Compare commits
102 Commits
solveexcep
...
Boost_CFS
Author | SHA1 | Date | |
---|---|---|---|
fa7fe081ad
|
|||
660e783517
|
|||
b35532dd9e
|
|||
6ef49385ea
|
|||
6d5a25cdc8
|
|||
d00b08cbe8
|
|||
977ff6fddb
|
|||
54b8939f35
|
|||
5022a4dc90
|
|||
40d1dad5d8
|
|||
47e2b138c5
|
|||
e7ded68267
|
|||
ca833a34f5
|
|||
df9b4c48d2
|
|||
f288bbd6fa
|
|||
7d8aca4f59
|
|||
8fdad78a8c
|
|||
e3ae073333
|
|||
4b732e76c2
|
|||
fe5fead27e
|
|||
8c3864f3c8
|
|||
1287160c47
|
|||
2f58807322
|
|||
17e079edd5
|
|||
b9e0028e9d
|
|||
e0d39fe631
|
|||
36b0277576
|
|||
da8d018ec4
|
|||
5f0676691c
|
|||
3448fb1299
|
|||
5e938d5cca
|
|||
55e742438f
|
|||
c4ae3fe429
|
|||
93e4ff94db
|
|||
57c27f739c
|
|||
a434d7f1ae
|
|||
294666c516
|
|||
fd04e78ad9
|
|||
66ec1b343b
|
|||
bb423da42f
|
|||
db17c14042
|
|||
a4401cb78f
|
|||
9d3d9cc6c6
|
|||
cfcf3c16df
|
|||
85202260f3
|
|||
82acb3cab5
|
|||
623ceed396 | |||
926de2bebd
|
|||
71704e3547
|
|||
3b06534327
|
|||
ac89a451e3
|
|||
00c6cf663b
|
|||
5043c12be8
|
|||
11320e2cc7
|
|||
ce66483b65
|
|||
cab8e14b2d
|
|||
f0d0abe891
|
|||
dcba146e12
|
|||
3ea0285119
|
|||
e3888e1503 | |||
06de13df98
|
|||
de4fa6a04f
|
|||
3a7bf4e672
|
|||
cd0bc02a74
|
|||
c8597a794e
|
|||
b30416364d
|
|||
3a16589220
|
|||
c4f9187e2a
|
|||
c4d0a5b4e6
|
|||
7bfafe555f
|
|||
337b6f7e79
|
|||
5fa0b957dd
|
|||
67252fc41d
|
|||
94ae9456a0
|
|||
781993e326
|
|||
8257a6ae39
|
|||
fc81730dfc | |||
d8734ff082
|
|||
03533461c8
|
|||
68f22a673d
|
|||
b9bc0088f3
|
|||
c280e254ca
|
|||
3d0f29fda3
|
|||
20a6ebab7c
|
|||
925f71166c
|
|||
f69f415b92
|
|||
1bdfbd1620
|
|||
06fb135526
|
|||
501ea0ab4e
|
|||
847c6761d7
|
|||
6030885fc3
|
|||
89df7f4db0
|
|||
41257ed566
|
|||
506369e46b
|
|||
d908f389f5
|
|||
5a7c8f1818
|
|||
64fc7bd9dd
|
|||
0b7beda78c
|
|||
05b670dfc0
|
|||
de62d42b74
|
|||
edb957d22e
|
|||
4de5cb4c6c |
5
.gitignore
vendored
5
.gitignore
vendored
@@ -31,8 +31,11 @@
|
||||
*.exe
|
||||
*.out
|
||||
*.app
|
||||
build/
|
||||
build/**
|
||||
build_debug/**
|
||||
build_release/**
|
||||
*.dSYM/**
|
||||
cmake-build*/**
|
||||
.idea
|
||||
puml/**
|
||||
.vscode/settings.json
|
||||
|
6
.gitmodules
vendored
6
.gitmodules
vendored
@@ -10,6 +10,6 @@
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
[submodule "lib/openXLSX"]
|
||||
path = lib/openXLSX
|
||||
url = https://github.com/troldal/OpenXLSX.git
|
||||
[submodule "lib/libxlsxwriter"]
|
||||
path = lib/libxlsxwriter
|
||||
url = https://github.com/jmcnamara/libxlsxwriter.git
|
||||
|
18
.vscode/c_cpp_properties.json
vendored
Normal file
18
.vscode/c_cpp_properties.json
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Mac",
|
||||
"includePath": [
|
||||
"${workspaceFolder}/**"
|
||||
],
|
||||
"defines": [],
|
||||
"macFrameworkPath": [
|
||||
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
|
||||
],
|
||||
"cStandard": "c17",
|
||||
"cppStandard": "c++17",
|
||||
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
|
||||
}
|
||||
],
|
||||
"version": 4
|
||||
}
|
42
.vscode/launch.json
vendored
42
.vscode/launch.json
vendored
@@ -22,26 +22,38 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experiment",
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"AODE",
|
||||
"-p",
|
||||
"/home/rmontanana/Code/discretizbench/datasets",
|
||||
"TAN",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"mfeat-morphological",
|
||||
"zoo",
|
||||
"--discretize"
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
"cwd": "/Users/rmontanana/Code/odtebench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "best",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_best",
|
||||
"args": [
|
||||
"-m",
|
||||
"BoostAODE",
|
||||
"-s",
|
||||
"accuracy",
|
||||
"--build",
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_manage",
|
||||
"args": [
|
||||
"-n",
|
||||
"20"
|
||||
@@ -52,9 +64,21 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/b_list",
|
||||
"args": [],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/covbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build/tests/unit_tests",
|
||||
"args": [
|
||||
"-c=\"Metrics Test\"",
|
||||
// "-s",
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build/tests",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
|
109
.vscode/settings.json
vendored
109
.vscode/settings.json
vendored
@@ -1,109 +0,0 @@
|
||||
{
|
||||
"files.associations": {
|
||||
"*.rmd": "markdown",
|
||||
"*.py": "python",
|
||||
"vector": "cpp",
|
||||
"__bit_reference": "cpp",
|
||||
"__bits": "cpp",
|
||||
"__config": "cpp",
|
||||
"__debug": "cpp",
|
||||
"__errc": "cpp",
|
||||
"__hash_table": "cpp",
|
||||
"__locale": "cpp",
|
||||
"__mutex_base": "cpp",
|
||||
"__node_handle": "cpp",
|
||||
"__nullptr": "cpp",
|
||||
"__split_buffer": "cpp",
|
||||
"__string": "cpp",
|
||||
"__threading_support": "cpp",
|
||||
"__tuple": "cpp",
|
||||
"array": "cpp",
|
||||
"atomic": "cpp",
|
||||
"bitset": "cpp",
|
||||
"cctype": "cpp",
|
||||
"chrono": "cpp",
|
||||
"clocale": "cpp",
|
||||
"cmath": "cpp",
|
||||
"compare": "cpp",
|
||||
"complex": "cpp",
|
||||
"concepts": "cpp",
|
||||
"cstdarg": "cpp",
|
||||
"cstddef": "cpp",
|
||||
"cstdint": "cpp",
|
||||
"cstdio": "cpp",
|
||||
"cstdlib": "cpp",
|
||||
"cstring": "cpp",
|
||||
"ctime": "cpp",
|
||||
"cwchar": "cpp",
|
||||
"cwctype": "cpp",
|
||||
"exception": "cpp",
|
||||
"initializer_list": "cpp",
|
||||
"ios": "cpp",
|
||||
"iosfwd": "cpp",
|
||||
"istream": "cpp",
|
||||
"limits": "cpp",
|
||||
"locale": "cpp",
|
||||
"memory": "cpp",
|
||||
"mutex": "cpp",
|
||||
"new": "cpp",
|
||||
"optional": "cpp",
|
||||
"ostream": "cpp",
|
||||
"ratio": "cpp",
|
||||
"sstream": "cpp",
|
||||
"stdexcept": "cpp",
|
||||
"streambuf": "cpp",
|
||||
"string": "cpp",
|
||||
"string_view": "cpp",
|
||||
"system_error": "cpp",
|
||||
"tuple": "cpp",
|
||||
"type_traits": "cpp",
|
||||
"typeinfo": "cpp",
|
||||
"unordered_map": "cpp",
|
||||
"variant": "cpp",
|
||||
"algorithm": "cpp",
|
||||
"iostream": "cpp",
|
||||
"iomanip": "cpp",
|
||||
"numeric": "cpp",
|
||||
"set": "cpp",
|
||||
"__tree": "cpp",
|
||||
"deque": "cpp",
|
||||
"list": "cpp",
|
||||
"map": "cpp",
|
||||
"unordered_set": "cpp",
|
||||
"any": "cpp",
|
||||
"condition_variable": "cpp",
|
||||
"forward_list": "cpp",
|
||||
"fstream": "cpp",
|
||||
"stack": "cpp",
|
||||
"thread": "cpp",
|
||||
"__memory": "cpp",
|
||||
"filesystem": "cpp",
|
||||
"*.toml": "toml",
|
||||
"utility": "cpp",
|
||||
"__verbose_abort": "cpp",
|
||||
"bit": "cpp",
|
||||
"random": "cpp",
|
||||
"*.tcc": "cpp",
|
||||
"functional": "cpp",
|
||||
"iterator": "cpp",
|
||||
"memory_resource": "cpp",
|
||||
"format": "cpp",
|
||||
"valarray": "cpp",
|
||||
"regex": "cpp",
|
||||
"span": "cpp",
|
||||
"cfenv": "cpp",
|
||||
"cinttypes": "cpp",
|
||||
"csetjmp": "cpp",
|
||||
"future": "cpp",
|
||||
"queue": "cpp",
|
||||
"typeindex": "cpp",
|
||||
"shared_mutex": "cpp",
|
||||
"*.ipp": "cpp",
|
||||
"cassert": "cpp",
|
||||
"charconv": "cpp",
|
||||
"source_location": "cpp",
|
||||
"ranges": "cpp"
|
||||
},
|
||||
"cmake.configureOnOpen": false,
|
||||
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"
|
||||
}
|
@@ -30,17 +30,27 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
|
||||
# Boost Library
|
||||
set(Boost_USE_STATIC_LIBS OFF)
|
||||
set(Boost_USE_MULTITHREADED ON)
|
||||
set(Boost_USE_STATIC_RUNTIME OFF)
|
||||
find_package(Boost 1.66.0 REQUIRED)
|
||||
if(Boost_FOUND)
|
||||
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
|
||||
include_directories(${Boost_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
|
||||
include(AddGitSubmodule)
|
||||
if (CODE_COVERAGE)
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0")
|
||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
@@ -54,7 +64,11 @@ endif (ENABLE_CLANG_TIDY)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/argparse")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/openXLSX")
|
||||
|
||||
|
||||
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
|
||||
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
|
||||
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
@@ -64,7 +78,7 @@ add_subdirectory(src/BayesNet)
|
||||
add_subdirectory(src/Platform)
|
||||
add_subdirectory(sample)
|
||||
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
|
||||
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
|
||||
|
||||
@@ -73,8 +87,7 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
|
||||
add_git_submodule("lib/catch2")
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
|
119
Makefile
119
Makefile
@@ -1,6 +1,26 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: coverage setup help build test
|
||||
.PHONY: coverage setup help build test clean debug release
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
app_targets = b_best b_list b_main b_manage
|
||||
test_targets = unit_tests_bayesnet unit_tests_platform
|
||||
n_procs = -j 16
|
||||
|
||||
define ClearTests
|
||||
@for t in $(test_targets); do \
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
echo ">>> Cleaning $$t..." ; \
|
||||
rm -f $(f_debug)/tests/$$t ; \
|
||||
fi ; \
|
||||
done
|
||||
@nfiles="$(find . -name "*.gcda" -print0)" ; \
|
||||
if test "${nfiles}" != "" ; then \
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
|
||||
fi ;
|
||||
endef
|
||||
|
||||
|
||||
setup: ## Install dependencies for tests and coverage
|
||||
@if [ "$(shell uname)" = "Darwin" ]; then \
|
||||
@@ -11,62 +31,85 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
fi
|
||||
|
||||
dest ?= ../discretizbench
|
||||
copy: ## Copy binary files to selected folder
|
||||
dest ?= ${HOME}/bin
|
||||
install: ## Copy binary files to bin folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make build
|
||||
make buildr
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@cp build/src/Platform/main $(dest)
|
||||
@cp build/src/Platform/list $(dest)
|
||||
@cp build/src/Platform/manage $(dest)
|
||||
@echo ">>> Done"
|
||||
@cp $(f_release)/src/Platform/b_main $(dest)
|
||||
@cp $(f_release)/src/Platform/b_list $(dest)
|
||||
@cp $(f_release)/src/Platform/b_manage $(dest)
|
||||
@cp $(f_release)/src/Platform/b_best $(dest)
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
@echo ">>> Creating dependency graph diagram of the project...";
|
||||
$(MAKE) debug
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
build: ## Build the main and BayesNetSample
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
|
||||
clean: ## Clean the debug info
|
||||
@echo ">>> Cleaning Debug BayesNet ...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
$(call ClearTests)
|
||||
@echo ">>> Done";
|
||||
|
||||
clang-uml: ## Create uml class and sequence diagrams
|
||||
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
|
||||
cmake --build build -j 32;
|
||||
@echo ">>> Building Debug BayesNet...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@mkdir $(f_debug);
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
@echo ">>> Building Release BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
|
||||
@echo ">>> Building Release BayesNet...";
|
||||
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
|
||||
@mkdir $(f_release);
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||
@echo ">>> Done";
|
||||
|
||||
test: ## Run tests
|
||||
@echo "* Running tests...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@cd build; \
|
||||
cmake --build . --target unit_tests ;
|
||||
@cd build/tests; \
|
||||
./unit_tests;
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet & Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@for t in $(test_targets); do \
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
cd $(f_debug)/tests ; \
|
||||
./$$t $(opt) ; \
|
||||
fi ; \
|
||||
done
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
|
||||
@echo ">>> Running Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
|
||||
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
|
||||
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
|
||||
@echo ">>> Done";
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo "*Building tests...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@cd build; \
|
||||
cmake --build . --target unit_tests ;
|
||||
@cd build/tests; \
|
||||
./unit_tests;
|
||||
gcovr ;
|
||||
@echo ">>> Building tests with coverage...";
|
||||
@$(MAKE) test
|
||||
@cd $(f_debug) ; \
|
||||
gcovr --config ../gcovr.cfg tests ;
|
||||
@echo ">>> Done";
|
||||
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
|
46
README.md
46
README.md
@@ -2,4 +2,50 @@
|
||||
|
||||
Bayesian Network Classifier with libtorch from scratch
|
||||
|
||||
## 0. Setup
|
||||
|
||||
Before compiling BayesNet.
|
||||
|
||||
### boost library
|
||||
|
||||
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
||||
|
||||
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
|
||||
|
||||
```bash
|
||||
sudo dnf install boost-devel
|
||||
```
|
||||
|
||||
If this is not possible and the compressed packaged is installed, the following environment variable has to be set:
|
||||
|
||||
```bash
|
||||
export BOOST_ROOT=/path/to/library/
|
||||
```
|
||||
|
||||
### libxlswriter
|
||||
|
||||
```bash
|
||||
cd lib/libxlsxwriter
|
||||
make
|
||||
make install DESTDIR=/home/rmontanana/Code PREFIX=
|
||||
```
|
||||
|
||||
Environment variable has to be set:
|
||||
|
||||
```bash
|
||||
export LD_LIBRARY_PATH=/usr/local/lib
|
||||
```
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
make release
|
||||
```
|
||||
|
||||
### Debug & Tests
|
||||
|
||||
```bash
|
||||
make debug
|
||||
```
|
||||
|
||||
## 1. Introduction
|
||||
|
Submodule lib/catch2 updated: 4acc51828f...9c541ca72e
1
lib/libxlsxwriter
Submodule
1
lib/libxlsxwriter
Submodule
Submodule lib/libxlsxwriter added at 29355a0887
Submodule lib/openXLSX deleted from b80da42d14
33
mac_mst.txt
Normal file
33
mac_mst.txt
Normal file
@@ -0,0 +1,33 @@
|
||||
Weights matrix:
|
||||
0.0000000, 0.0384968, 0.0795434, 0.1546867, -0.0000000, 0.1788104, 0.2214721, 0.0323837, 0.0366549,
|
||||
0.0384968, 0.0000000, 0.0200662, 0.0200937, -0.0000000, 0.0637224, 0.0183005, 0.0127657, 0.0136054,
|
||||
0.0795434, 0.0200662, 0.0000000, 0.0605489, -0.0000000, 0.0894469, 0.1689408, 0.0321602, 0.0223184,
|
||||
0.1546867, 0.0200937, 0.0605489, 0.0000000, -0.0000000, 0.1150757, 0.1332292, 0.0422865, 0.0191138,
|
||||
-0.0000000, -0.0000000, -0.0000000, -0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
|
||||
0.1788104, 0.0637224, 0.0894469, 0.1150757, 0.0000000, 0.0000000, 0.1407102, 0.0406590, 0.0366986,
|
||||
0.2214721, 0.0183005, 0.1689408, 0.1332292, 0.0000000, 0.1407102, 0.0000000, 0.0427515, 0.0349965,
|
||||
0.0323837, 0.0127657, 0.0321602, 0.0422865, 0.0000000, 0.0406590, 0.0427515, 0.0000000, 0.0343376,
|
||||
0.0366549, 0.0136054, 0.0223184, 0.0191138, 0.0000000, 0.0366986, 0.0349965, 0.0343376, 0.0000000,
|
||||
Edge : Weight
|
||||
0 - 6 : 0.2214721
|
||||
0 - 5 : 0.1788104
|
||||
2 - 6 : 0.1689408
|
||||
0 - 3 : 0.1546867
|
||||
1 - 5 : 0.0637224
|
||||
6 - 7 : 0.0427515
|
||||
5 - 8 : 0.0366986
|
||||
4 - 5 : 0.0000000
|
||||
-------------------------------------------------------------------------------
|
||||
Metrics Test
|
||||
Test Maximum Spanning Tree
|
||||
-------------------------------------------------------------------------------
|
||||
/Users/rmontanana/Code/BayesNet/tests/TestBayesMetrics.cc:58
|
||||
...............................................................................
