@ namespace platform {
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
{
n = y.numel();
this->y = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
this->y = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
build();
}
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
StratifiedKFold::StratifiedKFold(int k, const std::vector<int>& y, int seed)
: Fold(k, y.size(), seed)
{
this->y = y;
@@ -45,11 +45,12 @@ namespace platform {
}
void StratifiedKFold::build()
{
stratified_indices = vector<vector<int>>(k);
stratified_indices = std::vector<std::vector<int>>(k);
int fold_size = n / k;
// Compute class counts and indices
auto class_indices = map<int, vector<int>>();
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
auto class_indices = std::map<int, std::vector<int>>();
std::vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
for (auto i = 0; i < n; ++i) {
class_counts[y[i]]++;
class_indices[y[i]].push_back(i);
@@ -60,20 +61,26 @@ namespace platform {
}
// Assign indices to folds
for (auto label = 0; label < class_counts.size(); ++label) {
auto num_samples_to_take = class_counts[label] / k;
if (num_samples_to_take == 0)
auto num_samples_to_take = class_counts.at(label) / k;
if (num_samples_to_take == 0) {
std::cerr << "Warning! The number of samples in class " << label << " (" << class_counts.at(label)
<< ") is less than the number of folds (" << k << ")." << std::endl;
faulty = true;
continue;
}
auto remainder_samples_to_take = class_counts[label] % k;
for (auto fold = 0; fold < k; ++fold) {
auto it = next(class_indices[label].begin(), num_samples_to_take);
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
class_indices[label].erase(class_indices[label].begin(), it);
}
auto chosen = std::vector<bool>(k, false);
while (remainder_samples_to_take > 0) {
int fold = (rand() % static_cast<int>(k));
if (stratified_indices[fold].size() == fold_size + 1) {
if (chosen.at(fold)) {
continue;
}
chosen[fold] = true;
auto it = next(class_indices[label].begin(), 1);
stratified_indices[fold].push_back(*class_indices[label].begin());
class_indices[label].erase(class_indices[label].begin(), it);
@@ -81,13 +88,13 @@ namespace platform {
}
}
}
pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
std::pair<std::vector<int>, std::vector<int>> StratifiedKFold::getFold(int nFold)
{
if (nFold >= k || nFold < 0) {
throw out_of_range("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
}
vector<int> test_indices = stratified_indices[nFold];
vector<int> train_indices;
std::vector<int> test_indices = stratified_indices[nFold];
std::vector<int> train_indices;
for (int i = 0; i < k; ++i) {
if (i == nFold) continue;
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());

View File

@@ -3,36 +3,37 @@
#include <torch/torch.h>
#include <vector>
#include <random>
using namespace std;
namespace platform {
class Fold {
protected:
int k;
int n;
int seed;
default_random_engine random_seed;
std::default_random_engine random_seed;
public:
Fold(int k, int n, int seed = -1);
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
virtual std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) = 0;
virtual ~Fold() = default;
int getNumberOfFolds() { return k; }
};
class KFold : public Fold {
private:
vector<int> indices;
std::vector<int> indices;
public:
KFold(int k, int n, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override;
std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override;
};
class StratifiedKFold : public Fold {
private:
vector<int> y;
vector<vector<int>> stratified_indices;
std::vector<int> y;
std::vector<std::vector<int>> stratified_indices;
void build();
bool faulty = false; // Only true if the number of samples of any class is less than the number of folds.
public:
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
StratifiedKFold(int k, const std::vector<int>& y, int seed = -1);
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override;
std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override;
bool isFaulty() { return faulty; }
};
}
#endif

75
src/Platform/GridData.cc Normal file
View File

@@ -0,0 +1,75 @@
#include "GridData.h"
#include <fstream>
namespace platform {
GridData::GridData(const std::string& fileName)
{
json grid_file;
std::ifstream resultData(fileName);
if (resultData.is_open()) {
grid_file = json::parse(resultData);
} else {
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
}
for (const auto& item : grid_file.items()) {
auto key = item.key();
auto value = item.value();
grid[key] = value;
}
}
int GridData::computeNumCombinations(const json& line)
{
int numCombinations = 1;
for (const auto& item : line.items()) {
numCombinations *= item.value().size();
}
return numCombinations;
}
int GridData::getNumCombinations(const std::string& dataset)
{
int numCombinations = 0;
auto selected = decide_dataset(dataset);
for (const auto& line : grid.at(selected)) {
numCombinations += computeNumCombinations(line);
}
return numCombinations;
}
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
{
if (index == last) {
// If we reached the end of input, store the current combination
output.push_back(currentCombination);
return currentCombination;
}
const auto& key = index.key();
const auto& values = index.value();
for (const auto& value : values) {
auto combination = currentCombination;
combination[key] = value;
json::iterator nextIndex = index;
generateCombinations(++nextIndex, last, output, combination);
}
return currentCombination;
}
std::vector<json> GridData::getGrid(const std::string& dataset)
{
auto selected = decide_dataset(dataset);
auto result = std::vector<json>();
for (json line : grid.at(selected)) {
generateCombinations(line.begin(), line.end(), result, json({}));
}
return result;
}
json& GridData::getInputGrid(const std::string& dataset)
{
auto selected = decide_dataset(dataset);
return grid.at(selected);
}
std::string GridData::decide_dataset(const std::string& dataset)
{
if (grid.find(dataset) != grid.end())
return dataset;
return ALL_DATASETS;
}
} /* namespace platform */

26
src/Platform/GridData.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef GRIDDATA_H
#define GRIDDATA_H
#include <string>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
const std::string ALL_DATASETS = "all";
class GridData {
public:
explicit GridData(const std::string& fileName);
~GridData() = default;
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
std::map<std::string, json>& getGridFile() { return grid; }
private:
std::string decide_dataset(const std::string& dataset);
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
int computeNumCombinations(const json& line);
std::map<std::string, json> grid;
};
} /* namespace platform */
#endif /* GRIDDATA_H */