|
||||
|
||||
/Users/rmontanana/Code/BayesNet/tests/TestBayesMetrics.cc:69: PASSED:
|
||||
REQUIRE( result == resultsMST.at(file_name) )
|
||||
with expansion:
|
||||
(0, 6) (0, 5) (0, 3) (5, 1) (5, 8) (5, 4) (6, 2) (6, 7)
|
||||
==
|
||||
(0, 6) (0, 5) (0, 3) (5, 1) (5, 8) (5, 4) (6, 2) (6, 7)
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include <map>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "ArffFiles.h"
|
||||
#include "ArffFiles.h"v
|
||||
#include "BayesMetrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Folding.h"
|
||||
|
@@ -5,6 +5,7 @@
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
@@ -18,6 +19,7 @@ namespace bayesnet {
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
status_t virtual getStatus() const = 0;
|
||||
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
int virtual getNumberOfNodes()const = 0;
|
||||
|
@@ -1,7 +1,7 @@
|
||||
#include "BayesMetrics.h"
|
||||
#include "Mst.h"
|
||||
namespace bayesnet {
|
||||
//samples is nxm tensor used to fit the model
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
@@ -60,17 +60,7 @@ namespace bayesnet {
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
string temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = vector<double>();
|
||||
|
@@ -8,20 +8,39 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
class Metrics {
|
||||
private:
|
||||
Tensor samples; // nxm tensor used to fit the model
|
||||
vector<string> features;
|
||||
string className;
|
||||
int classNumStates = 0;
|
||||
vector<double> scoresKBest;
|
||||
vector<int> featuresKBest; // sorted indices of the features
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
protected:
|
||||
Tensor samples; // n+1xm tensor used to fit the model where samples[-1] is the y vector
|
||||
string className;
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
vector<string> features;
|
||||
template <class T>
|
||||
vector<pair<T, T>> doCombinations(const vector<T>& source)
|
||||
{
|
||||
vector<pair<T, T>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
T temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
template <class T>
|
||||
T pop_first(vector<T>& v)
|
||||
{
|
||||
T temp = v[0];
|
||||
v.erase(v.begin());
|
||||
return temp;
|
||||
}
|
||||
public:
|
||||
Metrics() = default;
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
|
@@ -1,17 +1,52 @@
|
||||
#include "BoostAODE.h"
|
||||
#include <set>
|
||||
#include "BayesMetrics.h"
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include "BoostAODE.h"
|
||||
#include "Colors.h"
|
||||
#include "Folding.h"
|
||||
#include "Paths.h"
|
||||
#include "CFS.h"
|
||||
#include "FCBF.h"
|
||||
#include "IWSS.h"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = platform::StratifiedKFold(5, y_, 271);
|
||||
dataset_ = torch::clone(dataset);
|
||||
// save input dataset
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending" };
|
||||
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
@@ -22,66 +57,136 @@ namespace bayesnet {
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
vector<string> algos = { "IWSS", "FCBF", "CFS" };
|
||||
selectFeatures = true;
|
||||
algorithm = selectedAlgorithm;
|
||||
if (find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
||||
}
|
||||
}
|
||||
}
|
||||
unordered_set<int> BoostAODE::initializeModels()
|
||||
{
|
||||
unordered_set<int> featuresUsed;
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
int maxFeatures = 0;
|
||||
if (algorithm == "CFS") {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (algorithm == "IWSS") {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (algorithm == "FCBF") {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw invalid_argument("Invalid threshold value [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto cfsFeatures = featureSelector->getFeatures();
|
||||
for (const int& feature : cfsFeatures) {
|
||||
// cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << endl;
|
||||
featuresUsed.insert(feature);
|
||||
unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0);
|
||||
n_models++;
|
||||
}
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
unordered_set<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
}
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
bool exitCondition = false;
|
||||
unordered_set<int> featuresUsed;
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double delta = 1.0;
|
||||
double threshold = 1e-4;
|
||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
||||
int count = 0; // number of times the accuracy is lower than the threshold
|
||||
fitted = true; // to enable predict
|
||||
// Step 0: Set the finish condition
|
||||
// if not repeatSparent a finish condition is run out of features
|
||||
// n_models == maxModels
|
||||
// epsiolon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
while (!exitCondition) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
unique_ptr<Classifier> model;
|
||||
auto feature = featureSelection[0];
|
||||
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
||||
bool found = false;
|
||||
for (auto feat : featureSelection) {
|
||||
bool used = true;
|
||||
for (const auto& feat : featureSelection) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
continue;
|
||||
}
|
||||
found = true;
|
||||
used = false;
|
||||
feature = feat;
|
||||
break;
|
||||
}
|
||||
if (!found) {
|
||||
if (used) {
|
||||
exitCondition = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
featuresUsed.insert(feature);
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
n_models++;
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_);
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_wrong = ypred != y_train;
|
||||
auto mask_right = ypred == y_train;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
exitCondition = n_models == maxModels && repeatSparent;
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
if (convergence) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
delta = accuracy - priorAccuracy;
|
||||
}
|
||||
if (delta < threshold) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
cout << "Warning: BoostAODE did not use all the features" << endl;
|
||||
status = WARNING;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
}
|
||||
vector<string> BoostAODE::graph(const string& title) const
|
||||
{
|
||||
|
@@ -1,7 +1,9 @@
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include "Ensemble.h"
|
||||
#include <map>
|
||||
#include "SPODE.h"
|
||||
#include "FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
public:
|
||||
@@ -13,9 +15,18 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
bool repeatSparent=false;
|
||||
int maxModels=0;
|
||||
bool ascending=false; //Process KBest features ascending or descending order
|
||||
torch::Tensor dataset_;
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
unordered_set<int> initializeModels();
|
||||
// Hyperparameters
|
||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||
int maxModels = 0;
|
||||
bool ascending = false; //Process KBest features ascending or descending order
|
||||
bool convergence = false; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
string algorithm = ""; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
72
src/BayesNet/CFS.cc
Normal file
72
src/BayesNet/CFS.cc
Normal file
@@ -0,0 +1,72 @@
|
||||
#include "CFS.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
void CFS::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto continueCondition = true;
|
||||
auto feature = featureOrder[0];
|
||||
selectedFeatures.push_back(feature);
|
||||
selectedScores.push_back(suLabels[feature]);
|
||||
selectedFeatures.erase(selectedFeatures.begin());
|
||||
while (continueCondition) {
|
||||
double merit = numeric_limits<double>::lowest();
|
||||
int bestFeature = -1;
|
||||
for (auto feature : featureOrder) {
|
||||
selectedFeatures.push_back(feature);
|
||||
// Compute merit with selectedFeatures
|
||||
auto meritNew = computeMeritCFS();
|
||||
if (meritNew > merit) {
|
||||
merit = meritNew;
|
||||
bestFeature = feature;
|
||||
}
|
||||
selectedFeatures.pop_back();
|
||||
}
|
||||
if (bestFeature == -1) {
|
||||
// meritNew has to be nan due to constant features
|
||||
break;
|
||||
}
|
||||
selectedFeatures.push_back(bestFeature);
|
||||
selectedScores.push_back(merit);
|
||||
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
|
||||
continueCondition = computeContinueCondition(featureOrder);
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
bool CFS::computeContinueCondition(const vector<int>& featureOrder)
|
||||
{
|
||||
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
|
||||
return false;
|
||||
}
|
||||
if (selectedScores.size() >= 5) {
|
||||
/*
|
||||
"To prevent the best first search from exploring the entire
|
||||
feature subset search space, a stopping criterion is imposed.
|
||||
The search will terminate if five consecutive fully expanded
|
||||
subsets show no improvement over the current best subset."
|
||||
as stated in Mark A.Hall Thesis
|
||||
*/
|
||||
double item_ant = numeric_limits<double>::lowest();
|
||||
int num = 0;
|
||||
vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
|
||||
for (auto item : lastFive) {
|
||||
if (item_ant == numeric_limits<double>::lowest()) {
|
||||
item_ant = item;
|
||||
}
|
||||
if (item > item_ant) {
|
||||
break;
|
||||
} else {
|
||||
num++;
|
||||
item_ant = item;
|
||||
}
|
||||
}
|
||||
if (num == 5) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
21
src/BayesNet/CFS.h
Normal file
21
src/BayesNet/CFS.h
Normal file
@@ -0,0 +1,21 @@
|
||||
#ifndef CFS_H
|
||||
#define CFS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
using namespace std;
|
||||
namespace bayesnet {
|
||||
class CFS : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
|
||||
CFS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
|
||||
{
|
||||
}
|
||||
virtual ~CFS() {};
|
||||
void fit() override;
|
||||
private:
|
||||
bool computeContinueCondition(const vector<int>& featureOrder);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -5,5 +5,5 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
@@ -75,7 +75,7 @@ namespace bayesnet {
|
||||
throw invalid_argument("dataset (X, y) must be of type Integer");
|
||||
}
|
||||
if (n != features.size()) {
|
||||
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||
throw invalid_argument("Classifier: X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||
}
|
||||
if (states.find(className) == states.end()) {
|
||||
throw invalid_argument("className not found in states");
|
||||
|
@@ -10,7 +10,6 @@ using namespace torch;
|
||||
namespace bayesnet {
|
||||
class Classifier : public BaseClassifier {
|
||||
private:
|
||||
void buildDataset(torch::Tensor& y);
|
||||
Classifier& build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
protected:
|
||||
bool fitted;
|
||||
@@ -21,10 +20,12 @@ namespace bayesnet {
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
|
||||
void buildDataset(torch::Tensor& y);
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
@@ -37,6 +38,7 @@ namespace bayesnet {
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
status_t getStatus() const override { return status; }
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
|
@@ -24,7 +24,7 @@ namespace bayesnet {
|
||||
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
vector<double> votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels[j];
|
||||
votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
|
44
src/BayesNet/FCBF.cc
Normal file
44
src/BayesNet/FCBF.cc
Normal file
@@ -0,0 +1,44 @@
|
||||
#include "bayesnetUtils.h"
|
||||
#include "FCBF.h"
|
||||
namespace bayesnet {
|
||||
|
||||
FCBF::FCBF(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||
{
|
||||
if (threshold < 1e-7) {
|
||||
throw std::invalid_argument("Threshold cannot be less than 1e-7");
|
||||
}
|
||||
}
|
||||
void FCBF::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto featureOrderCopy = featureOrder;
|
||||
for (const auto& feature : featureOrder) {
|
||||
// Don't self compare
|
||||
featureOrderCopy.erase(featureOrderCopy.begin());
|
||||
if (suLabels.at(feature) == 0.0) {
|
||||
// The feature has been removed from the list
|
||||
continue;
|
||||
}
|
||||
if (suLabels.at(feature) < threshold) {
|
||||
break;
|
||||
}
|
||||
// Remove redundant features
|
||||
for (const auto& featureCopy : featureOrderCopy) {
|
||||
double value = computeSuFeatures(feature, featureCopy);
|
||||
if (value >= suLabels.at(featureCopy)) {
|
||||
// Remove feature from list
|
||||
suLabels[featureCopy] = 0.0;
|
||||
}
|
||||
}
|
||||
selectedFeatures.push_back(feature);
|
||||
selectedScores.push_back(suLabels[feature]);
|
||||
if (selectedFeatures.size() == maxFeatures) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
}
|
18
src/BayesNet/FCBF.h
Normal file
18
src/BayesNet/FCBF.h
Normal file
@@ -0,0 +1,18 @@
|
||||
#ifndef FCBF_H
|
||||
#define FCBF_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
using namespace std;
|
||||
namespace bayesnet {
|
||||
class FCBF : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
|
||||
FCBF(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
|
||||
virtual ~FCBF() {};
|
||||
void fit() override;
|
||||
private:
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
79
src/BayesNet/FeatureSelect.cc
Normal file
79
src/BayesNet/FeatureSelect.cc
Normal file
@@ -0,0 +1,79 @@
|
||||
#include "FeatureSelect.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
|
||||
|
||||
{
|
||||
}
|
||||
void FeatureSelect::initialize()
|
||||
{
|
||||
selectedFeatures.clear();
|
||||
selectedScores.clear();
|
||||
}
|
||||
double FeatureSelect::symmetricalUncertainty(int a, int b)
|
||||
{
|
||||
/*
|
||||
Compute symmetrical uncertainty. Normalize* information gain (mutual
|
||||
information) with the entropies of the features in order to compensate
|
||||
the bias due to high cardinality features. *Range [0, 1]
|
||||
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
|
||||
*/
|
||||
auto x = samples.index({ a, "..." });
|
||||
auto y = samples.index({ b, "..." });
|
||||
auto mu = mutualInformation(x, y, weights);
|
||||
auto hx = entropy(x, weights);
|
||||
auto hy = entropy(y, weights);
|
||||
return 2.0 * mu / (hx + hy);
|
||||
}
|
||||
void FeatureSelect::computeSuLabels()
|
||||
{
|
||||
// Compute Simmetrical Uncertainty between features and labels
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
suLabels.push_back(symmetricalUncertainty(i, -1));
|
||||
}
|
||||
}
|
||||
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
|
||||
{
|
||||
// Compute Simmetrical Uncertainty between features
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
try {
|
||||
return suFeatures.at({ firstFeature, secondFeature });
|
||||
}
|
||||
catch (const out_of_range& e) {
|
||||
double result = symmetricalUncertainty(firstFeature, secondFeature);
|
||||
suFeatures[{firstFeature, secondFeature}] = result;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
double FeatureSelect::computeMeritCFS()
|
||||
{
|
||||
double result;
|
||||
double rcf = 0;
|
||||
for (auto feature : selectedFeatures) {
|
||||
rcf += suLabels[feature];
|
||||
}
|
||||
double rff = 0;
|
||||
int n = selectedFeatures.size();
|
||||
for (const auto& item : doCombinations(selectedFeatures)) {
|
||||
rff += computeSuFeatures(item.first, item.second);
|
||||
}
|
||||
return rcf / sqrt(n + (n * n - n) * rff);
|
||||
}
|
||||
vector<int> FeatureSelect::getFeatures() const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedFeatures;
|
||||
}
|
||||
vector<double> FeatureSelect::getScores() const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedScores;
|
||||
}
|
||||
}
|
31
src/BayesNet/FeatureSelect.h
Normal file
31
src/BayesNet/FeatureSelect.h
Normal file
@@ -0,0 +1,31 @@
|
||||
#ifndef FEATURE_SELECT_H
|
||||
#define FEATURE_SELECT_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "BayesMetrics.h"
|
||||
using namespace std;
|
||||
namespace bayesnet {
|
||||
class FeatureSelect : public Metrics {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
|
||||
FeatureSelect(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
|
||||
virtual ~FeatureSelect() {};
|
||||
virtual void fit() = 0;
|
||||
vector<int> getFeatures() const;
|
||||
vector<double> getScores() const;
|
||||
protected:
|
||||
void initialize();
|
||||
void computeSuLabels();
|
||||
double computeSuFeatures(const int a, const int b);
|
||||
double symmetricalUncertainty(int a, int b);
|
||||
double computeMeritCFS();
|
||||
const torch::Tensor& weights;
|
||||
int maxFeatures;
|
||||
vector<int> selectedFeatures;
|
||||
vector<double> selectedScores;
|
||||
vector<double> suLabels;
|
||||
map<pair<int, int>, double> suFeatures;
|
||||
bool fitted = false;
|
||||
};
|
||||
}
|
||||
#endif
|
47
src/BayesNet/IWSS.cc
Normal file
47
src/BayesNet/IWSS.cc
Normal file
@@ -0,0 +1,47 @@
|
||||
#include "IWSS.h"
|
||||
#include <limits>
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
IWSS::IWSS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||
{
|
||||
if (threshold < 0 || threshold > .5) {
|
||||
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
|
||||
}
|
||||
}
|
||||
void IWSS::fit()
|
||||
{
|
||||
initialize();
|
||||
computeSuLabels();
|
||||
auto featureOrder = argsort(suLabels); // sort descending order
|
||||
auto featureOrderCopy = featureOrder;
|
||||
// Add first and second features to result
|
||||
// First with its own score
|
||||
auto first_feature = pop_first(featureOrderCopy);
|
||||
selectedFeatures.push_back(first_feature);
|
||||
selectedScores.push_back(suLabels.at(first_feature));
|
||||
// Second with the score of the candidates
|
||||
selectedFeatures.push_back(pop_first(featureOrderCopy));
|
||||
auto merit = computeMeritCFS();
|
||||
selectedScores.push_back(merit);
|
||||
for (const auto feature : featureOrderCopy) {
|
||||
selectedFeatures.push_back(feature);
|
||||
// Compute merit with selectedFeatures
|
||||
auto meritNew = computeMeritCFS();
|
||||
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