441
src/Platform/GridSearch.cc Normal file
View File

@@ -0,0 +1,441 @@
#include <iostream>
#include <cstddef>
#include <torch/torch.h>
#include "GridSearch.h"
#include "Models.h"
#include "Paths.h"
#include "Folding.h"
#include "Colors.h"
namespace platform {
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
}
json GridSearch::loadResults()
{
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
return json::parse(file);
}
return json();
}
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
{
// Load datasets
auto datasets_names = datasets.getNames();
if (config.continue_from != NO_CONTINUE()) {
// Continue previous execution:
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
}
// Remove datasets already processed
std::vector<string>::iterator it = datasets_names.begin();
while (it != datasets_names.end()) {
if (*it != config.continue_from) {
it = datasets_names.erase(it);
} else {
if (config.only)
++it;
else
break;
}
}
}
// Exclude datasets
for (const auto& name : config.excluded) {
auto dataset = name.get<std::string>();
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
if (it == datasets_names.end()) {
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
}
datasets_names.erase(it);
}
return datasets_names;
}
json GridSearch::build_tasks_mpi(int rank)
{
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto all_datasets = datasets.getNames();
auto datasets_names = filterDatasets(datasets);
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
auto dataset = datasets_names[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold},
};
tasks.push_back(task);
}
}
}
// Shuffle the array so heavy datasets are spread across the workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
std::cout << "|";
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << "|" << std::endl << "|" << std::flush;
return tasks;
}
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
// initialize
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
Fold* fold;
if (stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
double best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
// Update progress bar
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
//
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
//
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
//
// 2a.2 Producer will send the end message to all the consumers
//
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void select_best_results_folds(json& results, json& all_results, std::string& model)
{
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
}
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
//
// 2b.1 Consumers announce to the producer that they are ready to receive a task
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
//
// 2b.2 Consumers receive the task from the producer and process it
//
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
//
// 2b.3 Consumers send the result to the producer
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
}
void GridSearch::go(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
* // this index is relative to the used datasets in the actual run not to the whole datasets
* "seed": # of seed to use,
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 0. Create the MPI result type & tasks
* 0.1 Create the MPI result type
* 0.2 Manager creates the tasks
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2a. Producer delivers the tasks to the consumers
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
* 2a.2 Producer will send the end message to all the consumers
* 2b. Consumers process the tasks and send the results to the producer
* 2b.1 Consumers announce to the producer that they are ready to receive a task
* 2b.2 Consumers receive the task from the producer and process it
* 2b.3 Consumers send the result to the producer
* 3. Manager select the bests sccores for each dataset
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
* 3.2 Save the results
*/
//
// 0.1 Create the MPI result type
//
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
int blocklen[5] = { 1, 1, 1, 1, 1 };
MPI_Aint disp[5];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, n_fold);
disp[3] = offsetof(Task_Result, score);
disp[4] = offsetof(Task_Result, time);
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
tasks = build_tasks_mpi(config_mpi.rank);
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
auto datasets = Datasets(config.discretize, Paths::datasets());
if (config_mpi.rank == config_mpi.manager) {
//
// 2a. Producer delivers the tasks to the consumers
//
auto datasets_names = filterDatasets(datasets);
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
//
// 3. Manager select the bests sccores for each dataset
//
auto results = initializeResults();
select_best_results_folds(results, all_results, config.model);
//
// 3.2 Save the results
//
save(results);
} else {
//
// 2b. Consumers process the tasks and send the results to the producer
//
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
json GridSearch::initializeResults()
{
// Load previous results if continue is set
json results;
if (config.continue_from != NO_CONTINUE()) {
if (!config.quiet)
std::cout << "* Loading previous results" << std::endl;
try {
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
results = json::parse(file);
results = results["results"];
}
}
catch (const std::exception& e) {
std::cerr << "* There were no previous results" << std::endl;
std::cerr << "* Initizalizing new results" << std::endl;
results = json();
}
}
return results;
}
void GridSearch::save(json& results)
{
std::ofstream file(Paths::grid_output(config.model));
json output = {
{ "model", config.model },
{ "score", config.score },
{ "discretize", config.discretize },
{ "stratified", config.stratified },
{ "n_folds", config.n_folds },
{ "seeds", config.seeds },
{ "date", get_date() + " " + get_time()},
{ "nested", config.nested},
{ "platform", config.platform },
{ "duration", timer.getDurationString(true)},
{ "results", results }
};
file << output.dump(4);
}
} /* namespace platform */

60
src/Platform/GridSearch.h Normal file
View File

@@ -0,0 +1,60 @@
#ifndef GRIDSEARCH_H
#define GRIDSEARCH_H
#include <string>
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "Datasets.h"
#include "HyperParameters.h"
#include "GridData.h"
#include "Timer.h"
namespace platform {
using json = nlohmann::json;
struct ConfigGrid {
std::string model;
std::string score;
std::string continue_from;
std::string platform;
bool quiet;
bool only; // used with continue_from to only compute that dataset
bool discretize;
bool stratified;
int nested;
int n_folds;
json excluded;
std::vector<int> seeds;
};
struct ConfigMPI {
int rank;
int n_procs;
int manager;
};
typedef struct {
uint idx_dataset;
uint idx_combination;
int n_fold;
double score;
double time;
} Task_Result;
const int TAG_QUERY = 1;
const int TAG_RESULT = 2;
const int TAG_TASK = 3;
const int TAG_END = 4;
class GridSearch {
public:
explicit GridSearch(struct ConfigGrid& config);
void go(struct ConfigMPI& config_mpi);
~GridSearch() = default;
json loadResults();
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
private:
void save(json& results);
json initializeResults();
std::vector<std::string> filterDatasets(Datasets& datasets) const;
struct ConfigGrid config;
json build_tasks_mpi(int rank);
Timer timer; // used to measure the time of the whole process
};
} /* namespace platform */
#endif /* GRIDSEARCH_H */