|
||||
if (meritNew > merit || delta < threshold) {
|
||||
if (meritNew > merit) {
|
||||
merit = meritNew;
|
||||
}
|
||||
selectedScores.push_back(meritNew);
|
||||
} else {
|
||||
selectedFeatures.pop_back();
|
||||
break;
|
||||
}
|
||||
if (selectedFeatures.size() == maxFeatures) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
}
|
18
src/BayesNet/IWSS.h
Normal file
18
src/BayesNet/IWSS.h
Normal file
@@ -0,0 +1,18 @@
|
||||
#ifndef IWSS_H
|
||||
#define IWSS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include "FeatureSelect.h"
|
||||
using namespace std;
|
||||
namespace bayesnet {
|
||||
class IWSS : public FeatureSelect {
|
||||
public:
|
||||
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
|
||||
IWSS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
|
||||
virtual ~IWSS() {};
|
||||
void fit() override;
|
||||
private:
|
||||
double threshold = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,5 +1,6 @@
|
||||
#include "Mst.h"
|
||||
#include <vector>
|
||||
#include <list>
|
||||
/*
|
||||
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
|
||||
|
||||
@@ -34,7 +35,7 @@ namespace bayesnet {
|
||||
void Graph::kruskal_algorithm()
|
||||
{
|
||||
// sort the edges ordered on decreasing weight
|
||||
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
|
||||
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
|
||||
for (int i = 0; i < G.size(); i++) {
|
||||
int uSt, vEd;
|
||||
uSt = find_set(G[i].second.first);
|
||||
@@ -55,15 +56,24 @@ namespace bayesnet {
|
||||
}
|
||||
}
|
||||
|
||||
void insertElement(list<int>& variables, int variable)
|
||||
{
|
||||
if (find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||
variables.push_front(variable);
|
||||
}
|
||||
}
|
||||
|
||||
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
|
||||
{
|
||||
// Create the edges of a DAG from the MST
|
||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||
auto result = vector<pair<int, int>>();
|
||||
auto visited = vector<int>();
|
||||
auto nextVariables = unordered_set<int>();
|
||||
nextVariables.emplace(root_original);
|
||||
auto nextVariables = list<int>();
|
||||
nextVariables.push_front(root_original);
|
||||
while (nextVariables.size() > 0) {
|
||||
int root = *nextVariables.begin();
|
||||
nextVariables.erase(nextVariables.begin());
|
||||
int root = nextVariables.front();
|
||||
nextVariables.pop_front();
|
||||
for (int i = 0; i < T.size(); ++i) {
|
||||
auto [weight, edge] = T[i];
|
||||
auto [from, to] = edge;
|
||||
@@ -71,10 +81,10 @@ namespace bayesnet {
|
||||
visited.insert(visited.begin(), i);
|
||||
if (from == root) {
|
||||
result.push_back({ from, to });
|
||||
nextVariables.emplace(to);
|
||||
insertElement(nextVariables, to);
|
||||
} else {
|
||||
result.push_back({ to, from });
|
||||
nextVariables.emplace(from);
|
||||
insertElement(nextVariables, from);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -99,7 +109,6 @@ namespace bayesnet {
|
||||
{
|
||||
auto num_features = features.size();
|
||||
Graph g(num_features);
|
||||
|
||||
// Make a complete graph
|
||||
for (int i = 0; i < num_features - 1; ++i) {
|
||||
for (int j = i + 1; j < num_features; ++j) {
|
||||
|
@@ -132,10 +132,10 @@ namespace bayesnet {
|
||||
void Network::setStates(const map<string, vector<int>>& states)
|
||||
{
|
||||
// Set states to every Node in the network
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
nodes[features[i]]->setNumStates(states.at(features[i]).size());
|
||||
}
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
for_each(features.begin(), features.end(), [this, &states](const string& feature) {
|
||||
nodes.at(feature)->setNumStates(states.at(feature).size());
|
||||
});
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
@@ -157,7 +157,7 @@ namespace bayesnet {
|
||||
completeFit(states, weights);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<double>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
@@ -174,10 +174,16 @@ namespace bayesnet {
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
vector<thread> threads;
|
||||
for (auto& node : nodes) {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
fitted = true;
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
{
|
||||
@@ -195,8 +201,7 @@ namespace bayesnet {
|
||||
}
|
||||
if (proba)
|
||||
return result;
|
||||
else
|
||||
return result.argmax(1);
|
||||
return result.argmax(1);
|
||||
}
|
||||
// Return mxn tensor of probabilities
|
||||
Tensor Network::predict_proba(const Tensor& samples)
|
||||
|
@@ -39,7 +39,10 @@ namespace bayesnet {
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
/*
|
||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||
*/
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<double>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
|
@@ -14,8 +14,8 @@ namespace bayesnet {
|
||||
int numStates; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
public:
|
||||
vector<pair<string, string>> combinations(const vector<string>&);
|
||||
public:
|
||||
explicit Node(const string&);
|
||||
void clear();
|
||||
void addParent(Node*);
|
||||
|
300
src/Platform/BestResults.cc
Normal file
300
src/Platform/BestResults.cc
Normal file
@@ -0,0 +1,300 @@
|
||||
#include <filesystem>
|
||||
#include <set>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include "BestResults.h"
|
||||
#include "Result.h"
|
||||
#include "Colors.h"
|
||||
#include "Statistics.h"
|
||||
#include "BestResultsExcel.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
// function ftime_to_string, Code taken from
|
||||
// https://stackoverflow.com/a/58237530/1389271
|
||||
template <typename TP>
|
||||
std::string ftime_to_string(TP tp)
|
||||
{
|
||||
using namespace std::chrono;
|
||||
auto sctp = time_point_cast<system_clock::duration>(tp - TP::clock::now()
|
||||
+ system_clock::now());
|
||||
auto tt = system_clock::to_time_t(sctp);
|
||||
std::tm* gmt = std::gmtime(&tt);
|
||||
std::stringstream buffer;
|
||||
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
|
||||
return buffer.str();
|
||||
}
|
||||
namespace platform {
|
||||
|
||||
string BestResults::build()
|
||||
{
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
|
||||
exit(1);
|
||||
}
|
||||
json bests;
|
||||
for (const auto& file : files) {
|
||||
auto result = Result(path, file);
|
||||
auto data = result.load();
|
||||
for (auto const& item : data.at("results")) {
|
||||
bool update = false;
|
||||
// Check if results file contains only one dataset
|
||||
auto datasetName = item.at("dataset").get<string>();
|
||||
if (bests.contains(datasetName)) {
|
||||
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
|
||||
update = true;
|
||||
}
|
||||
} else {
|
||||
update = true;
|
||||
}
|
||||
if (update) {
|
||||
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
|
||||
}
|
||||
}
|
||||
}
|
||||
string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << endl;
|
||||
}
|
||||
ofstream file(bestFileName);
|
||||
file << bests;
|
||||
file.close();
|
||||
return bestFileName;
|
||||
}
|
||||
|
||||
string BestResults::bestResultFile()
|
||||
{
|
||||
return "best_results_" + score + "_" + model + ".json";
|
||||
}
|
||||
|
||||
pair<string, string> getModelScore(string name)
|
||||
{
|
||||
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
|
||||
int i = 0;
|
||||
auto pos = name.find("_");
|
||||
auto pos2 = name.find("_", pos + 1);
|
||||
string score = name.substr(pos + 1, pos2 - pos - 1);
|
||||
pos = name.find("_", pos2 + 1);
|
||||
string model = name.substr(pos2 + 1, pos - pos2 - 1);
|
||||
return { model, score };
|
||||
}
|
||||
|
||||
vector<string> BestResults::loadResultFiles()
|
||||
{
|
||||
vector<string> files;
|
||||
using std::filesystem::directory_iterator;
|
||||
string fileModel, fileScore;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto fileName = file.path().filename().string();
|
||||
if (fileName.find(".json") != string::npos && fileName.find("results_") == 0) {
|
||||
tie(fileModel, fileScore) = getModelScore(fileName);
|
||||
if (score == fileScore && (model == fileModel || model == "any")) {
|
||||
files.push_back(fileName);
|
||||
}
|
||||
}
|
||||
}
|
||||
return files;
|
||||
}
|
||||
|
||||
json BestResults::loadFile(const string& fileName)
|
||||
{
|
||||
ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
vector<string> BestResults::getModels()
|
||||
{
|
||||
set<string> models;
|
||||
vector<string> result;
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
|
||||
exit(1);
|
||||
}
|
||||
string fileModel, fileScore;
|
||||
for (const auto& file : files) {
|
||||
// extract the model from the file name
|
||||
tie(fileModel, fileScore) = getModelScore(file);
|
||||
// add the model to the vector of models
|
||||
models.insert(fileModel);
|
||||
}
|
||||
result = vector<string>(models.begin(), models.end());
|
||||
return result;
|
||||
}
|
||||
vector<string> BestResults::getDatasets(json table)
|
||||
{
|
||||
vector<string> datasets;
|
||||
for (const auto& dataset : table.items()) {
|
||||
datasets.push_back(dataset.key());
|
||||
}
|
||||
return datasets;
|
||||
}
|
||||
|
||||
void BestResults::buildAll()
|
||||
{
|
||||
auto models = getModels();
|
||||
for (const auto& model : models) {
|
||||
cout << "Building best results for model: " << model << endl;
|
||||
this->model = model;
|
||||
build();
|
||||
}
|
||||
model = "any";
|
||||
}
|
||||
|
||||
void BestResults::reportSingle()
|
||||
{
|
||||
string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
|
||||
exit(1);
|
||||
}
|
||||
auto temp = ConfigLocale();
|
||||
auto date = ftime_to_string(filesystem::last_write_time(bestFileName));
|
||||
auto data = loadFile(bestFileName);
|
||||
auto datasets = getDatasets(data);
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
cout << Colors::GREEN() << "Best results for " << model << " and " << score << " as of " << date << endl;
|
||||
cout << "--------------------------------------------------------" << endl;
|
||||
cout << Colors::GREEN() << " # " << setw(maxDatasetName + 1) << left << string("Dataset") << "Score File Hyperparameters" << endl;
|
||||
cout << "=== " << string(maxDatasetName, '=') << " =========== ================================================================== ================================================= " << endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
for (auto const& item : data.items()) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
cout << color << setw(3) << fixed << right << i++ << " ";
|
||||
cout << setw(maxDatasetName) << left << item.key() << " ";
|
||||
cout << setw(11) << setprecision(9) << fixed << item.value().at(0).get<double>() << " ";
|
||||
cout << setw(66) << item.value().at(2).get<string>() << " ";
|
||||
cout << item.value().at(1) << " ";
|
||||
cout << endl;
|
||||
odd = !odd;
|
||||
}
|
||||
}
|
||||
json BestResults::buildTableResults(vector<string> models)
|
||||
{
|
||||
json table;
|
||||
auto maxDate = filesystem::file_time_type::max();
|
||||
for (const auto& model : models) {
|
||||
this->model = model;
|
||||
string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
|
||||
exit(1);
|
||||
}
|
||||
auto dateWrite = filesystem::last_write_time(bestFileName);
|
||||
if (dateWrite < maxDate) {
|
||||
maxDate = dateWrite;
|
||||
}
|
||||
auto data = loadFile(bestFileName);
|
||||
table[model] = data;
|
||||
}
|
||||
table["dateTable"] = ftime_to_string(maxDate);
|
||||
return table;
|
||||
}
|
||||
|
||||
void BestResults::printTableResults(vector<string> models, json table)
|
||||
{
|
||||
cout << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<string>() << endl;
|
||||
cout << "------------------------------------------------" << endl;
|
||||
cout << Colors::GREEN() << " # " << setw(maxDatasetName + 1) << left << string("Dataset");
|
||||
for (const auto& model : models) {
|
||||
cout << setw(maxModelName) << left << model << " ";
|
||||
}
|
||||
cout << endl;
|
||||
cout << "=== " << string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
cout << string(maxModelName, '=') << " ";
|
||||
}
|
||||
cout << endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
map<string, double> totals;
|
||||
int nDatasets = table.begin().value().size();
|
||||
for (const auto& model : models) {
|
||||
totals[model] = 0.0;
|
||||
}
|
||||
auto datasets = getDatasets(table.begin().value());
|
||||
for (auto const& dataset : datasets) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
cout << color << setw(3) << fixed << right << i++ << " ";
|
||||
cout << setw(maxDatasetName) << left << dataset << " ";
|
||||
double maxValue = 0;
|
||||
// Find out the max value for this dataset
|
||||
for (const auto& model : models) {
|
||||
double value = table[model].at(dataset).at(0).get<double>();
|
||||
if (value > maxValue) {
|
||||
maxValue = value;
|
||||
}
|
||||
}
|
||||
// Print the row with red colors on max values
|
||||
for (const auto& model : models) {
|
||||
string efectiveColor = color;
|
||||
double value = table[model].at(dataset).at(0).get<double>();
|
||||
if (value == maxValue) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
totals[model] += value;
|
||||
cout << efectiveColor << setw(maxModelName) << setprecision(maxModelName - 2) << fixed << value << " ";
|
||||
}
|
||||
cout << endl;
|
||||
odd = !odd;
|
||||
}
|
||||
cout << Colors::GREEN() << "=== " << string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
cout << string(maxModelName, '=') << " ";
|
||||
}
|
||||
cout << endl;
|
||||
cout << Colors::GREEN() << setw(5 + maxDatasetName) << " Totals...................";
|
||||
double max = 0.0;
|
||||
for (const auto& total : totals) {
|
||||
if (total.second > max) {
|
||||
max = total.second;
|
||||
}
|
||||
}
|
||||
for (const auto& model : models) {
|
||||
string efectiveColor = Colors::GREEN();
|
||||
if (totals[model] == max) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
cout << efectiveColor << right << setw(maxModelName) << setprecision(maxModelName - 4) << fixed << totals[model] << " ";
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
void BestResults::reportAll(bool excel)
|
||||
{
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
vector<string> datasets = getDatasets(table.begin().value());
|
||||
maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
maxModelName = max(12, maxModelName);
|
||||
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = max(25, maxDatasetName);
|
||||
// Print the table of results
|
||||
printTableResults(models, table);
|
||||
// Compute the Friedman test
|
||||
map<string, map<string, float>> ranksModels;
|
||||
if (friedman) {
|
||||
Statistics stats(models, datasets, table, significance);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
ranksModels = stats.getRanks();
|
||||
}
|
||||
if (excel) {
|
||||
BestResultsExcel excel(score, models, datasets, table, ranksModels, friedman, significance);
|
||||
excel.build();
|
||||
cout << Colors::YELLOW() << "** Excel file generated: " << excel.getFileName() << Colors::RESET() << endl;
|
||||
}
|
||||
}
|
||||
}
|
32
src/Platform/BestResults.h
Normal file
32
src/Platform/BestResults.h
Normal file
@@ -0,0 +1,32 @@
|
||||
#ifndef BESTRESULTS_H
|
||||
#define BESTRESULTS_H
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
class BestResults {
|
||||
public:
|
||||
explicit BestResults(const string& path, const string& score, const string& model, bool friedman, double significance = 0.05) : path(path), score(score), model(model), friedman(friedman), significance(significance) {}
|
||||
string build();
|
||||
void reportSingle();
|
||||
void reportAll(bool excel);
|
||||
void buildAll();
|
||||
private:
|
||||
vector<string> getModels();
|
||||
vector<string> getDatasets(json table);
|
||||
vector<string> loadResultFiles();
|
||||
json buildTableResults(vector<string> models);
|
||||
void printTableResults(vector<string> models, json table);
|
||||
string bestResultFile();
|
||||
json loadFile(const string& fileName);
|
||||
string path;
|
||||
string score;
|
||||
string model;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_H
|
177
src/Platform/BestResultsExcel.cc
Normal file
177
src/Platform/BestResultsExcel.cc
Normal file
@@ -0,0 +1,177 @@
|
||||
#include <sstream>
|
||||
#include "BestResultsExcel.h"
|
||||
#include "Paths.h"
|
||||
#include "Statistics.h"
|
||||
|
||||
namespace platform {
|
||||
BestResultsExcel::BestResultsExcel(const string& score, const vector<string>& models, const vector<string>& datasets, const json& table, const map<string, map<string, float>>& ranksModels, bool friedman, double significance) :
|
||||
score(score), models(models), datasets(datasets), table(table), ranksModels(ranksModels), friedman(friedman), significance(significance)
|
||||
{
|
||||
workbook = workbook_new((Paths::excel() + fileName).c_str());
|
||||
worksheet = workbook_add_worksheet(workbook, "Best Results");
|
||||
setProperties("Best Results");
|
||||
createFormats();
|
||||
int maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
modelNameSize = max(modelNameSize, maxModelName);
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
datasetNameSize = max(datasetNameSize, maxDatasetName);
|
||||
formatColumns();
|
||||
}
|
||||
BestResultsExcel::~BestResultsExcel()
|
||||
{
|
||||
workbook_close(workbook);
|
||||
}
|
||||
void BestResultsExcel::formatColumns()
|
||||
{
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::build()
|
||||
{
|
||||
// Create Sheet with scores
|
||||
header(false);
|
||||
body(false);
|
||||
footer(false);
|
||||
if (friedman) {
|
||||
// Create Sheet with ranks
|
||||
worksheet = workbook_add_worksheet(workbook, "Ranks");
|
||||
formatColumns();
|
||||
header(true);
|
||||
body(true);
|
||||
footer(true);
|
||||
// Create Sheet with Friedman Test
|
||||
doFriedman();
|
||||
}
|
||||
}
|
||||
string BestResultsExcel::getFileName()
|
||||
{
|
||||
return Paths::excel() + fileName;
|
||||
}
|
||||
void BestResultsExcel::header(bool ranks)
|
||||
{
|
||||
row = 0;
|
||||
string message = ranks ? "Ranks for score " + score : "Best results for " + score;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