View File

@@ -0,0 +1,55 @@
#include "HyperParameters.h"
#include <fstream>
#include <sstream>
#include <iostream>
namespace platform {
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
{
// Initialize all datasets with the given hyperparameters
for (const auto& item : datasets) {
hyperparameters[item] = hyperparameters_;
}
}
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
std::string join(std::vector<std::string> const& strings, std::string delim)
{
std::stringstream ss;
std::copy(strings.begin(), strings.end(),
std::ostream_iterator<std::string>(ss, delim.c_str()));
return ss.str();
}
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
{
// Check if file exists
std::ifstream file(hyperparameters_file);
if (!file.is_open()) {
throw std::runtime_error("File " + hyperparameters_file + " not found");
}
// Check if file is a json
json input_hyperparameters = json::parse(file);
// Check if hyperparameters are valid
for (const auto& dataset : datasets) {
if (!input_hyperparameters.contains(dataset)) {
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
hyperparameters[dataset] = json({});
continue;
}
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
}
}
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
{
json result = hyperparameters.at(fileName);
for (const auto& item : result.items()) {
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
}
}
}
json HyperParameters::get(const std::string& fileName)
{
return hyperparameters.at(fileName);
}
} /* namespace platform */

View File

@@ -0,0 +1,23 @@
#ifndef HYPERPARAMETERS_H
#define HYPERPARAMETERS_H
#include <string>
#include <map>
#include <vector>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
class HyperParameters {
public:
HyperParameters() = default;
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
~HyperParameters() = default;
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
void check(const std::vector<std::string>& valid, const std::string& fileName);
json get(const std::string& fileName);
private:
std::map<std::string, json> hyperparameters;
};
} /* namespace platform */
#endif /* HYPERPARAMETERS_H */

View File

@@ -0,0 +1,213 @@
#include "ManageResults.h"
#include "CommandParser.h"
#include <filesystem>
#include <tuple>
#include "Colors.h"
#include "CLocale.h"
#include "Paths.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
namespace platform {
ManageResults::ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare) :
numFiles{ numFiles }, complete{ complete }, partial{ partial }, compare{ compare }, results(Results(Paths::results(), model, score, complete, partial))
{
indexList = true;
openExcel = false;
workbook = NULL;
if (numFiles == 0) {
this->numFiles = results.size();
}
}
void ManageResults::doMenu()
{
if (results.empty()) {
std::cout << Colors::MAGENTA() << "No results found!" << Colors::RESET() << std::endl;
return;
}
results.sortDate();
list();
menu();
if (openExcel) {
workbook_close(workbook);
}
std::cout << Colors::RESET() << "Done!" << std::endl;
}
void ManageResults::list()
{
auto temp = ConfigLocale();
std::string suffix = numFiles != results.size() ? " of " + std::to_string(results.size()) : "";
std::stringstream oss;
oss << "Results on screen: " << numFiles << suffix;
std::cout << Colors::GREEN() << oss.str() << std::endl;
std::cout << std::string(oss.str().size(), '-') << std::endl;
if (complete) {
std::cout << Colors::MAGENTA() << "Only listing complete results" << std::endl;
}
if (partial) {
std::cout << Colors::MAGENTA() << "Only listing partial results" << std::endl;
}
auto i = 0;
int maxModel = results.maxModelSize();
std::cout << Colors::GREEN() << " # Date " << std::setw(maxModel) << std::left << "Model" << " Score Name Score C/P Duration Title" << std::endl;
std::cout << "=== ========== " << std::string(maxModel, '=') << " =========== =========== === ========= =============================================================" << std::endl;
bool odd = true;
for (auto& result : results) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << result.to_string(maxModel) << std::endl;
if (i == numFiles) {
break;
}
odd = !odd;
}
}
bool ManageResults::confirmAction(const std::string& intent, const std::string& fileName) const
{
std::string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
std::string line;
bool finished = false;
while (!finished) {
std::cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
getline(std::cin, line);
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0] == 'n'));
}
if (tolower(line[0]) == 'y') {
return true;
}
std::cout << "Not done!" << std::endl;
return false;
}
void ManageResults::report(const int index, const bool excelReport)
{
std::cout << Colors::YELLOW() << "Reporting " << results.at(index).getFilename() << std::endl;
auto data = results.at(index).load();
if (excelReport) {
ReportExcel reporter(data, compare, workbook);
reporter.show();
openExcel = true;
workbook = reporter.getWorkbook();
std::cout << "Adding sheet to " << Paths::excel() + Paths::excelResults() << std::endl;
} else {
ReportConsole reporter(data, compare);
reporter.show();
}
}
void ManageResults::showIndex(const int index, const int idx)
{
// Show a dataset result inside a report
auto data = results.at(index).load();
std::cout << Colors::YELLOW() << "Showing " << results.at(index).getFilename() << std::endl;
ReportConsole reporter(data, compare, idx);
reporter.show();
}
void ManageResults::sortList()
{
std::cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
std::string line;
char option;
getline(std::cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
std::cout << "Invalid option" << std::endl;
return;
}
option = line[0];
switch (option) {
case 'd':
results.sortDate();
break;
case 's':
results.sortScore();
break;
case 'u':
results.sortDuration();
break;
case 'm':
results.sortModel();
break;
default:
std::cout << "Invalid option" << std::endl;
}
}
void ManageResults::menu()
{
char option;
int index, subIndex;
bool finished = false;
std::string filename;
// tuple<Option, digit, requires value>
std::vector<std::tuple<std::string, char, bool>> mainOptions = {
{"quit", 'q', false},
{"list", 'l', false},
{"delete", 'd', true},
{"hide", 'h', true},
{"sort", 's', false},
{"report", 'r', true},
{"excel", 'e', true}
};
std::vector<std::tuple<std::string, char, bool>> listOptions = {
{"report", 'r', true},
{"list", 'l', false},
{"quit", 'q', false}
};
auto parser = CommandParser();
while (!finished) {
if (indexList) {
std::tie(option, index) = parser.parse(Colors::GREEN(), mainOptions, 'r', numFiles - 1);
} else {
std::tie(option, subIndex) = parser.parse(Colors::MAGENTA(), listOptions, 'r', results.at(index).load()["results"].size() - 1);
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
list();
indexList = true;
break;
case 'd':
filename = results.at(index).getFilename();
if (!confirmAction("delete", filename))
break;
std::cout << "Deleting " << filename << std::endl;
results.deleteResult(index);
std::cout << "File: " + filename + " deleted!" << std::endl;
list();
break;
case 'h':
filename = results.at(index).getFilename();
if (!confirmAction("hide", filename))
break;
filename = results.at(index).getFilename();
std::cout << "Hiding " << filename << std::endl;
results.hideResult(index, Paths::hiddenResults());
std::cout << "File: " + filename + " hidden! (moved to " << Paths::hiddenResults() << ")" << std::endl;
list();
break;
case 's':
sortList();
list();
break;
case 'r':
if (indexList) {
report(index, false);
indexList = false;
} else {
showIndex(index, subIndex);
}
break;
case 'e':
report(index, true);
break;
}
}
}
} /* namespace platform */