for (const auto& model : models) {
|
||||
writeString(row, ++col, model.c_str(), "bodyHeader");
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::body(bool ranks)
|
||||
{
|
||||
row = 4;
|
||||
int i = 0;
|
||||
json origin = table.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
|
||||
writeDouble(row, ++col, value, "result");
|
||||
}
|
||||
++row;
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::footer(bool ranks)
|
||||
{
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
stringstream oss;
|
||||
oss << "=sum(indirect(address(" << 5 << "," << col + 2 << ")):indirect(address(" << row << "," << col + 2 << ")))";
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
if (ranks) {
|
||||
row++;
|
||||
writeString(row, 1, "Average ranks", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
stringstream oss;
|
||||
oss << "=sum(indirect(address(" << 5 << "," << col + 2 << ")):indirect(address(" << row - 1 << "," << col + 2 << ")))/" << datasets.size();
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::doFriedman()
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Friedman");
|
||||
vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
|
||||
row = 2;
|
||||
Statistics stats(models, datasets, table, significance, false);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
auto friedmanResult = stats.getFriedmanResult();
|
||||
auto holmResult = stats.getHolmResult();
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
writeString(row, 1, "Friedman Q", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "Critical χ2 value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "p-value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
|
||||
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
|
||||
writeDouble(row, 4, significance, "bodyHeader");
|
||||
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
|
||||
row += 3;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
|
||||
row += 2;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
string controlModel = "Control Model: " + holmResult.model;
|
||||
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
|
||||
row++;
|
||||
writeString(row, 1, "Model", "bodyHeader");
|
||||
writeString(row, 2, "p-value", "bodyHeader");
|
||||
writeString(row, 3, "Rank", "bodyHeader");
|
||||
writeString(row, 4, "Win", "bodyHeader");
|
||||
writeString(row, 5, "Tie", "bodyHeader");
|
||||
writeString(row, 6, "Loss", "bodyHeader");
|
||||
writeString(row, 7, "Reject H0", "bodyHeader");
|
||||
row++;
|
||||
bool first = true;
|
||||
for (const auto& item : holmResult.holmLines) {
|
||||
writeString(row, 1, item.model, "text");
|
||||
if (first) {
|
||||
// Control model info
|
||||
first = false;
|
||||
writeString(row, 2, "", "text");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeString(row, 4, "", "text");
|
||||
writeString(row, 5, "", "text");
|
||||
writeString(row, 6, "", "text");
|
||||
writeString(row, 7, "", "textCentered");
|
||||
} else {
|
||||
// Rest of the models info
|
||||
writeDouble(row, 2, item.pvalue, "result");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeInt(row, 4, item.wtl.win, "ints");
|
||||
writeInt(row, 5, item.wtl.tie, "ints");
|
||||
writeInt(row, 6, item.wtl.loss, "ints");
|
||||
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
|
||||
}
|
||||
row++;
|
||||
}
|
||||
}
|
||||
}
|
37
src/Platform/BestResultsExcel.h
Normal file
37
src/Platform/BestResultsExcel.h
Normal file
@@ -0,0 +1,37 @@
|
||||
#ifndef BESTRESULTS_EXCEL_H
|
||||
#define BESTRESULTS_EXCEL_H
|
||||
#include "ExcelFile.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
|
||||
class BestResultsExcel : ExcelFile {
|
||||
public:
|
||||
BestResultsExcel(const string& score, const vector<string>& models, const vector<string>& datasets, const json& table, const map<string, map<string, float>>& ranks, bool friedman, double significance);
|
||||
~BestResultsExcel();
|
||||
void build();
|
||||
string getFileName();
|
||||
private:
|
||||
void header(bool ranks);
|
||||
void body(bool ranks);
|
||||
void footer(bool ranks);
|
||||
void formatColumns();
|
||||
void doFriedman();
|
||||
const string fileName = "BestResults.xlsx";
|
||||
string score;
|
||||
vector<string> models;
|
||||
vector<string> datasets;
|
||||
json table;
|
||||
map<string, map<string, float>> ranksModels;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int modelNameSize = 12; // Min size of the column
|
||||
int datasetNameSize = 25; // Min size of the column
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_EXCEL_H
|
@@ -1,7 +1,7 @@
|
||||
#ifndef BESTRESULT_H
|
||||
#define BESTRESULT_H
|
||||
#ifndef BESTSCORE_H
|
||||
#define BESTSCORE_H
|
||||
#include <string>
|
||||
class BestResult {
|
||||
class BestScore {
|
||||
public:
|
||||
static std::string title() { return "STree_default (linear-ovo)"; }
|
||||
static double score() { return 22.109799; }
|
24
src/Platform/CLocale.h
Normal file
24
src/Platform/CLocale.h
Normal file
@@ -0,0 +1,24 @@
|
||||
#ifndef LOCALE_H
|
||||
#define LOCALE_H
|
||||
#include <locale>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
using namespace std;
|
||||
namespace platform {
|
||||
struct separation : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
class ConfigLocale {
|
||||
public:
|
||||
explicit ConfigLocale()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separation);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -4,9 +4,14 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
|
||||
add_executable(list list.cc platformUtils Datasets.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
|
||||
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||
add_executable(b_main main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(b_manage manage.cc Results.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_list list.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_best best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ExcelFile.cc)
|
||||
add_executable(testx testx.cpp Datasets.cc Dataset.cc Folding.cc )
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}")
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(testx ArffFiles BayesNet "${TORCH_LIBRARIES}")
|
215
src/Platform/Dataset.cc
Normal file
215
src/Platform/Dataset.cc
Normal file
@@ -0,0 +1,215 @@
|
||||
#include "Dataset.h"
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
vector<string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xv, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xd, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
|
||||
{
|
||||
if (loaded) {
|
||||
buildTensors();
|
||||
return { X, y };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Dataset::load_csv()
|
||||
{
|
||||
ifstream file(path + "/" + name + ".csv");
|
||||
if (file.is_open()) {
|
||||
string line;
|
||||
getline(file, line);
|
||||
vector<string> tokens = split(line, ',');
|
||||
features = vector<string>(tokens.begin(), tokens.end() - 1);
|
||||
if (className == "-1") {
|
||||
className = tokens.back();
|
||||
}
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = split(line, ',');
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv[i].push_back(stof(tokens[i]));
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::computeStates()
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
}
|
||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
auto arff = ArffFiles();
|
||||
arff.load(path + "/" + name + ".arff", className);
|
||||
// Get Dataset X, y
|
||||
Xv = arff.getX();
|
||||
yv = arff.getY();
|
||||
// Get className & Features
|
||||
className = arff.getClassName();
|
||||
auto attributes = arff.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
|
||||
}
|
||||
vector<string> tokenize(string line)
|
||||
{
|
||||
vector<string> tokens;
|
||||
for (auto i = 0; i < line.size(); ++i) {
|
||||
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
|
||||
string token = line.substr(0, i);
|
||||
tokens.push_back(token);
|
||||
line.erase(line.begin(), line.begin() + i + 1);
|
||||
i = 0;
|
||||
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
|
||||
line.erase(line.begin(), line.begin() + i + 1);
|
||||
}
|
||||
}
|
||||
if (line.size() > 0) {
|
||||
tokens.push_back(line);
|
||||
}
|
||||
return tokens;
|
||||
}
|
||||
void Dataset::load_rdata()
|
||||
{
|
||||
ifstream file(path + "/" + name + "_R.dat");
|
||||
if (file.is_open()) {
|
||||
string line;
|
||||
getline(file, line);
|
||||
line = ArffFiles::trim(line);
|
||||
vector<string> tokens = tokenize(line);
|
||||
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
|
||||
if (className == "-1") {
|
||||
className = ArffFiles::trim(tokens.back());
|
||||
}
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = tokenize(line);
|
||||
// We have to skip the first token, which is the instance number.
|
||||
for (auto i = 1; i < features.size() + 1; ++i) {
|
||||
const float value = stof(tokens[i]);
|
||||
Xv[i - 1].push_back(value);
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::load()
|
||||
{
|
||||
if (loaded) {
|
||||
return;
|
||||
}
|
||||
if (fileType == CSV) {
|
||||
load_csv();
|
||||
} else if (fileType == ARFF) {
|
||||
load_arff();
|
||||
} else if (fileType == RDATA) {
|
||||
load_rdata();
|
||||
}
|
||||
if (discretize) {
|
||||
Xd = discretizeDataset(Xv, yv);
|
||||
computeStates();
|
||||
}
|
||||
n_samples = Xv[0].size();
|
||||
n_features = Xv.size();
|
||||
loaded = true;
|
||||
}
|
||||
void Dataset::buildTensors()
|
||||
{
|
||||
if (discretize) {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
|
||||
} else {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
|
||||
}
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
if (discretize) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
} else {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
|
||||
}
|
||||
}
|
||||
y = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
vector<mdlp::labels_t> Dataset::discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
}
|
80
src/Platform/Dataset.h
Normal file
80
src/Platform/Dataset.h
Normal file
@@ -0,0 +1,80 @@
|
||||
#ifndef DATASET_H
|
||||
#define DATASET_H
|
||||
#include <torch/torch.h>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Utils.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
|
||||
enum fileType_t { CSV, ARFF, RDATA };
|
||||
class SourceData {
|
||||
public:
|
||||
SourceData(string source)
|
||||
{
|
||||
if (source == "Surcov") {
|
||||
path = "datasets/";
|
||||
fileType = CSV;
|
||||
} else if (source == "Arff") {
|
||||
path = "datasets/";
|
||||
fileType = ARFF;
|
||||
} else if (source == "Tanveer") {
|
||||
path = "data/";
|
||||
fileType = RDATA;
|
||||
} else {
|
||||
throw invalid_argument("Unknown source.");
|
||||
}
|
||||
}
|
||||
string getPath()
|
||||
{
|
||||
return path;
|
||||
}
|
||||
fileType_t getFileType()
|
||||
{
|
||||
return fileType;
|
||||
}
|
||||
private:
|
||||
string path;
|
||||
fileType_t fileType;
|
||||
};
|
||||
class Dataset {
|
||||
private:
|
||||
string path;
|
||||
string name;
|
||||
fileType_t fileType;
|
||||
string className;
|
||||
int n_samples{ 0 }, n_features{ 0 };
|
||||
vector<string> features;
|
||||
map<string, vector<int>> states;
|
||||
bool loaded;
|
||||
bool discretize;
|
||||
torch::Tensor X, y;
|
||||
vector<vector<float>> Xv;
|
||||
vector<vector<int>> Xd;
|
||||
vector<int> yv;
|
||||
void buildTensors();
|
||||
void load_csv();
|
||||
void load_arff();
|
||||
void load_rdata();
|
||||
void computeStates();
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
public:
|
||||
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
string getName() const;
|
||||
string getClassName() const;
|
||||
vector<string> getFeatures() const;
|
||||
map<string, vector<int>> getStates() const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors();
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -1,22 +1,31 @@
|
||||
#include "Datasets.h"
|
||||
#include "platformUtils.h"
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
void Datasets::load()
|
||||
{
|
||||
ifstream catalog(path + "/all.txt");
|
||||
auto sd = SourceData(sfileType);
|
||||
fileType = sd.getFileType();
|
||||
path = sd.getPath();
|
||||
ifstream catalog(path + "all.txt");
|
||||
if (catalog.is_open()) {
|
||||
string line;
|
||||
while (getline(catalog, line)) {
|
||||
if (line.empty() || line[0] == '#') {
|
||||
continue;
|
||||
}
|
||||
vector<string> tokens = split(line, ',');
|
||||
string name = tokens[0];
|
||||
string className = tokens[1];
|
||||
string className;
|
||||
if (tokens.size() == 1) {
|
||||
className = "-1";
|
||||
} else {
|
||||
className = tokens[1];
|
||||
}
|
||||
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
|
||||
}
|
||||
catalog.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open catalog file. [" + path + "/all.txt" + "]");
|
||||
throw invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
|
||||
}
|
||||
}
|
||||
vector<string> Datasets::getNames()
|
||||
@@ -117,152 +126,4 @@ namespace platform {
|
||||
{
|
||||
return datasets.find(name) != datasets.end();
|
||||
}
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
vector<string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xv, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xd, yv };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
|
||||
{
|
||||
if (loaded) {
|
||||
buildTensors();
|
||||
return { X, y };
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Dataset::load_csv()
|
||||
{
|
||||
ifstream file(path + "/" + name + ".csv");
|
||||
if (file.is_open()) {
|
||||
string line;
|
||||
getline(file, line);
|
||||
vector<string> tokens = split(line, ',');
|
||||
features = vector<string>(tokens.begin(), tokens.end() - 1);
|
||||
className = tokens.back();
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = split(line, ',');
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv[i].push_back(stof(tokens[i]));
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::computeStates()
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
}
|
||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
auto arff = ArffFiles();
|
||||
arff.load(path + "/" + name + ".arff", className);
|
||||
// Get Dataset X, y
|
||||
Xv = arff.getX();
|
||||
yv = arff.getY();
|
||||
// Get className & Features
|
||||
className = arff.getClassName();
|
||||
auto attributes = arff.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
|
||||
}
|
||||
void Dataset::load()
|
||||
{
|
||||
if (loaded) {
|
||||
return;
|
||||
}
|
||||
if (fileType == CSV) {
|
||||
load_csv();
|
||||
} else if (fileType == ARFF) {
|
||||
load_arff();
|
||||
}
|
||||
if (discretize) {
|
||||
Xd = discretizeDataset(Xv, yv);
|
||||
computeStates();
|
||||
}
|
||||
n_samples = Xv[0].size();
|
||||
n_features = Xv.size();
|
||||
loaded = true;
|
||||
}
|
||||
void Dataset::buildTensors()
|
||||
{
|
||||
if (discretize) {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
|
||||
} else {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
|
||||
}
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
if (discretize) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
} else {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
|
||||
}
|
||||
}
|
||||
y = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
}
|
@@ -1,55 +1,18 @@
|
||||
#ifndef DATASETS_H
|
||||
#define DATASETS_H
|
||||
#include <torch/torch.h>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "Dataset.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
enum fileType_t { CSV, ARFF };
|
||||
class Dataset {
|
||||
private:
|
||||
string path;
|
||||
string name;
|
||||
fileType_t fileType;
|
||||
string className;
|
||||
int n_samples{ 0 }, n_features{ 0 };
|
||||
vector<string> features;
|
||||
map<string, vector<int>> states;
|
||||
bool loaded;
|
||||
bool discretize;
|
||||
torch::Tensor X, y;
|
||||
vector<vector<float>> Xv;
|
||||
vector<vector<int>> Xd;
|
||||
vector<int> yv;
|
||||
void buildTensors();
|
||||
void load_csv();
|
||||
void load_arff();
|
||||
void computeStates();
|
||||
public:
|
||||
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
string getName() const;
|
||||
string getClassName() const;
|
||||
vector<string> getFeatures() const;
|
||||
map<string, vector<int>> getStates() const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors();
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
class Datasets {
|
||||
private:
|
||||
string path;
|
||||
fileType_t fileType;
|
||||
string sfileType;
|
||||
map<string, unique_ptr<Dataset>> datasets;
|
||||
bool discretize;
|
||||
void load(); // Loads the list of datasets
|
||||
public:
|
||||
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
|
||||
explicit Datasets(bool discretize, string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
|
||||
vector<string> getNames();
|
||||
vector<string> getFeatures(const string& name) const;
|
||||
int getNSamples(const string& name) const;
|
||||
|
@@ -4,7 +4,11 @@
|
||||
#include <map>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "platformUtils.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include "Utils.h"
|
||||
|
||||
//#include "Dataset.h"
|
||||
namespace platform {
|
||||
class DotEnv {
|
||||
private:
|
||||
@@ -43,7 +47,7 @@ namespace platform {
|
||||
}
|
||||
std::string get(const std::string& key)
|
||||
{
|
||||
return env[key];
|
||||
return env.at(key);
|
||||
}
|
||||
std::vector<int> getSeeds()
|
||||
{
|
||||
|
164
src/Platform/ExcelFile.cc
Normal file
164
src/Platform/ExcelFile.cc
Normal file
@@ -0,0 +1,164 @@
|
||||
#include "ExcelFile.h"
|
||||
|
||||
namespace platform {
|
||||
ExcelFile::ExcelFile()
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
void ExcelFile::setDefault()
|
||||
{
|
||||
normalSize = 14; //font size for report body
|
||||
row = 0;
|
||||
colorTitle = 0xB1A0C7;
|
||||
colorOdd = 0xDCE6F1;
|
||||
colorEven = 0xFDE9D9;
|
||||
}
|
||||
|
||||
lxw_workbook* ExcelFile::getWorkbook()
|
||||
{
|
||||
return workbook;
|
||||
}
|
||||