View File

@@ -0,0 +1,31 @@
#ifndef MANAGE_RESULTS_H
#define MANAGE_RESULTS_H
#include "Results.h"
#include "xlsxwriter.h"
namespace platform {
class ManageResults {
public:
ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare);
~ManageResults() = default;
void doMenu();
private:
void list();
bool confirmAction(const std::string& intent, const std::string& fileName) const;
void report(const int index, const bool excelReport);
void showIndex(const int index, const int idx);
void sortList();
void menu();
int numFiles;
bool indexList;
bool openExcel;
bool complete;
bool partial;
bool compare;
Results results;
lxw_workbook* workbook;
};
}
#endif /* MANAGE_RESULTS_H */

View File

@@ -1,6 +1,5 @@
#include "Models.h"
namespace platform {
using namespace std;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
Models* Models::factory = nullptr;;
Models* Models::instance()
@@ -10,13 +9,13 @@ namespace platform {
factory = new Models();
return factory;
}
void Models::registerFactoryFunction(const string& name,
void Models::registerFactoryFunction(const std::string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
functionRegistry[name] = classFactoryFunction;
}
shared_ptr<bayesnet::BaseClassifier> Models::create(const string& name)
shared_ptr<bayesnet::BaseClassifier> Models::create(const std::string& name)
{
bayesnet::BaseClassifier* instance = nullptr;
@@ -30,23 +29,22 @@ namespace platform {
else
return nullptr;
}
vector<string> Models::getNames()
std::vector<std::string> Models::getNames()
{
vector<string> names;
std::vector<std::string> names;
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
[](const pair<string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
[](const pair<std::string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
return names;
}
string Models::toString()
std::string Models::tostring()
{
string result = "";
std::string result = "";
for (const auto& pair : functionRegistry) {
result += pair.first + ", ";
}
return "{" + result.substr(0, result.size() - 2) + "}";
}
Registrar::Registrar(const string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
Registrar::Registrar(const std::string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
Models::instance()->registerFactoryFunction(name, classFactoryFunction);

View File

@@ -11,10 +11,14 @@
#include "SPODELd.h"
#include "AODELd.h"
#include "BoostAODE.h"
#include "STree.h"
#include "ODTE.h"
#include "SVC.h"
#include "RandomForest.h"
namespace platform {
class Models {
private:
map<string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
map<std::string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
static Models* factory; //singleton
Models() {};
public:
@@ -22,16 +26,16 @@ namespace platform {
void operator=(const Models&) = delete;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
static Models* instance();
shared_ptr<bayesnet::BaseClassifier> create(const string& name);
void registerFactoryFunction(const string& name,
shared_ptr<bayesnet::BaseClassifier> create(const std::string& name);
void registerFactoryFunction(const std::string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
vector<string> getNames();
string toString();
std::vector<string> getNames();
std::string tostring();
};
class Registrar {
public:
Registrar(const string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
Registrar(const std::string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
};
}
#endif

View File

@@ -1,12 +1,39 @@
#ifndef PATHS_H
#define PATHS_H
#include <string>
#include <filesystem>
#include "DotEnv.h"
namespace platform {
class Paths {
public:
static std::string datasets() { return "datasets/"; }
static std::string results() { return "results/"; }
static std::string hiddenResults() { return "hidden_results/"; }
static std::string excel() { return "excel/"; }
static std::string grid() { return "grid/"; }
static std::string datasets()
{
auto env = platform::DotEnv();
return env.get("source_data");
}
static void createPath(const std::string& path)
{
// Create directory if it does not exist
try {
std::filesystem::create_directory(path);
}
catch (std::exception& e) {
throw std::runtime_error("Could not create directory " + path);
}
}
static std::string excelResults() { return "some_results.xlsx"; }
static std::string grid_input(const std::string& model)
{
return grid() + "grid_" + model + "_input.json";
}
static std::string grid_output(const std::string& model)
{
return grid() + "grid_" + model + "_output.json";
}
};
}
#endif