void ExcelFile::setProperties(string title)
|
||||
{
|
||||
char line[title.size() + 1];
|
||||
strcpy(line, title.c_str());
|
||||
lxw_doc_properties properties = {
|
||||
.title = line,
|
||||
.subject = (char*)"Machine learning results",
|
||||
.author = (char*)"Ricardo Montañana Gómez",
|
||||
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
|
||||
.company = (char*)"UCLM",
|
||||
.comments = (char*)"Created with libxlsxwriter and c++",
|
||||
};
|
||||
workbook_set_properties(workbook, &properties);
|
||||
}
|
||||
lxw_format* ExcelFile::efectiveStyle(const string& style)
|
||||
{
|
||||
lxw_format* efectiveStyle = NULL;
|
||||
if (style != "") {
|
||||
string suffix = row % 2 ? "_odd" : "_even";
|
||||
try {
|
||||
efectiveStyle = styles.at(style + suffix);
|
||||
}
|
||||
catch (const out_of_range& oor) {
|
||||
try {
|
||||
efectiveStyle = styles.at(style);
|
||||
}
|
||||
catch (const out_of_range& oor) {
|
||||
throw invalid_argument("Style " + style + " not found");
|
||||
}
|
||||
}
|
||||
}
|
||||
return efectiveStyle;
|
||||
}
|
||||
void ExcelFile::writeString(int row, int col, const string& text, const string& style)
|
||||
{
|
||||
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::writeInt(int row, int col, const int number, const string& style)
|
||||
{
|
||||
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::writeDouble(int row, int col, const double number, const string& style)
|
||||
{
|
||||
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::addColor(lxw_format* style, bool odd)
|
||||
{
|
||||
uint32_t efectiveColor = odd ? colorEven : colorOdd;
|
||||
format_set_bg_color(style, lxw_color_t(efectiveColor));
|
||||
}
|
||||
void ExcelFile::createStyle(const string& name, lxw_format* style, bool odd)
|
||||
{
|
||||
addColor(style, odd);
|
||||
if (name == "textCentered") {
|
||||
format_set_align(style, LXW_ALIGN_CENTER);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "text") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "bodyHeader") {
|
||||
format_set_bold(style);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_align(style, LXW_ALIGN_CENTER);
|
||||
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_bg_color(style, lxw_color_t(colorTitle));
|
||||
} else if (name == "result") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_num_format(style, "0.0000000");
|
||||
} else if (name == "time") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_num_format(style, "#,##0.000000");
|
||||
} else if (name == "ints") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_num_format(style, "###,##0");
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "floats") {
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_num_format(style, "#,##0.00");
|
||||
}
|
||||
}
|
||||
|
||||
void ExcelFile::createFormats()
|
||||
{
|
||||
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
|
||||
lxw_format* style;
|
||||
for (string name : styleNames) {
|
||||
lxw_format* style = workbook_add_format(workbook);
|
||||
style = workbook_add_format(workbook);
|
||||
createStyle(name, style, true);
|
||||
styles[name + "_odd"] = style;
|
||||
style = workbook_add_format(workbook);
|
||||
createStyle(name, style, false);
|
||||
styles[name + "_even"] = style;
|
||||
}
|
||||
|
||||
// Header 1st line
|
||||
lxw_format* headerFirst = workbook_add_format(workbook);
|
||||
format_set_bold(headerFirst);
|
||||
format_set_font_size(headerFirst, 18);
|
||||
format_set_align(headerFirst, LXW_ALIGN_CENTER);
|
||||
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(headerFirst, LXW_BORDER_THIN);
|
||||
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
|
||||
|
||||
// Header rest
|
||||
lxw_format* headerRest = workbook_add_format(workbook);
|
||||
format_set_bold(headerRest);
|
||||
format_set_align(headerRest, LXW_ALIGN_CENTER);
|
||||
format_set_font_size(headerRest, 16);
|
||||
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(headerRest, LXW_BORDER_THIN);
|
||||
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
|
||||
|
||||
// Header small
|
||||
lxw_format* headerSmall = workbook_add_format(workbook);
|
||||
format_set_bold(headerSmall);
|
||||
format_set_align(headerSmall, LXW_ALIGN_LEFT);
|
||||
format_set_font_size(headerSmall, 12);
|
||||
format_set_border(headerSmall, LXW_BORDER_THIN);
|
||||
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
|
||||
|
||||
// Summary style
|
||||
lxw_format* summaryStyle = workbook_add_format(workbook);
|
||||
format_set_bold(summaryStyle);
|
||||
format_set_font_size(summaryStyle, 16);
|
||||
format_set_border(summaryStyle, LXW_BORDER_THIN);
|
||||
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
|
||||
|
||||
styles["headerFirst"] = headerFirst;
|
||||
styles["headerRest"] = headerRest;
|
||||
styles["headerSmall"] = headerSmall;
|
||||
styles["summaryStyle"] = summaryStyle;
|
||||
}
|
||||
}
|
43
src/Platform/ExcelFile.h
Normal file
43
src/Platform/ExcelFile.h
Normal file
@@ -0,0 +1,43 @@
|
||||
#ifndef EXCELFILE_H
|
||||
#define EXCELFILE_H
|
||||
#include <locale>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "xlsxwriter.h"
|
||||
|
||||
using namespace std;
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
class ExcelFile {
|
||||
public:
|
||||
ExcelFile();
|
||||
ExcelFile(lxw_workbook* workbook);
|
||||
lxw_workbook* getWorkbook();
|
||||
protected:
|
||||
void setProperties(string title);
|
||||
void writeString(int row, int col, const string& text, const string& style = "");
|
||||
void writeInt(int row, int col, const int number, const string& style = "");
|
||||
void writeDouble(int row, int col, const double number, const string& style = "");
|
||||
void createFormats();
|
||||
void createStyle(const string& name, lxw_format* style, bool odd);
|
||||
void addColor(lxw_format* style, bool odd);
|
||||
lxw_format* efectiveStyle(const string& name);
|
||||
lxw_workbook* workbook;
|
||||
lxw_worksheet* worksheet;
|
||||
map<string, lxw_format*> styles;
|
||||
int row;
|
||||
int normalSize; //font size for report body
|
||||
uint32_t colorTitle;
|
||||
uint32_t colorOdd;
|
||||
uint32_t colorEven;
|
||||
private:
|
||||
void setDefault();
|
||||
};
|
||||
}
|
||||
#endif // !EXCELFILE_H
|
@@ -1,8 +1,9 @@
|
||||
#include <fstream>
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
#include "ReportConsole.h"
|
||||
#include <fstream>
|
||||
#include "Paths.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
string get_date()
|
||||
@@ -101,19 +102,39 @@ namespace platform {
|
||||
cout << data.dump(4) << endl;
|
||||
}
|
||||
|
||||
void Experiment::go(vector<string> filesToProcess, const string& path)
|
||||
void Experiment::go(vector<string> filesToProcess)
|
||||
{
|
||||
cout << "*** Starting experiment: " << title << " ***" << endl;
|
||||
for (auto fileName : filesToProcess) {
|
||||
cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
cross_validation(path, fileName);
|
||||
cross_validation(fileName);
|
||||
cout << endl;
|
||||
}
|
||||
}
|
||||
|
||||
void Experiment::cross_validation(const string& path, const string& fileName)
|
||||
string getColor(bayesnet::status_t status)
|
||||
{
|
||||
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
|
||||
void showProgress(int fold, const string& color, const string& phase)
|
||||
{
|
||||
string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
|
||||
}
|
||||
void Experiment::cross_validation(const string& fileName)
|
||||
{
|
||||
auto datasets = platform::Datasets(discretized, Paths::datasets());
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
@@ -159,20 +180,24 @@ namespace platform {
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
// Score train
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
cout << "\b\b\b, " << flush;
|
||||
// Store results and times in vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
|
@@ -108,8 +108,8 @@ namespace platform {
|
||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
string get_file_name();
|
||||
void save(const string& path);
|
||||
void cross_validation(const string& path, const string& fileName);
|
||||
void go(vector<string> filesToProcess, const string& path);
|
||||
void cross_validation(const string& fileName);
|
||||
void go(vector<string> filesToProcess);
|
||||
void show();
|
||||
void report();
|
||||
};
|
||||
|
@@ -47,6 +47,7 @@ namespace platform {
|
||||
{
|
||||
stratified_indices = vector<vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
|
||||
// Compute class counts and indices
|
||||
auto class_indices = map<int, vector<int>>();
|
||||
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
@@ -60,20 +61,26 @@ namespace platform {
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts[label] / k;
|
||||
if (num_samples_to_take == 0)
|
||||
auto num_samples_to_take = class_counts.at(label) / k;
|
||||
if (num_samples_to_take == 0) {
|
||||
cerr << "Warning! The number of samples in class " << label << " (" << class_counts.at(label)
|
||||
<< ") is less than the number of folds (" << k << ")." << endl;
|
||||
faulty = true;
|
||||
continue;
|
||||
}
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
}
|
||||
auto chosen = vector<bool>(k, false);
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (stratified_indices[fold].size() == fold_size + 1) {
|
||||
if (chosen.at(fold)) {
|
||||
continue;
|
||||
}
|
||||
chosen[fold] = true;
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
|
@@ -29,10 +29,12 @@ namespace platform {
|
||||
vector<int> y;
|
||||
vector<vector<int>> stratified_indices;
|
||||
void build();
|
||||
bool faulty = false; // Only true if the number of samples of any class is less than the number of folds.
|
||||
public:
|
||||
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
pair<vector<int>, vector<int>> getFold(int nFold) override;
|
||||
bool isFaulty() { return faulty; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,12 +1,18 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
static std::string cfs() { return "cfs/"; }
|
||||
static std::string datasets()
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
return env.get("source_data");
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,10 +1,22 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "Datasets.h"
|
||||
#include "ReportBase.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
#include "BestScore.h"
|
||||
#include "DotEnv.h"
|
||||
|
||||
namespace platform {
|
||||
ReportBase::ReportBase(json data_, bool compare) : data(data_), compare(compare), margin(0.1)
|
||||
{
|
||||
stringstream oss;
|
||||
oss << "Better than ZeroR + " << setprecision(1) << fixed << margin * 100 << "%";
|
||||
meaning = {
|
||||
{Symbols::equal_best, "Equal to best"},
|
||||
{Symbols::better_best, "Better than best"},
|
||||
{Symbols::cross, "Less than or equal to ZeroR"},
|
||||
{Symbols::upward_arrow, oss.str()}
|
||||
};
|
||||
}
|
||||
string ReportBase::fromVector(const string& key)
|
||||
{
|
||||
stringstream oss;
|
||||
@@ -34,4 +46,69 @@ namespace platform {
|
||||
header();
|
||||
body();
|
||||
}
|
||||
string ReportBase::compareResult(const string& dataset, double result)
|
||||
{
|
||||
string status = " ";
|
||||
if (compare) {
|
||||
double best = bestResult(dataset, data["model"].get<string>());
|
||||
if (result == best) {
|
||||
status = Symbols::equal_best;
|
||||
} else if (result > best) {
|
||||
status = Symbols::better_best;
|
||||
}
|
||||
} else {
|
||||
if (data["score_name"].get<string>() == "accuracy") {
|
||||
auto dt = Datasets(false, Paths::datasets());
|
||||
dt.loadDataset(dataset);
|
||||
auto numClasses = dt.getNClasses(dataset);
|
||||
if (numClasses == 2) {
|
||||
vector<int> distribution = dt.getClassesCounts(dataset);
|
||||
double nSamples = dt.getNSamples(dataset);
|
||||
vector<int>::iterator maxValue = max_element(distribution.begin(), distribution.end());
|
||||
double mark = *maxValue / nSamples * (1 + margin);
|
||||
if (mark > 1) {
|
||||
mark = 0.9995;
|
||||
}
|
||||
status = result < mark ? Symbols::cross : result > mark ? Symbols::upward_arrow : "=";
|
||||
}
|
||||
}
|
||||
}
|
||||
if (status != " ") {
|
||||
auto item = summary.find(status);
|
||||
if (item != summary.end()) {
|
||||
summary[status]++;
|
||||
} else {
|
||||
summary[status] = 1;
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
double ReportBase::bestResult(const string& dataset, const string& model)
|
||||
{
|
||||
double value = 0.0;
|
||||
if (bestResults.size() == 0) {
|
||||
// try to load the best results
|
||||
string score = data["score_name"];
|
||||
replace(score.begin(), score.end(), '_', '-');
|
||||
string fileName = "best_results_" + score + "_" + model + ".json";
|
||||
ifstream resultData(Paths::results() + "/" + fileName);
|
||||
if (resultData.is_open()) {
|
||||
bestResults = json::parse(resultData);
|
||||
} else {
|
||||
existBestFile = false;
|
||||
}
|
||||
}
|
||||
try {
|
||||
value = bestResults.at(dataset).at(0);
|
||||
}
|
||||
catch (exception) {
|
||||
value = 1.0;
|
||||
|
||||
}
|
||||
return value;
|
||||
}
|
||||
bool ReportBase::getExistBestFile()
|
||||
{
|
||||
return existBestFile;
|
||||
}
|
||||
}
|
@@ -2,22 +2,36 @@
|
||||
#define REPORTBASE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "Paths.h"
|
||||
#include "Symbols.h"
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
|
||||
class ReportBase {
|
||||
public:
|
||||
explicit ReportBase(json data_) { data = data_; };
|
||||
explicit ReportBase(json data_, bool compare);
|
||||
virtual ~ReportBase() = default;
|
||||
void show();
|
||||
protected:
|
||||
json data;
|
||||
string fromVector(const string& key);
|
||||
string fVector(const string& title, const json& data, const int width, const int precision);
|
||||
bool getExistBestFile();
|
||||
virtual void header() = 0;
|
||||
virtual void body() = 0;
|
||||
virtual void showSummary() = 0;
|
||||
string compareResult(const string& dataset, double result);
|
||||
map<string, int> summary;
|
||||
double margin;
|
||||
map<string, string> meaning;
|
||||
bool compare;
|
||||
private:
|
||||
double bestResult(const string& dataset, const string& model);
|
||||
json bestResults;
|
||||
bool existBestFile = true;
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,28 +1,19 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportConsole.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
#include "BestScore.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
string ReportConsole::headerLine(const string& text)
|
||||
string ReportConsole::headerLine(const string& text, int utf = 0)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + string(n, ' ') + "*\n";
|
||||
return "* " + text + string(n + utf, ' ') + "*\n";
|
||||
}
|
||||
|
||||
|
||||
void ReportConsole::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
@@ -36,34 +27,40 @@ namespace platform {
|
||||
}
|
||||
void ReportConsole::body()
|
||||
{
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
|
||||
auto tmp = ConfigLocale();
|
||||
cout << Colors::GREEN() << " # Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "=== ========================= ====== ===== === ========= ========= ========= =============== =================== ====================" << endl;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
bool odd = true;
|
||||
int index = 0;
|
||||
for (const auto& r : data["results"]) {
|
||||
if (selectedIndex != -1 && index != selectedIndex) {
|
||||
index++;
|
||||
continue;
|
||||
}
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
cout << color;
|
||||
cout << setw(3) << index++ << " ";
|
||||
cout << setw(25) << left << r["dataset"].get<string>() << " ";
|
||||
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
|
||||
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
|
||||
try {
|
||||
cout << r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cout << r["hyperparameters"];
|
||||
}
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>();
|
||||
const string status = compareResult(r["dataset"].get<string>(), r["score"].get<double>());
|
||||
cout << status;
|
||||
cout << setw(12) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
|
||||
cout << r["hyperparameters"].dump();
|
||||
cout << endl;
|
||||
cout << flush;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
odd = !odd;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
if (data["results"].size() == 1 || selectedIndex != -1) {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
|
||||
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
|
||||
@@ -74,15 +71,30 @@ namespace platform {
|
||||
footer(totalScore);
|
||||
}
|
||||
}
|
||||
void ReportConsole::showSummary()
|
||||
{
|
||||
for (const auto& item : summary) {
|
||||
stringstream oss;
|
||||
oss << setw(3) << left << item.first;
|
||||
oss << setw(3) << right << item.second << " ";
|
||||
oss << left << meaning.at(item.first);
|
||||
cout << headerLine(oss.str(), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportConsole::footer(double totalScore)
|
||||
{
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
showSummary();
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
if (score == BestScore::scoreName()) {
|
||||
stringstream oss;
|
||||
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
|
||||
oss << score << " compared to " << BestScore::title() << " .: " << totalScore / BestScore::score();
|
||||
cout << headerLine(oss.str());
|
||||
}
|
||||
if (!getExistBestFile() && compare) {
|
||||
cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
|
||||
}
|
||||
cout << string(MAXL, '*') << endl << Colors::RESET();
|
||||
}
|
||||
}
|
@@ -7,16 +7,18 @@
|
||||
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
const int MAXL = 128;
|
||||
class ReportConsole : public ReportBase{
|
||||
const int MAXL = 133;
|
||||
class ReportConsole : public ReportBase {
|
||||
public:
|
||||
explicit ReportConsole(json data_) : ReportBase(data_) {};
|
||||
explicit ReportConsole(json data_, bool compare = false, int index = -1) : ReportBase(data_, compare), selectedIndex(index) {};
|
||||
virtual ~ReportConsole() = default;
|
||||
private:
|
||||