View File

@@ -2,14 +2,13 @@
#include <locale>
#include "Datasets.h"
#include "ReportBase.h"
#include "BestScore.h"
#include "DotEnv.h"
namespace platform {
ReportBase::ReportBase(json data_, bool compare) : data(data_), compare(compare), margin(0.1)
{
stringstream oss;
oss << "Better than ZeroR + " << setprecision(1) << fixed << margin * 100 << "%";
std::stringstream oss;
oss << "Better than ZeroR + " << std::setprecision(1) << fixed << margin * 100 << "%";
meaning = {
{Symbols::equal_best, "Equal to best"},
{Symbols::better_best, "Better than best"},
@@ -17,10 +16,10 @@ namespace platform {
{Symbols::upward_arrow, oss.str()}
};
}
string ReportBase::fromVector(const string& key)
std::string ReportBase::fromVector(const std::string& key)
{
stringstream oss;
string sep = "";
std::stringstream oss;
std::string sep = "";
oss << "[";
for (auto& item : data[key]) {
oss << sep << item.get<double>();
@@ -29,13 +28,13 @@ namespace platform {
oss << "]";
return oss.str();
}
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
std::string ReportBase::fVector(const std::string& title, const json& data, const int width, const int precision)
{
stringstream oss;
string sep = "";
std::stringstream oss;
std::string sep = "";
oss << title << "[";
for (const auto& item : data) {
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
oss << sep << fixed << setw(width) << std::setprecision(precision) << item.get<double>();
sep = ", ";
}
oss << "]";
@@ -46,25 +45,25 @@ namespace platform {
header();
body();
}
string ReportBase::compareResult(const string& dataset, double result)
std::string ReportBase::compareResult(const std::string& dataset, double result)
{
string status = " ";
std::string status = " ";
if (compare) {
double best = bestResult(dataset, data["model"].get<string>());
double best = bestResult(dataset, data["model"].get<std::string>());
if (result == best) {
status = Symbols::equal_best;
} else if (result > best) {
status = Symbols::better_best;
}
} else {
if (data["score_name"].get<string>() == "accuracy") {
auto dt = Datasets(Paths::datasets(), false);
if (data["score_name"].get<std::string>() == "accuracy") {
auto dt = Datasets(false, Paths::datasets());
dt.loadDataset(dataset);
auto numClasses = dt.getNClasses(dataset);
if (numClasses == 2) {
vector<int> distribution = dt.getClassesCounts(dataset);
std::vector<int> distribution = dt.getClassesCounts(dataset);
double nSamples = dt.getNSamples(dataset);
vector<int>::iterator maxValue = max_element(distribution.begin(), distribution.end());
std::vector<int>::iterator maxValue = max_element(distribution.begin(), distribution.end());
double mark = *maxValue / nSamples * (1 + margin);
if (mark > 1) {
mark = 0.9995;
@@ -83,14 +82,14 @@ namespace platform {
}
return status;
}
double ReportBase::bestResult(const string& dataset, const string& model)
double ReportBase::bestResult(const std::string& dataset, const std::string& model)
{
double value = 0.0;
if (bestResults.size() == 0) {
// try to load the best results
string score = data["score_name"];
std::string score = data["score_name"];
replace(score.begin(), score.end(), '_', '-');
string fileName = "best_results_" + score + "_" + model + ".json";
std::string fileName = "best_results_" + score + "_" + model + ".json";
ifstream resultData(Paths::results() + "/" + fileName);
if (resultData.is_open()) {
bestResults = json::parse(resultData);

View File

@@ -3,22 +3,12 @@
#include <string>
#include <iostream>
#include "Paths.h"
#include "Symbols.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
using namespace std;
class Symbols {
public:
inline static const string check_mark{ "\u2714" };
inline static const string exclamation{ "\u2757" };
inline static const string black_star{ "\u2605" };
inline static const string cross{ "\u2717" };
inline static const string upward_arrow{ "\u27B6" };
inline static const string down_arrow{ "\u27B4" };
inline static const string equal_best{ check_mark };
inline static const string better_best{ black_star };
};
class ReportBase {
public:
explicit ReportBase(json data_, bool compare);
@@ -26,19 +16,19 @@ namespace platform {
void show();
protected:
json data;
string fromVector(const string& key);
string fVector(const string& title, const json& data, const int width, const int precision);
std::string fromVector(const std::string& key);
std::string fVector(const std::string& title, const json& data, const int width, const int precision);
bool getExistBestFile();
virtual void header() = 0;
virtual void body() = 0;
virtual void showSummary() = 0;
string compareResult(const string& dataset, double result);
map<string, int> summary;
std::string compareResult(const std::string& dataset, double result);
std::map<std::string, int> summary;
double margin;
map<string, string> meaning;
std::map<std::string, std::string> meaning;
bool compare;
private:
double bestResult(const string& dataset, const string& model);
double bestResult(const std::string& dataset, const std::string& model);
json bestResults;
bool existBestFile = true;
};