string headerLine(const string& text);
|
||||
int selectedIndex;
|
||||
string headerLine(const string& text, int utf);
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore);
|
||||
void showSummary() override;
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,29 +1,56 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
#include "BestScore.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook) : ReportBase(data_, compare), ExcelFile(workbook)
|
||||
{
|
||||
createFile();
|
||||
}
|
||||
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
void ReportExcel::formatColumns()
|
||||
{
|
||||
worksheet_freeze_panes(worksheet, 6, 1);
|
||||
vector<int> columns_sizes = { 22, 10, 9, 7, 12, 12, 12, 12, 12, 3, 15, 12, 23 };
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::createFile()
|
||||
{
|
||||
doc.create(Paths::excel() + "some_results.xlsx");
|
||||
wks = doc.workbook().worksheet("Sheet1");
|
||||
wks.setName(data["model"].get<string>());
|
||||
if (workbook == NULL) {
|
||||
workbook = workbook_new((Paths::excel() + fileName).c_str());
|
||||
}
|
||||
const string name = data["model"].get<string>();
|
||||
string suffix = "";
|
||||
string efectiveName;
|
||||
int num = 1;
|
||||
// Create a sheet with the name of the model
|
||||
while (true) {
|
||||
efectiveName = name + suffix;
|
||||
if (workbook_get_worksheet_by_name(workbook, efectiveName.c_str())) {
|
||||
suffix = to_string(++num);
|
||||
} else {
|
||||
worksheet = workbook_add_worksheet(workbook, efectiveName.c_str());
|
||||
break;
|
||||
}
|
||||
if (num > 100) {
|
||||
throw invalid_argument("Couldn't create sheet " + efectiveName);
|
||||
}
|
||||
}
|
||||
cout << "Adding sheet " << efectiveName << " to " << Paths::excel() + fileName << endl;
|
||||
setProperties(data["title"].get<string>());
|
||||
createFormats();
|
||||
formatColumns();
|
||||
}
|
||||
|
||||
void ReportExcel::closeFile()
|
||||
{
|
||||
doc.save();
|
||||
doc.close();
|
||||
workbook_close(workbook);
|
||||
}
|
||||
|
||||
void ReportExcel::header()
|
||||
@@ -32,45 +59,62 @@ namespace platform {
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
wks.cell("A1").value().set(
|
||||
"Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " +
|
||||
to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
|
||||
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
wks.cell("A2").value() = data["title"].get<string>();
|
||||
wks.cell("A3").value() = "Random seeds: " + fromVector("seeds") + " Stratified: " +
|
||||
(data["stratified"].get<bool>() ? "True" : "False");
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, "
|
||||
<< data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
wks.cell("A4").value() = oss.str();
|
||||
wks.cell("A5").value() = "Score is " + data["score_name"].get<string>();
|
||||
string message = data["model"].get<string>() + " ver. " + data["version"].get<string>() + " " +
|
||||
data["language"].get<string>() + " ver. " + data["language_version"].get<string>() +
|
||||
" with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
|
||||
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>();
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 12, message.c_str(), styles["headerFirst"]);
|
||||
worksheet_merge_range(worksheet, 1, 0, 1, 12, data["title"].get<string>().c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 0, 3, 0, ("Score is " + data["score_name"].get<string>()).c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 1, 3, 3, "Execution time", styles["headerRest"]);
|
||||
oss << setprecision(2) << fixed << data["duration"].get<float>() << " s";
|
||||
worksheet_merge_range(worksheet, 2, 4, 2, 5, oss.str().c_str(), styles["headerRest"]);
|
||||
oss.str("");
|
||||
oss.clear();
|
||||
oss << setprecision(2) << fixed << data["duration"].get<float>() / 3600 << " h";
|
||||
worksheet_merge_range(worksheet, 3, 4, 3, 5, oss.str().c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 6, 3, 7, "Platform", styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 8, 3, 9, data["platform"].get<string>().c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 10, 2, 12, ("Random seeds: " + fromVector("seeds")).c_str(), styles["headerSmall"]);
|
||||
oss.str("");
|
||||
oss.clear();
|
||||
oss << "Stratified: " << (data["stratified"].get<bool>() ? "True" : "False");
|
||||
worksheet_merge_range(worksheet, 3, 10, 3, 11, oss.str().c_str(), styles["headerSmall"]);
|
||||
oss.str("");
|
||||
oss.clear();
|
||||
oss << "Discretized: " << (data["discretized"].get<bool>() ? "True" : "False");
|
||||
worksheet_write_string(worksheet, 3, 12, oss.str().c_str(), styles["headerSmall"]);
|
||||
}
|
||||
|
||||
void ReportExcel::body()
|
||||
{
|
||||
auto head = vector<string>(
|
||||
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
|
||||
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "St.", "Time",
|
||||
"Time Std.", "Hyperparameters" });
|
||||
int col = 1;
|
||||
int col = 0;
|
||||
for (const auto& item : head) {
|
||||
wks.cell(8, col++).value() = item;
|
||||
writeString(5, col++, item, "bodyHeader");
|
||||
}
|
||||
int row = 9;
|
||||
col = 1;
|
||||
row = 6;
|
||||
col = 0;
|
||||
int hypSize = 22;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
string hyperparameters;
|
||||
for (const auto& r : data["results"]) {
|
||||
wks.cell(row, col).value() = r["dataset"].get<string>();
|
||||
wks.cell(row, col + 1).value() = r["samples"].get<int>();
|
||||
wks.cell(row, col + 2).value() = r["features"].get<int>();
|
||||
wks.cell(row, col + 3).value() = r["classes"].get<int>();
|
||||
wks.cell(row, col + 4).value() = r["nodes"].get<float>();
|
||||
wks.cell(row, col + 5).value() = r["leaves"].get<float>();
|
||||
wks.cell(row, col + 6).value() = r["depth"].get<float>();
|
||||
wks.cell(row, col + 7).value() = r["score"].get<double>();
|
||||
wks.cell(row, col + 8).value() = r["score_std"].get<double>();
|
||||
wks.cell(row, col + 9).value() = r["time"].get<double>();
|
||||
wks.cell(row, col + 10).value() = r["time_std"].get<double>();
|
||||
writeString(row, col, r["dataset"].get<string>(), "text");
|
||||
writeInt(row, col + 1, r["samples"].get<int>(), "ints");
|
||||
writeInt(row, col + 2, r["features"].get<int>(), "ints");
|
||||
writeInt(row, col + 3, r["classes"].get<int>(), "ints");
|
||||
writeDouble(row, col + 4, r["nodes"].get<float>(), "floats");
|
||||
writeDouble(row, col + 5, r["leaves"].get<float>(), "floats");
|
||||
writeDouble(row, col + 6, r["depth"].get<double>(), "floats");
|
||||
writeDouble(row, col + 7, r["score"].get<double>(), "result");
|
||||
writeDouble(row, col + 8, r["score_std"].get<double>(), "result");
|
||||
const string status = compareResult(r["dataset"].get<string>(), r["score"].get<double>());
|
||||
writeString(row, col + 9, status, "textCentered");
|
||||
writeDouble(row, col + 10, r["time"].get<double>(), "time");
|
||||
writeDouble(row, col + 11, r["time_std"].get<double>(), "time");
|
||||
try {
|
||||
hyperparameters = r["hyperparameters"].get<string>();
|
||||
}
|
||||
@@ -79,31 +123,60 @@ namespace platform {
|
||||
oss << r["hyperparameters"];
|
||||
hyperparameters = oss.str();
|
||||
}
|
||||
wks.cell(row, col + 11).value() = hyperparameters;
|
||||
if (hyperparameters.size() > hypSize) {
|
||||
hypSize = hyperparameters.size();
|
||||
}
|
||||
writeString(row, col + 12, hyperparameters, "text");
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
row++;
|
||||
|
||||
}
|
||||
// Set the right column width of hyperparameters with the maximum length
|
||||
worksheet_set_column(worksheet, 12, 12, hypSize + 5, NULL);
|
||||
// Show totals if only one dataset is present in the result
|
||||
if (data["results"].size() == 1) {
|
||||
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
|
||||
row++;
|
||||
col = 1;
|
||||
wks.cell(row, col).value() = group;
|
||||
writeString(row, col, group, "text");
|
||||
for (double item : lastResult[group]) {
|
||||
wks.cell(row, ++col).value() = item;
|
||||
string style = group.find("scores") != string::npos ? "result" : "time";
|
||||
writeDouble(row, ++col, item, style);
|
||||
}
|
||||
}
|
||||
// Set with of columns to show those totals completely
|
||||
worksheet_set_column(worksheet, 1, 1, 12, NULL);
|
||||
for (int i = 2; i < 7; ++i) {
|
||||
// doesn't work with from col to col, so...
|
||||
worksheet_set_column(worksheet, i, i, 15, NULL);
|
||||
}
|
||||
} else {
|
||||
footer(totalScore, row);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::showSummary()
|
||||
{
|
||||
for (const auto& item : summary) {
|
||||
worksheet_write_string(worksheet, row + 2, 1, item.first.c_str(), styles["summaryStyle"]);
|
||||
worksheet_write_number(worksheet, row + 2, 2, item.second, styles["summaryStyle"]);
|
||||
worksheet_merge_range(worksheet, row + 2, 3, row + 2, 5, meaning.at(item.first).c_str(), styles["summaryStyle"]);
|
||||
row += 1;
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::footer(double totalScore, int row)
|
||||
{
|
||||
showSummary();
|
||||
row += 4 + summary.size();
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
wks.cell(row + 2, 1).value() = score + " compared to " + BestResult::title() + " .: ";
|
||||
wks.cell(row + 2, 5).value() = totalScore / BestResult::score();
|
||||
if (score == BestScore::scoreName()) {
|
||||
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + BestScore::title() + " .:").c_str(), efectiveStyle("text"));
|
||||
writeDouble(row, 6, totalScore / BestScore::score(), "result");
|
||||
}
|
||||
if (!getExistBestFile() && compare) {
|
||||
worksheet_write_string(worksheet, row + 1, 0, "*** Best Results File not found. Couldn't compare any result!", styles["summaryStyle"]);
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,25 +1,25 @@
|
||||
#ifndef REPORTEXCEL_H
|
||||
#define REPORTEXCEL_H
|
||||
#include <OpenXLSX.hpp>
|
||||
#include<map>
|
||||
#include "xlsxwriter.h"
|
||||
#include "ReportBase.h"
|
||||
#include "Paths.h"
|
||||
#include "ExcelFile.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using namespace OpenXLSX;
|
||||
const int MAXLL = 128;
|
||||
class ReportExcel : public ReportBase{
|
||||
class ReportExcel : public ReportBase, public ExcelFile {
|
||||
public:
|
||||
explicit ReportExcel(json data_) : ReportBase(data_) {createFile();};
|
||||
virtual ~ReportExcel() {closeFile();};
|
||||
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook);
|
||||
private:
|
||||
const string fileName = "some_results.xlsx";
|
||||
void formatColumns();
|
||||
void createFile();
|
||||
void closeFile();
|
||||
XLDocument doc;
|
||||
XLWorksheet wks;
|
||||
void header() override;
|
||||
void body() override;
|
||||
void showSummary() override;
|
||||
void footer(double totalScore, int row);
|
||||
|
||||
};
|
||||
};
|
||||
#endif // !REPORTEXCEL_H
|
56
src/Platform/Result.cc
Normal file
56
src/Platform/Result.cc
Normal file
@@ -0,0 +1,56 @@
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "Result.h"
|
||||
#include "Colors.h"
|
||||
#include "BestScore.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
namespace platform {
|
||||
Result::Result(const string& path, const string& filename)
|
||||
: path(path)
|
||||
, filename(filename)
|
||||
{
|
||||
auto data = load();
|
||||
date = data["date"];
|
||||
score = 0;
|
||||
for (const auto& result : data["results"]) {
|
||||
score += result["score"].get<double>();
|
||||
}
|
||||
scoreName = data["score_name"];
|
||||
if (scoreName == BestScore::scoreName()) {
|
||||
score /= BestScore::score();
|
||||
}
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
complete = data["results"].size() > 1;
|
||||
}
|
||||
|
||||
json Result::load() const
|
||||
{
|
||||
ifstream resultData(path + "/" + filename);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
|
||||
}
|
||||
|
||||
string Result::to_string() const
|
||||
{
|
||||
auto tmp = ConfigLocale();
|
||||
stringstream oss;
|
||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||
string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||
oss << date << " ";
|
||||
oss << setw(12) << left << model << " ";
|
||||
oss << setw(11) << left << scoreName << " ";
|
||||
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
|
||||
auto completeString = isComplete() ? "C" : "P";
|
||||
oss << setw(1) << " " << completeString << " ";
|
||||
oss << setw(7) << setprecision(2) << fixed << durationShow << " " << durationUnit << " ";
|
||||
oss << setw(50) << left << title << " ";
|
||||
return oss.str();
|
||||
}
|
||||
}
|
37
src/Platform/Result.h
Normal file
37
src/Platform/Result.h
Normal file
@@ -0,0 +1,37 @@
|
||||
#ifndef RESULT_H
|
||||
#define RESULT_H
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Result {
|
||||
public:
|
||||
Result(const string& path, const string& filename);
|
||||
json load() const;
|
||||
string to_string() const;
|
||||
string getFilename() const { return filename; };
|
||||
string getDate() const { return date; };
|
||||
double getScore() const { return score; };
|
||||
string getTitle() const { return title; };
|
||||
double getDuration() const { return duration; };
|
||||
string getModel() const { return model; };
|
||||
string getScoreName() const { return scoreName; };
|
||||
bool isComplete() const { return complete; };
|
||||
private:
|
||||
string path;
|
||||
string filename;
|
||||
string date;
|
||||
double score;
|
||||
string title;
|
||||
double duration;
|
||||
string model;
|
||||
string scoreName;
|
||||
bool complete;
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -1,38 +1,11 @@
|
||||
#include <filesystem>
|
||||
#include "platformUtils.h"
|
||||
#include "Results.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
#include "BestScore.h"
|
||||
#include "Colors.h"
|
||||
#include "CLocale.h"
|
||||
namespace platform {
|
||||
Result::Result(const string& path, const string& filename)
|
||||
: path(path)
|
||||
, filename(filename)
|
||||
{
|
||||
auto data = load();
|
||||
date = data["date"];
|
||||
score = 0;
|
||||
for (const auto& result : data["results"]) {
|
||||
score += result["score"].get<double>();
|
||||
}
|
||||
scoreName = data["score_name"];
|
||||
if (scoreName == BestResult::scoreName()) {
|
||||
score /= BestResult::score();
|
||||
}
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
}
|
||||
json Result::load() const
|
||||
{
|
||||
ifstream resultData(path + "/" + filename);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
|
||||
}
|
||||
void Results::load()
|
||||
{
|
||||
using std::filesystem::directory_iterator;
|
||||
@@ -41,31 +14,30 @@ namespace platform {
|
||||
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
|
||||
auto result = Result(path, filename);
|
||||
bool addResult = true;
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName() || complete && !result.isComplete() || partial && result.isComplete())
|
||||
addResult = false;
|
||||
if (addResult)
|
||||
files.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
string Result::to_string() const
|
||||
{
|
||||
stringstream oss;
|
||||
oss << date << " ";
|
||||
oss << setw(12) << left << model << " ";
|
||||
oss << setw(11) << left << scoreName << " ";
|
||||
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
|
||||
oss << setw(9) << setprecision(3) << fixed << duration << " ";
|
||||
oss << setw(50) << left << title << " ";
|
||||
return oss.str();
|
||||
if (max == 0) {
|
||||
max = files.size();
|
||||
}
|
||||
}
|
||||
void Results::show() const
|
||||
{
|
||||
auto temp = ConfigLocale();
|
||||
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
|
||||
cout << "-------------------" << endl;
|
||||
if (complete) {
|
||||
cout << Colors::MAGENTA() << "Only listing complete results" << endl;
|
||||
}
|
||||
if (partial) {
|
||||
cout << Colors::MAGENTA() << "Only listing partial results" << endl;
|
||||
}
|
||||
auto i = 0;
|
||||
cout << " # Date Model Score Name Score Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
|
||||
cout << Colors::GREEN() << " # Date Model Score Name Score C/P Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== === ========= =============================================================" << endl;
|
||||
bool odd = true;
|
||||
for (const auto& result : files) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
@@ -95,26 +67,51 @@ namespace platform {
|
||||
cout << "Invalid index" << endl;
|
||||
return -1;
|
||||
}
|
||||
void Results::report(const int index, const bool excelReport) const
|
||||
void Results::report(const int index, const bool excelReport)
|
||||
{
|
||||
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
|
||||
auto data = files.at(index).load();
|
||||
if (excelReport) {
|
||||
ReportExcel reporter(data);
|
||||
ReportExcel reporter(data, compare, workbook);
|
||||
reporter.show();
|
||||
openExcel = true;
|
||||
workbook = reporter.getWorkbook();
|
||||
} else {
|
||||
ReportConsole reporter(data);
|
||||
ReportConsole reporter(data, compare);
|
||||
reporter.show();
|
||||
}
|
||||
}
|
||||
void Results::showIndex(const int index, const int idx) const
|
||||
{
|
||||
auto data = files.at(index).load();
|
||||
if (idx < 0 or idx >= static_cast<int>(data["results"].size())) {
|
||||
cout << "Invalid index" << endl;
|
||||
return;
|
||||
}
|
||||
cout << Colors::YELLOW() << "Showing " << files.at(index).getFilename() << endl;
|
||||
ReportConsole reporter(data, compare, idx);
|
||||
reporter.show();
|
||||
}
|
||||
void Results::menu()
|
||||
{
|
||||
char option;
|
||||
int index;
|
||||
bool finished = false;
|
||||
string color, context;
|
||||
string filename, line, options = "qldhsre";
|
||||
while (!finished) {
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
|
||||
if (indexList) {
|
||||
color = Colors::GREEN();
|
||||
context = " (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
|
||||
options = "qldhsre";
|
||||
} else {
|
||||
color = Colors::MAGENTA();
|
||||
context = " (quit='q', list='l'): ";
|
||||
options = "ql";
|
||||
}
|
||||
cout << Colors::RESET() << color;
|
||||
|
||||
cout << "Choose option " << context;
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
@@ -126,9 +123,18 @@ namespace platform {