View File

@@ -1,43 +1,48 @@
#include <iostream>
#include <sstream>
#include <locale>
#include "ReportConsole.h"
#include "BestScore.h"
#include "CLocale.h"
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
string ReportConsole::headerLine(const string& text, int utf = 0)
std::string ReportConsole::headerLine(const std::string& text, int utf = 0)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n + utf, ' ') + "*\n";
return "* " + text + std::string(n + utf, ' ') + "*\n";
}
void ReportConsole::header()
{
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
cout << headerLine(oss.str());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
std::stringstream oss;
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
std::cout << headerLine(
"Report " + data["model"].get<std::string>() + " ver. " + data["version"].get<std::string>()
+ " with " + std::to_string(data["folds"].get<int>()) + " Folds cross validation and " + std::to_string(data["seeds"].size())
+ " random seeds. " + data["date"].get<std::string>() + " " + data["time"].get<std::string>()
);
std::cout << headerLine(data["title"].get<std::string>());
std::cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
oss << "Execution took " << std::setprecision(2) << std::fixed << data["duration"].get<float>()
<< " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<std::string>();
std::cout << headerLine(oss.str());
std::cout << headerLine("Score is " + data["score_name"].get<std::string>());
std::cout << std::string(MAXL, '*') << std::endl;
std::cout << std::endl;
}
void ReportConsole::body()
{
cout << Colors::GREEN() << " # Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "=== ========================= ====== ===== === ========= ========= ========= =============== =================== ====================" << endl;
auto tmp = ConfigLocale();
int maxHyper = 15;
int maxDataset = 7;
for (const auto& r : data["results"]) {
maxHyper = std::max(maxHyper, (int)r["hyperparameters"].dump().size());
maxDataset = std::max(maxDataset, (int)r["dataset"].get<std::string>().size());
}
std::cout << Colors::GREEN() << " # " << std::setw(maxDataset) << std::left << "Dataset" << " Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << std::endl;
std::cout << "=== " << std::string(maxDataset, '=') << " ====== ===== === ========= ========= ========= =============== =================== " << std::string(maxHyper, '=') << std::endl;
json lastResult;
double totalScore = 0.0;
bool odd = true;
@@ -48,37 +53,33 @@ namespace platform {
continue;
}
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color;
cout << setw(3) << index++ << " ";
cout << setw(25) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>();
const string status = compareResult(r["dataset"].get<string>(), r["score"].get<double>());
cout << status;
cout << setw(12) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
try {
cout << r["hyperparameters"].get<string>();
}
catch (const exception& err) {
cout << r["hyperparameters"];
}
cout << endl;
std::cout << color;
std::cout << std::setw(3) << std::right << index++ << " ";
std::cout << std::setw(maxDataset) << std::left << r["dataset"].get<std::string>() << " ";
std::cout << std::setw(6) << std::right << r["samples"].get<int>() << " ";
std::cout << std::setw(5) << std::right << r["features"].get<int>() << " ";
std::cout << std::setw(3) << std::right << r["classes"].get<int>() << " ";
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["nodes"].get<float>() << " ";
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["leaves"].get<float>() << " ";
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["depth"].get<float>() << " ";
std::cout << std::setw(8) << std::right << std::setprecision(6) << std::fixed << r["score"].get<double>() << "±" << std::setw(6) << std::setprecision(4) << std::fixed << r["score_std"].get<double>();
const std::string status = compareResult(r["dataset"].get<std::string>(), r["score"].get<double>());
std::cout << status;
std::cout << std::setw(12) << std::right << std::setprecision(6) << std::fixed << r["time"].get<double>() << "±" << std::setw(6) << std::setprecision(4) << std::fixed << r["time_std"].get<double>() << " ";
std::cout << r["hyperparameters"].dump();
std::cout << std::endl;
std::cout << std::flush;
lastResult = r;
totalScore += r["score"].get<double>();
odd = !odd;
}
if (data["results"].size() == 1 || selectedIndex != -1) {
cout << string(MAXL, '*') << endl;
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
cout << string(MAXL, '*') << endl;
std::cout << std::string(MAXL, '*') << std::endl;
std::cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
std::cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
std::cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
std::cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
std::cout << std::string(MAXL, '*') << std::endl;
} else {
footer(totalScore);
}
@@ -86,27 +87,28 @@ namespace platform {
void ReportConsole::showSummary()
{
for (const auto& item : summary) {
stringstream oss;
oss << setw(3) << left << item.first;
oss << setw(3) << right << item.second << " ";
oss << left << meaning.at(item.first);
cout << headerLine(oss.str(), 2);
std::stringstream oss;
oss << std::setw(3) << std::left << item.first;
oss << std::setw(3) << std::right << item.second << " ";
oss << std::left << meaning.at(item.first);
std::cout << headerLine(oss.str(), 2);
}
}
void ReportConsole::footer(double totalScore)
{
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
showSummary();
auto score = data["score_name"].get<string>();
if (score == BestScore::scoreName()) {
stringstream oss;
oss << score << " compared to " << BestScore::title() << " .: " << totalScore / BestScore::score();
cout << headerLine(oss.str());
auto score = data["score_name"].get<std::string>();
auto best = BestScore::getScore(score);
if (best.first != "") {
std::stringstream oss;
oss << score << " compared to " << best.first << " .: " << totalScore / best.second;
std::cout << headerLine(oss.str());
}
if (!getExistBestFile() && compare) {
cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
std::cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
}
cout << string(MAXL, '*') << endl << Colors::RESET();
std::cout << std::string(MAXL, '*') << std::endl << Colors::RESET();
}
}

View File

@@ -1,12 +1,10 @@
#ifndef REPORTCONSOLE_H
#define REPORTCONSOLE_H
#include <string>
#include <iostream>
#include "ReportBase.h"
#include "Colors.h"
namespace platform {
using namespace std;
const int MAXL = 133;
class ReportConsole : public ReportBase {
public:
@@ -14,7 +12,7 @@ namespace platform {
virtual ~ReportConsole() = default;
private:
int selectedIndex;
string headerLine(const string& text, int utf);
std::string headerLine(const std::string& text, int utf);
void header() override;
void body() override;
void footer(double totalScore);