|
||||
option = line[0];
|
||||
} else {
|
||||
if (all_of(line.begin(), line.end(), ::isdigit)) {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index, false);
|
||||
int idx = stoi(line);
|
||||
if (indexList) {
|
||||
// The value is about the files list
|
||||
index = idx;
|
||||
if (index >= 0 && index < max) {
|
||||
report(index, false);
|
||||
indexList = false;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
// The value is about the result showed on screen
|
||||
showIndex(index, idx);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
@@ -141,6 +147,7 @@ namespace platform {
|
||||
break;
|
||||
case 'l':
|
||||
show();
|
||||
indexList = true;
|
||||
break;
|
||||
case 'd':
|
||||
index = getIndex("delete");
|
||||
@@ -152,6 +159,7 @@ namespace platform {
|
||||
files.erase(files.begin() + index);
|
||||
cout << "File: " + filename + " deleted!" << endl;
|
||||
show();
|
||||
indexList = true;
|
||||
break;
|
||||
case 'h':
|
||||
index = getIndex("hide");
|
||||
@@ -163,21 +171,25 @@ namespace platform {
|
||||
files.erase(files.begin() + index);
|
||||
show();
|
||||
menu();
|
||||
indexList = true;
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
indexList = true;
|
||||
show();
|
||||
break;
|
||||
case 'r':
|
||||
index = getIndex("report");
|
||||
if (index == -1)
|
||||
break;
|
||||
indexList = false;
|
||||
report(index, false);
|
||||
break;
|
||||
case 'e':
|
||||
index = getIndex("excel");
|
||||
if (index == -1)
|
||||
break;
|
||||
indexList = true;
|
||||
report(index, true);
|
||||
break;
|
||||
default:
|
||||
@@ -248,7 +260,10 @@ namespace platform {
|
||||
sortDate();
|
||||
show();
|
||||
menu();
|
||||
cout << "Done!" << endl;
|
||||
if (openExcel) {
|
||||
workbook_close(workbook);
|
||||
}
|
||||
cout << Colors::RESET() << "Done!" << endl;
|
||||
}
|
||||
|
||||
}
|
@@ -1,48 +1,39 @@
|
||||
#ifndef RESULTS_H
|
||||
#define RESULTS_H
|
||||
#include "xlsxwriter.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Result.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Result {
|
||||
public:
|
||||
Result(const string& path, const string& filename);
|
||||
json load() const;
|
||||
string to_string() const;
|
||||
string getFilename() const { return filename; };
|
||||
string getDate() const { return date; };
|
||||
double getScore() const { return score; };
|
||||
string getTitle() const { return title; };
|
||||
double getDuration() const { return duration; };
|
||||
string getModel() const { return model; };
|
||||
string getScoreName() const { return scoreName; };
|
||||
private:
|
||||
string path;
|
||||
string filename;
|
||||
string date;
|
||||
double score;
|
||||
string title;
|
||||
double duration;
|
||||
string model;
|
||||
string scoreName;
|
||||
};
|
||||
class Results {
|
||||
public:
|
||||
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
|
||||
Results(const string& path, const int max, const string& model, const string& score, bool complete, bool partial, bool compare) :
|
||||
path(path), max(max), model(model), scoreName(score), complete(complete), partial(partial), compare(compare)
|
||||
{
|
||||
load();
|
||||
};
|
||||
void manage();
|
||||
private:
|
||||
string path;
|
||||
int max;
|
||||
string model;
|
||||
string scoreName;
|
||||
bool complete;
|
||||
bool partial;
|
||||
bool indexList = true;
|
||||
bool openExcel = false;
|
||||
bool compare;
|
||||
lxw_workbook* workbook = NULL;
|
||||
vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
void show() const;
|
||||
void report(const int index, const bool excelReport) const;
|
||||
void report(const int index, const bool excelReport);
|
||||
void showIndex(const int index, const int idx) const;
|
||||
int getIndex(const string& intent) const;
|
||||
void menu();
|
||||
void sortList();
|
||||
|
252
src/Platform/Statistics.cc
Normal file
252
src/Platform/Statistics.cc
Normal file
@@ -0,0 +1,252 @@
|
||||
#include <sstream>
|
||||
#include "Statistics.h"
|
||||
#include "Colors.h"
|
||||
#include "Symbols.h"
|
||||
#include <boost/math/distributions/chi_squared.hpp>
|
||||
#include <boost/math/distributions/normal.hpp>
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
|
||||
Statistics::Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance, bool output) :
|
||||
models(models), datasets(datasets), data(data), significance(significance), output(output)
|
||||
{
|
||||
nModels = models.size();
|
||||
nDatasets = datasets.size();
|
||||
auto temp = ConfigLocale();
|
||||
};
|
||||
|
||||
void Statistics::fit()
|
||||
{
|
||||
if (nModels < 3 || nDatasets < 3) {
|
||||
cerr << "nModels: " << nModels << endl;
|
||||
cerr << "nDatasets: " << nDatasets << endl;
|
||||
throw runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
|
||||
}
|
||||
ranksModels.clear();
|
||||
computeRanks();
|
||||
// Set the control model as the one with the lowest average rank
|
||||
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
|
||||
computeWTL();
|
||||
maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
||||
fitted = true;
|
||||
}
|
||||
map<string, float> assignRanks(vector<pair<string, double>>& ranksOrder)
|
||||
{
|
||||
// sort the ranksOrder vector by value
|
||||
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, double>& a, const pair<string, double>& b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
//Assign ranks to values and if they are the same they share the same averaged rank
|
||||
map<string, float> ranks;
|
||||
for (int i = 0; i < ranksOrder.size(); i++) {
|
||||
ranks[ranksOrder[i].first] = i + 1.0;
|
||||
}
|
||||
int i = 0;
|
||||
while (i < static_cast<int>(ranksOrder.size())) {
|
||||
int j = i + 1;
|
||||
int sumRanks = ranks[ranksOrder[i].first];
|
||||
while (j < static_cast<int>(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) {
|
||||
sumRanks += ranks[ranksOrder[j++].first];
|
||||
}
|
||||
if (j > i + 1) {
|
||||
float averageRank = (float)sumRanks / (j - i);
|
||||
for (int k = i; k < j; k++) {
|
||||
ranks[ranksOrder[k].first] = averageRank;
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
return ranks;
|
||||
}
|
||||
void Statistics::computeRanks()
|
||||
{
|
||||
map<string, float> ranksLine;
|
||||
for (const auto& dataset : datasets) {
|
||||
vector<pair<string, double>> ranksOrder;
|
||||
for (const auto& model : models) {
|
||||
double value = data[model].at(dataset).at(0).get<double>();
|
||||
ranksOrder.push_back({ model, value });
|
||||
}
|
||||
// Assign the ranks
|
||||
ranksLine = assignRanks(ranksOrder);
|
||||
// Store the ranks of the dataset
|
||||
ranksModels[dataset] = ranksLine;
|
||||
if (ranks.size() == 0) {
|
||||
ranks = ranksLine;
|
||||
} else {
|
||||
for (const auto& rank : ranksLine) {
|
||||
ranks[rank.first] += rank.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Average the ranks
|
||||
for (const auto& rank : ranks) {
|
||||
ranks[rank.first] /= nDatasets;
|
||||
}
|
||||
}
|
||||
void Statistics::computeWTL()
|
||||
{
|
||||
// Compute the WTL matrix
|
||||
for (int i = 0; i < nModels; ++i) {
|
||||
wtl[i] = { 0, 0, 0 };
|
||||
}
|
||||
json origin = data.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
auto controlModel = models.at(controlIdx);
|
||||
double controlValue = data[controlModel].at(item.key()).at(0).get<double>();
|
||||
for (int i = 0; i < nModels; ++i) {
|
||||
if (i == controlIdx) {
|
||||
continue;
|
||||
}
|
||||
double value = data[models[i]].at(item.key()).at(0).get<double>();
|
||||
if (value < controlValue) {
|
||||
wtl[i].win++;
|
||||
} else if (value == controlValue) {
|
||||
wtl[i].tie++;
|
||||
} else {
|
||||
wtl[i].loss++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Statistics::postHocHolmTest(bool friedmanResult)
|
||||
{
|
||||
if (!fitted) {
|
||||
fit();
|
||||
}
|
||||
stringstream oss;
|
||||
// Reference https://link.springer.com/article/10.1007/s44196-022-00083-8
|
||||
// Post-hoc Holm test
|
||||
// Calculate the p-value for the models paired with the control model
|
||||
map<int, double> stats; // p-value of each model paired with the control model
|
||||
boost::math::normal dist(0.0, 1.0);
|
||||
double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets));
|
||||
for (int i = 0; i < nModels; i++) {
|
||||
if (i == controlIdx) {
|
||||
stats[i] = 0.0;
|
||||
continue;
|
||||
}
|
||||
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
|
||||
double p_value = (long double)2 * (1 - cdf(dist, z));
|
||||
stats[i] = p_value;
|
||||
}
|
||||
// Sort the models by p-value
|
||||
vector<pair<int, double>> statsOrder;
|
||||
for (const auto& stat : stats) {
|
||||
statsOrder.push_back({ stat.first, stat.second });
|
||||
}
|
||||
sort(statsOrder.begin(), statsOrder.end(), [](const pair<int, double>& a, const pair<int, double>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
|
||||
// Holm adjustment
|
||||
for (int i = 0; i < statsOrder.size(); ++i) {
|
||||
auto item = statsOrder.at(i);
|
||||
double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second;
|
||||
double p_value = min((double)1.0, item.second * (nModels - i));
|
||||
p_value = max(before, p_value);
|
||||
statsOrder[i] = { item.first, p_value };
|
||||
}
|
||||
holmResult.model = models.at(controlIdx);
|
||||
auto color = friedmanResult ? Colors::CYAN() : Colors::YELLOW();
|
||||
oss << color;
|
||||
oss << " *************************************************************************************************************" << endl;
|
||||
oss << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << endl;
|
||||
oss << " Control model: " << models.at(controlIdx) << endl;
|
||||
oss << " " << left << setw(maxModelName) << string("Model") << " p-value rank win tie loss Status" << endl;
|
||||
oss << " " << string(maxModelName, '=') << " ============ ========= === === ==== =============" << endl;
|
||||
// sort ranks from lowest to highest
|
||||
vector<pair<string, float>> ranksOrder;
|
||||
for (const auto& rank : ranks) {
|
||||
ranksOrder.push_back({ rank.first, rank.second });
|
||||
}
|
||||
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, float>& a, const pair<string, float>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
// Show the control model info.
|
||||
oss << " " << Colors::BLUE() << left << setw(maxModelName) << ranksOrder.at(0).first << " ";
|
||||
oss << setw(12) << " " << setprecision(7) << fixed << " " << ranksOrder.at(0).second << endl;
|
||||
for (const auto& item : ranksOrder) {
|
||||
auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first));
|
||||
double pvalue = 0.0;
|
||||
for (const auto& stat : statsOrder) {
|
||||
if (stat.first == idx) {
|
||||
pvalue = stat.second;
|
||||
}
|
||||
}
|
||||
holmResult.holmLines.push_back({ item.first, pvalue, item.second, wtl.at(idx), pvalue < significance });
|
||||
if (item.first == models.at(controlIdx)) {
|
||||
continue;
|
||||
}
|
||||
auto colorStatus = pvalue > significance ? Colors::GREEN() : Colors::MAGENTA();
|
||||
auto status = pvalue > significance ? Symbols::check_mark : Symbols::cross;
|
||||
auto textStatus = pvalue > significance ? " accepted H0" : " rejected H0";
|
||||
oss << " " << colorStatus << left << setw(maxModelName) << item.first << " ";
|
||||
oss << setprecision(6) << scientific << pvalue << setprecision(7) << fixed << " " << item.second;
|
||||
oss << " " << right << setw(3) << wtl.at(idx).win << " " << setw(3) << wtl.at(idx).tie << " " << setw(4) << wtl.at(idx).loss;
|
||||
oss << " " << status << textStatus << endl;
|
||||
}
|
||||
oss << color << " *************************************************************************************************************" << endl;
|
||||
oss << Colors::RESET();
|
||||
if (output) {
|
||||
cout << oss.str();
|
||||
}
|
||||
}
|
||||
bool Statistics::friedmanTest()
|
||||
{
|
||||
if (!fitted) {
|
||||
fit();
|
||||
}
|
||||
stringstream oss;
|
||||
// Friedman test
|
||||
// Calculate the Friedman statistic
|
||||
oss << Colors::BLUE() << endl;
|
||||
oss << "***************************************************************************************************************" << endl;
|
||||
oss << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << endl;
|
||||
double degreesOfFreedom = nModels - 1.0;
|
||||
double sumSquared = 0;
|
||||
for (const auto& rank : ranks) {
|
||||
sumSquared += pow(rank.second, 2);
|
||||
}
|
||||
// Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8
|
||||
double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4);
|
||||
// Calculate the critical value
|
||||
boost::math::chi_squared chiSquared(degreesOfFreedom);
|
||||
long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ);
|
||||
double criticalValue = quantile(chiSquared, 1 - significance);
|
||||
oss << "Friedman statistic: " << friedmanQ << endl;
|
||||
oss << "Critical χ2 Value for df=" << fixed << (int)degreesOfFreedom
|
||||
<< " and alpha=" << setprecision(2) << fixed << significance << ": " << setprecision(7) << scientific << criticalValue << std::endl;
|
||||
oss << "p-value: " << scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << setprecision(2) << fixed << significance << endl;
|
||||
bool result;
|
||||
if (p_value < significance) {
|
||||
oss << Colors::GREEN() << "The null hypothesis H0 is rejected." << endl;
|
||||
result = true;
|
||||
} else {
|
||||
oss << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << endl;
|
||||
result = false;
|
||||
}
|
||||
oss << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << endl;
|
||||
if (output) {
|
||||
cout << oss.str();
|
||||
}
|
||||
friedmanResult = { friedmanQ, criticalValue, p_value, result };
|
||||
return result;
|
||||
}
|
||||
FriedmanResult& Statistics::getFriedmanResult()
|
||||
{
|
||||
return friedmanResult;
|
||||
}
|
||||
HolmResult& Statistics::getHolmResult()
|
||||
{
|
||||
return holmResult;
|
||||
}
|
||||
map<string, map<string, float>>& Statistics::getRanks()
|
||||
{
|
||||
return ranksModels;
|
||||
}
|
||||
} // namespace platform
|
64
src/Platform/Statistics.h
Normal file
64
src/Platform/Statistics.h
Normal file
@@ -0,0 +1,64 @@
|
||||
#ifndef STATISTICS_H
|
||||
#define STATISTICS_H
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
struct WTL {
|
||||
int win;
|
||||
int tie;
|
||||
int loss;
|
||||
};
|
||||
struct FriedmanResult {
|
||||
double statistic;
|
||||
double criticalValue;
|
||||
long double pvalue;
|
||||
bool reject;
|
||||
};
|
||||
struct HolmLine {
|
||||
string model;
|
||||
long double pvalue;
|
||||
double rank;
|
||||
WTL wtl;
|
||||
bool reject;
|
||||
};
|
||||
struct HolmResult {
|
||||
string model;
|
||||
vector<HolmLine> holmLines;
|
||||
};
|
||||
class Statistics {
|
||||
public:
|
||||
Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance = 0.05, bool output = true);
|
||||
bool friedmanTest();
|
||||
void postHocHolmTest(bool friedmanResult);
|
||||
FriedmanResult& getFriedmanResult();
|
||||
HolmResult& getHolmResult();
|
||||
map<string, map<string, float>>& getRanks();
|
||||
private:
|
||||
void fit();
|
||||
void computeRanks();
|
||||
void computeWTL();
|
||||
const vector<string>& models;
|
||||
const vector<string>& datasets;
|
||||
const json& data;
|
||||
double significance;
|
||||
bool output;
|
||||
bool fitted = false;
|
||||
int nModels = 0;
|
||||
int nDatasets = 0;
|
||||
int controlIdx = 0;
|
||||
map<int, WTL> wtl;
|
||||
map<string, float> ranks;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
FriedmanResult friedmanResult;
|
||||
HolmResult holmResult;
|
||||
map<string, map<string, float>> ranksModels;
|
||||
};
|
||||
}
|
||||
#endif // !STATISTICS_H
|
18
src/Platform/Symbols.h
Normal file
18
src/Platform/Symbols.h
Normal file
@@ -0,0 +1,18 @@
|
||||
#ifndef SYMBOLS_H
|
||||
#define SYMBOLS_H
|
||||
#include <string>
|
||||
using namespace std;
|
||||
namespace platform {
|
||||
class Symbols {
|
||||
public:
|
||||
inline static const string check_mark{ "\u2714" };
|
||||
inline static const string exclamation{ "\u2757" };
|
||||
inline static const string black_star{ "\u2605" };
|
||||
inline static const string cross{ "\u2717" };
|
||||
inline static const string upward_arrow{ "\u27B6" };
|
||||
inline static const string down_arrow{ "\u27B4" };
|
||||
inline static const string equal_best{ check_mark };
|
||||
inline static const string better_best{ black_star };
|
||||
};
|
||||
}
|
||||
#endif // !SYMBOLS_H
|
19
src/Platform/Utils.h
Normal file
19
src/Platform/Utils.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#ifndef UTILS_H
|
||||
#define UTILS_H
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
namespace platform {
|
||||
//static vector<string> split(const string& text, char delimiter);
|
||||
static std::vector<std::string> split(const std::string& text, char delimiter)
|
||||
{
|
||||
std::vector<std::string> result;
|
||||
std::stringstream ss(text);
|
||||
std::string token;
|
||||
while (std::getline(ss, token, delimiter)) {
|
||||
result.push_back(token);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif
|
95
src/Platform/best.cc
Normal file
95
src/Platform/best.cc
Normal file
@@ -0,0 +1,95 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "Paths.h"
|
||||
#include "BestResults.h"
|
||||
#include "Colors.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("best");
|
||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
||||
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
||||
program.add_argument("--report").help("report of best score results file").default_value(false).implicit_value(true);
|
||||
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
|
||||
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
|
||||
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const string& value) {
|
||||
try {
|
||||
auto k = stod(value);
|
||||
if (k < 0.01 || k > 0.15) {
|
||||
throw runtime_error("Significance level hast to be a number in [0.01, 0.15]");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an decimal number");
|
||||
}});
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto build = program.get<bool>("build");
|
||||
auto report = program.get<bool>("report");