View File

@@ -5,196 +5,50 @@
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook) : ReportBase(data_, compare), row(0), workbook(workbook)
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet) : ReportBase(data_, compare), ExcelFile(workbook, worksheet)
{
normalSize = 14; //font size for report body
colorTitle = 0xB1A0C7;
colorOdd = 0xDCE6F1;
colorEven = 0xFDE9D9;
createFile();
}
lxw_workbook* ReportExcel::getWorkbook()
{
return workbook;
}
lxw_format* ReportExcel::efectiveStyle(const string& style)
{
lxw_format* efectiveStyle;
if (style == "") {
efectiveStyle = NULL;
} else {
string suffix = row % 2 ? "_odd" : "_even";
efectiveStyle = styles.at(style + suffix);
}
return efectiveStyle;
}
void ReportExcel::writeString(int row, int col, const string& text, const string& style)
{
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
}
void ReportExcel::writeInt(int row, int col, const int number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ReportExcel::writeDouble(int row, int col, const double number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ReportExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 6, 1);
vector<int> columns_sizes = { 22, 10, 9, 7, 12, 12, 12, 12, 12, 3, 15, 12, 23 };
std::vector<int> columns_sizes = { 22, 10, 9, 7, 12, 12, 12, 12, 12, 3, 15, 12, 23 };
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void ReportExcel::addColor(lxw_format* style, bool odd)
void ReportExcel::createWorksheet()
{
uint32_t efectiveColor = odd ? colorEven : colorOdd;
format_set_bg_color(style, lxw_color_t(efectiveColor));
}
void ReportExcel::createStyle(const string& name, lxw_format* style, bool odd)
{
addColor(style, odd);
if (name == "textCentered") {
format_set_align(style, LXW_ALIGN_CENTER);
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "text") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "bodyHeader") {
format_set_bold(style);
format_set_font_size(style, normalSize);
format_set_align(style, LXW_ALIGN_CENTER);
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(style, LXW_BORDER_THIN);
format_set_bg_color(style, lxw_color_t(colorTitle));
} else if (name == "result") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "0.0000000");
} else if (name == "time") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "#,##0.000000");
} else if (name == "ints") {
format_set_font_size(style, normalSize);
format_set_num_format(style, "###,##0");
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "floats") {
format_set_border(style, LXW_BORDER_THIN);
format_set_font_size(style, normalSize);
format_set_num_format(style, "#,##0.00");
}
}
void ReportExcel::createFormats()
{
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
lxw_format* style;
for (string name : styleNames) {
lxw_format* style = workbook_add_format(workbook);
style = workbook_add_format(workbook);
createStyle(name, style, true);
styles[name + "_odd"] = style;
style = workbook_add_format(workbook);
createStyle(name, style, false);
styles[name + "_even"] = style;
}
// Header 1st line
lxw_format* headerFirst = workbook_add_format(workbook);
format_set_bold(headerFirst);
format_set_font_size(headerFirst, 18);
format_set_align(headerFirst, LXW_ALIGN_CENTER);
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerFirst, LXW_BORDER_THIN);
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
// Header rest
lxw_format* headerRest = workbook_add_format(workbook);
format_set_bold(headerRest);
format_set_align(headerRest, LXW_ALIGN_CENTER);
format_set_font_size(headerRest, 16);
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerRest, LXW_BORDER_THIN);
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
// Header small
lxw_format* headerSmall = workbook_add_format(workbook);
format_set_bold(headerSmall);
format_set_align(headerSmall, LXW_ALIGN_LEFT);
format_set_font_size(headerSmall, 12);
format_set_border(headerSmall, LXW_BORDER_THIN);
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
// Summary style
lxw_format* summaryStyle = workbook_add_format(workbook);
format_set_bold(summaryStyle);
format_set_font_size(summaryStyle, 16);
format_set_border(summaryStyle, LXW_BORDER_THIN);
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
styles["headerFirst"] = headerFirst;
styles["headerRest"] = headerRest;
styles["headerSmall"] = headerSmall;
styles["summaryStyle"] = summaryStyle;
}
void ReportExcel::setProperties()
{
char line[data["title"].get<string>().size() + 1];
strcpy(line, data["title"].get<string>().c_str());
lxw_doc_properties properties = {
.title = line,
.subject = (char*)"Machine learning results",
.author = (char*)"Ricardo Montañana Gómez",
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = (char*)"UCLM",
.comments = (char*)"Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
void ReportExcel::createFile()
{
if (workbook == NULL) {
workbook = workbook_new((Paths::excel() + fileName).c_str());
}
const string name = data["model"].get<string>();
string suffix = "";
string efectiveName;
const std::string name = data["model"].get<std::string>();
std::string suffix = "";
std::string efectiveName;
int num = 1;
// Create a sheet with the name of the model
while (true) {
efectiveName = name + suffix;
if (workbook_get_worksheet_by_name(workbook, efectiveName.c_str())) {
suffix = to_string(++num);
suffix = std::to_string(++num);
} else {
worksheet = workbook_add_worksheet(workbook, efectiveName.c_str());
break;
}
if (num > 100) {
throw invalid_argument("Couldn't create sheet " + efectiveName);
throw std::invalid_argument("Couldn't create sheet " + efectiveName);
}
}
cout << "Adding sheet " << efectiveName << " to " << Paths::excel() + fileName << endl;
setProperties();
}
void ReportExcel::createFile()
{
if (workbook == NULL) {
workbook = workbook_new((Paths::excel() + Paths::excelResults()).c_str());
}
if (worksheet == NULL) {
createWorksheet();
}
setProperties(data["title"].get<std::string>());
createFormats();
formatColumns();
}
@@ -206,26 +60,26 @@ namespace platform {
void ReportExcel::header()
{
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
string message = data["model"].get<string>() + " ver. " + data["version"].get<string>() + " " +
data["language"].get<string>() + " ver. " + data["language_version"].get<string>() +
" with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>();
std::locale mylocale(std::cout.getloc(), new separated);
std::locale::global(mylocale);
std::cout.imbue(mylocale);
std::stringstream oss;
std::string message = data["model"].get<std::string>() + " ver. " + data["version"].get<std::string>() + " " +
data["language"].get<std::string>() + " ver. " + data["language_version"].get<std::string>() +
" with " + std::to_string(data["folds"].get<int>()) + " Folds cross validation and " + std::to_string(data["seeds"].size()) +
" random seeds. " + data["date"].get<std::string>() + " " + data["time"].get<std::string>();
worksheet_merge_range(worksheet, 0, 0, 0, 12, message.c_str(), styles["headerFirst"]);
worksheet_merge_range(worksheet, 1, 0, 1, 12, data["title"].get<string>().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 0, 3, 0, ("Score is " + data["score_name"].get<string>()).c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 1, 0, 1, 12, data["title"].get<std::string>().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 0, 3, 0, ("Score is " + data["score_name"].get<std::string>()).c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 1, 3, 3, "Execution time", styles["headerRest"]);
oss << setprecision(2) << fixed << data["duration"].get<float>() << " s";
oss << std::setprecision(2) << std::fixed << data["duration"].get<float>() << " s";
worksheet_merge_range(worksheet, 2, 4, 2, 5, oss.str().c_str(), styles["headerRest"]);
oss.str("");
oss.clear();
oss << setprecision(2) << fixed << data["duration"].get<float>() / 3600 << " h";
oss << std::setprecision(2) << std::fixed << data["duration"].get<float>() / 3600 << " h";
worksheet_merge_range(worksheet, 3, 4, 3, 5, oss.str().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 6, 3, 7, "Platform", styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 8, 3, 9, data["platform"].get<string>().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 8, 3, 9, data["platform"].get<std::string>().c_str(), styles["headerRest"]);
worksheet_merge_range(worksheet, 2, 10, 2, 12, ("Random seeds: " + fromVector("seeds")).c_str(), styles["headerSmall"]);
oss.str("");
oss.clear();
@@ -239,7 +93,7 @@ namespace platform {
void ReportExcel::body()
{
auto head = vector<string>(
auto head = std::vector<std::string>(
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "St.", "Time",
"Time Std.", "Hyperparameters" });
int col = 0;
@@ -251,9 +105,9 @@ namespace platform {
int hypSize = 22;
json lastResult;
double totalScore = 0.0;
string hyperparameters;
std::string hyperparameters;
for (const auto& r : data["results"]) {
writeString(row, col, r["dataset"].get<string>(), "text");
writeString(row, col, r["dataset"].get<std::string>(), "text");
writeInt(row, col + 1, r["samples"].get<int>(), "ints");
writeInt(row, col + 2, r["features"].get<int>(), "ints");
writeInt(row, col + 3, r["classes"].get<int>(), "ints");
@@ -262,18 +116,11 @@ namespace platform {
writeDouble(row, col + 6, r["depth"].get<double>(), "floats");
writeDouble(row, col + 7, r["score"].get<double>(), "result");
writeDouble(row, col + 8, r["score_std"].get<double>(), "result");
const string status = compareResult(r["dataset"].get<string>(), r["score"].get<double>());
const std::string status = compareResult(r["dataset"].get<std::string>(), r["score"].get<double>());
writeString(row, col + 9, status, "textCentered");
writeDouble(row, col + 10, r["time"].get<double>(), "time");
writeDouble(row, col + 11, r["time_std"].get<double>(), "time");
try {
hyperparameters = r["hyperparameters"].get<string>();
}
catch (const exception& err) {
stringstream oss;
oss << r["hyperparameters"];
hyperparameters = oss.str();
}
hyperparameters = r["hyperparameters"].dump();
if (hyperparameters.size() > hypSize) {
hypSize = hyperparameters.size();
}
@@ -281,18 +128,17 @@ namespace platform {
lastResult = r;
totalScore += r["score"].get<double>();
row++;
}
// Set the right column width of hyperparameters with the maximum length
worksheet_set_column(worksheet, 12, 12, hypSize + 5, NULL);
// Show totals if only one dataset is present in the result
if (data["results"].size() == 1) {
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
for (const std::string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
row++;
col = 1;
writeString(row, col, group, "text");
for (double item : lastResult[group]) {
string style = group.find("scores") != string::npos ? "result" : "time";
std::string style = group.find("scores") != std::string::npos ? "result" : "time";
writeDouble(row, ++col, item, style);
}
}
@@ -321,10 +167,11 @@ namespace platform {
{
showSummary();
row += 4 + summary.size();
auto score = data["score_name"].get<string>();
if (score == BestScore::scoreName()) {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + BestScore::title() + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / BestScore::score(), "result");
auto score = data["score_name"].get<std::string>();
auto best = BestScore::getScore(score);
if (best.first != "") {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + best.first + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / best.second, "result");
}
if (!getExistBestFile() && compare) {
worksheet_write_string(worksheet, row + 1, 0, "*** Best Results File not found. Couldn't compare any result!", styles["summaryStyle"]);

View File

@@ -3,40 +3,22 @@
#include<map>
#include "xlsxwriter.h"
#include "ReportBase.h"
#include "ExcelFile.h"
#include "Colors.h"
namespace platform {
using namespace std;
const int MAXLL = 128;
class ReportExcel : public ReportBase {
class ReportExcel : public ReportBase, public ExcelFile {
public:
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook);
lxw_workbook* getWorkbook();
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet = NULL);
private:
void writeString(int row, int col, const string& text, const string& style = "");
void writeInt(int row, int col, const int number, const string& style = "");
void writeDouble(int row, int col, const double number, const string& style = "");
void formatColumns();
void createFormats();
void setProperties();
void createFile();
void createWorksheet();
void closeFile();
lxw_workbook* workbook;
lxw_worksheet* worksheet;
map<string, lxw_format*> styles;
int row;
int normalSize; //font size for report body
uint32_t colorTitle;
uint32_t colorOdd;
uint32_t colorEven;
const string fileName = "some_results.xlsx";
void header() override;
void body() override;
void showSummary() override;
void footer(double totalScore, int row);
void createStyle(const string& name, lxw_format* style, bool odd);
void addColor(lxw_format* style, bool odd);
lxw_format* efectiveStyle(const string& name);
};
};
#endif // !REPORTEXCEL_H

View File

@@ -1,11 +1,14 @@
#include "Result.h"
#include "BestScore.h"
#include <filesystem>
#include <fstream>
#include <sstream>
#include "Result.h"
#include "Colors.h"
#include "BestScore.h"
#include "DotEnv.h"
#include "CLocale.h"
namespace platform {
Result::Result(const string& path, const string& filename)
Result::Result(const std::string& path, const std::string& filename)
: path(path)
, filename(filename)
{
@@ -16,8 +19,9 @@ namespace platform {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
if (scoreName == BestScore::scoreName()) {
score /= BestScore::score();
auto best = BestScore::getScore(scoreName);
if (best.first != "") {
score /= best.second;
}
title = data["title"];
duration = data["duration"];
@@ -27,25 +31,28 @@ namespace platform {
json Result::load() const
{
ifstream resultData(path + "/" + filename);
std::ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
throw std::invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
string Result::to_string() const
std::string Result::to_string(int maxModel) const
{
stringstream oss;
auto tmp = ConfigLocale();
std::stringstream oss;
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
oss << date << " ";
oss << setw(12) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
oss << std::setw(maxModel) << std::left << model << " ";
oss << std::setw(11) << std::left << scoreName << " ";
oss << std::right << std::setw(11) << std::setprecision(7) << std::fixed << score << " ";
auto completeString = isComplete() ? "C" : "P";
oss << setw(1) << " " << completeString << " ";
oss << setw(9) << setprecision(3) << fixed << duration << " ";
oss << setw(50) << left << title << " ";
oss << std::setw(1) << " " << completeString << " ";
oss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
oss << std::setw(50) << std::left << title << " ";
return oss.str();
}
}

View File

@@ -5,33 +5,31 @@
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
Result(const std::string& path, const std::string& filename);
json load() const;
string to_string() const;
string getFilename() const { return filename; };
string getDate() const { return date; };
std::string to_string(int maxModel) const;
std::string getFilename() const { return filename; };
std::string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
std::string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
std::string getModel() const { return model; };
std::string getScoreName() const { return scoreName; };
bool isComplete() const { return complete; };
private:
string path;
string filename;
string date;
std::string path;
std::string filename;
std::string date;
double score;
string title;
std::string title;
double duration;
string model;
string scoreName;
std::string model;
std::string scoreName;
bool complete;
};
};
#endif

Some files were not shown because too many files have changed in this diff Show More