|
||||
auto friedman = program.get<bool>("friedman");
|
||||
auto excel = program.get<bool>("excel");
|
||||
auto level = program.get<double>("level");
|
||||
if (model == "" || score == "") {
|
||||
throw runtime_error("Model and score name must be supplied");
|
||||
}
|
||||
if (friedman && model != "any") {
|
||||
cerr << "Friedman test can only be used with all models" << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
if (excel && model != "any") {
|
||||
cerr << "Excel ourput can only be used with all models" << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
if (!report && !build) {
|
||||
cerr << "Either build, report or both, have to be selected to do anything!" << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto build = program.get<bool>("build");
|
||||
auto report = program.get<bool>("report");
|
||||
auto friedman = program.get<bool>("friedman");
|
||||
auto excel = program.get<bool>("excel");
|
||||
auto level = program.get<double>("level");
|
||||
auto results = platform::BestResults(platform::Paths::results(), score, model, friedman, level);
|
||||
if (build) {
|
||||
if (model == "any") {
|
||||
results.buildAll();
|
||||
} else {
|
||||
string fileName = results.build();
|
||||
cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << endl;
|
||||
}
|
||||
}
|
||||
if (report) {
|
||||
if (model == "any") {
|
||||
results.reportAll(excel);
|
||||
} else {
|
||||
results.reportSingle();
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -27,7 +27,7 @@ void outputBalance(const string& balance)
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto data = platform::Datasets(platform::Paths().datasets(), false);
|
||||
auto data = platform::Datasets(false, platform::Paths::datasets());
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
|
@@ -1,7 +1,6 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "DotEnv.h"
|
||||
@@ -13,15 +12,12 @@
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
argparse::ArgumentParser manageArguments()
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ platform::Paths::datasets() });
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
@@ -52,46 +48,40 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
string file_name, model_name, title;
|
||||
json hyperparameters_json;
|
||||
bool discretize_dataset, stratified, saveResults;
|
||||
vector<int> seeds;
|
||||
vector<string> filesToTest;
|
||||
int n_folds;
|
||||
auto program = manageArguments();
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
auto discretize_dataset = program.get<bool>("discretize");
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto complete_file_name = path + file_name + ".arff";
|
||||
auto title = program.get<string>("title");
|
||||
file_name = program.get<string>("dataset");
|
||||
model_name = program.get<string>("model");
|
||||
discretize_dataset = program.get<bool>("discretize");
|
||||
stratified = program.get<bool>("stratified");
|
||||
n_folds = program.get<int>("folds");
|
||||
seeds = program.get<vector<int>>("seeds");
|
||||
auto hyperparameters = program.get<string>("hyperparameters");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
hyperparameters_json = json::parse(hyperparameters);
|
||||
title = program.get<string>("title");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
}
|
||||
saveResults = program.get<bool>("save");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
auto discretize_dataset = program.get<bool>("discretize");
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto hyperparameters =program.get<string>("hyperparameters");
|
||||
vector<string> filesToTest;
|
||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
||||
auto title = program.get<string>("title");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
auto datasets = platform::Datasets(discretize_dataset, platform::Paths::datasets());
|
||||
if (file_name != "") {
|
||||
if (!datasets.isDataset(file_name)) {
|
||||
cerr << "Dataset " << file_name << " not found" << endl;
|
||||
@@ -102,7 +92,7 @@ int main(int argc, char** argv)
|
||||
}
|
||||
filesToTest.push_back(file_name);
|
||||
} else {
|
||||
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
|
||||
filesToTest = datasets.getNames();
|
||||
saveResults = true;
|
||||
}
|
||||
/*
|
||||
@@ -113,13 +103,13 @@ int main(int argc, char** argv)
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
experiment.setHyperparameters(json::parse(hyperparameters));
|
||||
experiment.setHyperparameters(hyperparameters_json);
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
experiment.go(filesToTest, path);
|
||||
experiment.go(filesToTest);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults) {
|
||||
experiment.save(platform::Paths::results());
|
||||
|
@@ -1,6 +1,5 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
#include "Results.h"
|
||||
|
||||
@@ -12,6 +11,9 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
program.add_argument("--complete").help("Show only results with all datasets").default_value(false).implicit_value(true);
|
||||
program.add_argument("--partial").help("Show only partial results").default_value(false).implicit_value(true);
|
||||
program.add_argument("--compare").help("Compare with best results").default_value(false).implicit_value(true);
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
@@ -20,6 +22,9 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
}
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto complete = program.get<bool>("complete");
|
||||
auto partial = program.get<bool>("partial");
|
||||
auto compare = program.get<bool>("compare");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
@@ -35,7 +40,12 @@ int main(int argc, char** argv)
|
||||
auto number = program.get<int>("number");
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score);
|
||||
auto complete = program.get<bool>("complete");
|
||||
auto partial = program.get<bool>("partial");
|
||||
auto compare = program.get<bool>("compare");
|
||||
if (complete)
|
||||
partial = false;
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score, complete, partial, compare);
|
||||
results.manage();
|
||||
return 0;
|
||||
}
|
||||
|
@@ -1,21 +0,0 @@
|
||||
#ifndef PLATFORM_UTILS_H
|
||||
#define PLATFORM_UTILS_H
|
||||
#include <torch/torch.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include "ArffFiles.h"
|
||||
#include "CPPFImdlp.h"
|
||||
using namespace std;
|
||||
const string PATH = "../../data/";
|
||||
|
||||
bool file_exists(const std::string& name);
|
||||
vector<string> split(const string& text, char delimiter);
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, const string& className);
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
|
||||
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset);
|
||||
map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes);
|
||||
#endif //PLATFORM_UTILS_H
|
248
src/Platform/testx.cpp
Normal file
248
src/Platform/testx.cpp
Normal file
@@ -0,0 +1,248 @@
|
||||
#include "Folding.h"
|
||||
#include <torch/torch.h>
|
||||
#include "nlohmann/json.hpp"
|
||||
#include "map"
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include "Datasets.h"
|
||||
#include "Network.h"
|
||||
#include "ArffFiles.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "CFS.h"
|
||||
#include "IWSS.h"
|
||||
#include "FCBF.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace platform;
|
||||
using namespace torch;
|
||||
|
||||
string counts(vector<int> y, vector<int> indices)
|
||||
{
|
||||
auto result = map<int, int>();
|
||||
stringstream oss;
|
||||
for (auto i = 0; i < indices.size(); ++i) {
|
||||
result[y[indices[i]]]++;
|
||||
}
|
||||
string final_result = "";
|
||||
for (auto i = 0; i < result.size(); ++i)
|
||||
oss << i << " -> " << setprecision(2) << fixed
|
||||
<< (double)result[i] * 100 / indices.size() << "% (" << result[i] << ") //";
|
||||
oss << endl;
|
||||
return oss.str();
|
||||
}
|
||||
class Paths {
|
||||
public:
|
||||
static string datasets()
|
||||
{
|
||||
return "datasets/";
|
||||
}
|
||||
};
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
|
||||
bool file_exists(const string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last, bool discretize_dataset)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff", class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
Tensor Xd;
|
||||
auto states = map<string, vector<int>>();
|
||||
if (discretize_dataset) {
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||
}
|
||||
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
} else {
|
||||
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(X[i]));
|
||||
}
|
||||
}
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
}
|
||||
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
|
||||
// Discretize Dataset
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
tie(Xd, maxes) = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
return { Xd, y, features, className, states };
|
||||
}
|
||||
class RawDatasets {
|
||||
public:
|
||||
RawDatasets(const string& file_name, bool discretize)
|
||||
{
|
||||
// Xt can be either discretized or not
|
||||
tie(Xt, yt, featurest, classNamet, statest) = loadDataset(file_name, true, discretize);
|
||||
// Xv is always discretized
|
||||
tie(Xv, yv, featuresv, classNamev, statesv) = loadFile(file_name);
|
||||
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ Xt, yresized }, 0);
|
||||
nSamples = dataset.size(1);
|
||||
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
|
||||
weightsv = vector<double>(nSamples, 1.0 / nSamples);
|
||||
classNumStates = discretize ? statest.at(classNamet).size() : 0;
|
||||
}
|
||||
torch::Tensor Xt, yt, dataset, weights;
|
||||
vector<vector<int>> Xv;
|
||||
vector<double> weightsv;
|
||||
vector<int> yv;
|
||||
vector<string> featurest, featuresv;
|
||||
map<string, vector<int>> statest, statesv;
|
||||
string classNamet, classNamev;
|
||||
int nSamples, classNumStates;
|
||||
double epsilon = 1e-5;
|
||||
};
|
||||
int main()
|
||||
{
|
||||
// map<string, string> balance = {
|
||||
// {"iris", "33,33% (50) / 33,33% (50) / 33,33% (50)"},
|
||||
// {"diabetes", "34,90% (268) / 65,10% (500)"},
|
||||
// {"ecoli", "42,56% (143) / 22,92% (77) / 0,60% (2) / 0,60% (2) / 10,42% (35) / 5,95% (20) / 1,49% (5) / 15,48% (52)"},
|
||||
// {"glass", "32,71% (70) / 7,94% (17) / 4,21% (9) / 35,51% (76) / 13,55% (29) / 6,07% (13)"}
|
||||
// };
|
||||
// for (const auto& file_name : { "iris", "glass", "ecoli", "diabetes" }) {
|
||||
// auto dt = Datasets(true, "Arff");
|
||||
// auto [X, y] = dt.getVectors(file_name);
|
||||
// //auto fold = KFold(5, 150);
|
||||
// auto fold = StratifiedKFold(5, y, -1);
|
||||
// cout << "***********************************************************************************************" << endl;
|
||||
// cout << "Dataset: " << file_name << endl;
|
||||
// cout << "Nº Samples: " << dt.getNSamples(file_name) << endl;
|
||||
// cout << "Class states: " << dt.getNClasses(file_name) << endl;
|
||||
// cout << "Balance: " << balance.at(file_name) << endl;
|
||||
// for (int i = 0; i < 5; ++i) {
|
||||
// cout << "Fold: " << i << endl;
|
||||
// auto [train, test] = fold.getFold(i);
|
||||
// cout << "Train: ";
|
||||
// cout << "(" << train.size() << "): ";
|
||||
// // for (auto j = 0; j < static_cast<int>(train.size()); j++)
|
||||
// // cout << train[j] << ", ";
|
||||
// cout << endl;
|
||||
// cout << "Train Statistics : " << counts(y, train);
|
||||
// cout << "-------------------------------------------------------------------------------" << endl;
|
||||
// cout << "Test: ";
|
||||
// cout << "(" << test.size() << "): ";
|
||||
// // for (auto j = 0; j < static_cast<int>(test.size()); j++)
|
||||
// // cout << test[j] << ", ";
|
||||
// cout << endl;
|
||||
// cout << "Test Statistics: " << counts(y, test);
|
||||
// cout << "==============================================================================" << endl;
|
||||
// }
|
||||
// cout << "***********************************************************************************************" << endl;
|
||||
// }
|
||||
// const string file_name = "iris";
|
||||
// auto net = bayesnet::Network();
|
||||
// auto dt = Datasets(true, "Arff");
|
||||
// auto raw = RawDatasets("iris", true);
|
||||
// auto [X, y] = dt.getVectors(file_name);
|
||||
// cout << "Dataset dims " << raw.dataset.sizes() << endl;
|
||||
// cout << "weights dims " << raw.weights.sizes() << endl;
|
||||
// cout << "States dims " << raw.statest.size() << endl;
|
||||
// cout << "features: ";
|
||||
// for (const auto& feature : raw.featurest) {
|
||||
// cout << feature << ", ";
|
||||
// net.addNode(feature);
|
||||
// }
|
||||
// net.addNode(raw.classNamet);
|
||||
// cout << endl;
|
||||
// net.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto dt = Datasets(true, "Arff");
|
||||
nlohmann::json output;
|
||||
for (const auto& name : dt.getNames()) {
|
||||
// for (const auto& name : { "iris" }) {
|
||||
auto [X, y] = dt.getTensors(name);
|
||||
auto features = dt.getFeatures(name);
|
||||
auto states = dt.getStates(name);
|
||||
auto className = dt.getClassName(name);
|
||||
int maxFeatures = 0;
|
||||
auto classNumStates = states.at(className).size();
|
||||
torch::Tensor weights = torch::full({ X.size(1) }, 1.0 / X.size(1), torch::kDouble);
|
||||
auto dataset = X;
|
||||
auto yresized = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ dataset, yresized }, 0);
|
||||
auto cfs = bayesnet::CFS(dataset, features, className, maxFeatures, classNumStates, weights);
|
||||
auto fcbf = bayesnet::FCBF(dataset, features, className, maxFeatures, classNumStates, weights, 1e-7);
|
||||
auto iwss = bayesnet::IWSS(dataset, features, className, maxFeatures, classNumStates, weights, 0.5);
|
||||
cout << "Dataset: " << setw(20) << name << flush;
|
||||
cfs.fit();
|
||||
cout << " CFS: " << setw(4) << cfs.getFeatures().size() << flush;
|
||||
fcbf.fit();
|
||||
cout << " FCBF: " << setw(4) << fcbf.getFeatures().size() << flush;
|
||||
iwss.fit();
|
||||
cout << " IWSS: " << setw(4) << iwss.getFeatures().size() << flush;
|
||||
cout << endl;
|
||||
output[name]["CFS"] = cfs.getFeatures();
|
||||
output[name]["FCBF"] = fcbf.getFeatures();
|
||||
output[name]["IWSS"] = iwss.getFeatures();
|
||||
}
|
||||
ofstream file("features_cpp.json");
|
||||
file << output;
|
||||
file.close();
|
||||
|
||||
}
|
||||
|
@@ -1,88 +0,0 @@
|
||||
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "TAN.h"
|
||||
#include "SPODE.h"
|
||||
#include "AODE.h"
|
||||
#include "platformUtils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
map <pair<string, string>, float> scores = {
|
||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}
|
||||
};
|
||||
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto [Xd, y, features, className, states] = loadFile(file_name);
|
||||
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
//scores[{file_name, "TAN"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test KDB classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
//scores[{file_name, "KDB"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODE(1);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
// scores[{file_name, "SPODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(1e-6));
|
||||
}
|
||||
SECTION("Test AODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODE();
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
auto score = clf.score(Xd, y);
|
||||
// scores[{file_name, "AODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(1e-6));
|
||||
}
|
||||
// for (auto scores : scores) {
|
||||
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// }
|
||||
}
|
||||
TEST_CASE("Models features")
|
||||
{
|
||||
auto graph = vector<string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
||||
"class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
|
||||
"class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n",
|
||||
"petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n",
|
||||
"sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n"
|
||||
}
|
||||
);
|
||||
|
||||
auto clf = bayesnet::TAN();
|
||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.show() == vector<string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
}
|
||||
TEST_CASE("Get num features & num edges")
|
||||
{
|
||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(Xd, y, features, className, states);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
@@ -1,33 +0,0 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "platformUtils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Network")
|
||||
{
|
||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||
|
||||
SECTION("Test get features")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
||||
net.addNode("C");
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
||||
}
|
||||
SECTION("Test get edges")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
net.addEdge("A", "B");
|
||||
net.addEdge("B", "C");
|
||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
|
||||
net.addEdge("A", "C");
|
||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
|
||||
}
|
||||
}
|
@@ -1,11 +1,18 @@
|
||||
if(ENABLE_TESTING)
|
||||
set(TEST_MAIN "unit_tests")
|
||||
set(TEST_BAYESNET "unit_tests_bayesnet")
|
||||
set(TEST_PLATFORM "unit_tests_platform")
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
set(TEST_SOURCES BayesModels.cc BayesNetwork.cc ${BayesNet_SOURCE_DIR}/src/Platform/platformUtils.cc ${BayesNet_SOURCES})
|
||||
add_executable(${TEST_MAIN} ${TEST_SOURCES})
|
||||
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN})
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
set(TEST_SOURCES_BAYESNET TestBayesModels.cc TestBayesNetwork.cc TestBayesMetrics.cc TestUtils.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCES})
|
||||
set(TEST_SOURCES_PLATFORM TestFolding.cc TestUtils.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc)
|
||||
add_executable(${TEST_BAYESNET} ${TEST_SOURCES_BAYESNET})
|
||||
add_executable(${TEST_PLATFORM} ${TEST_SOURCES_PLATFORM})
|
||||
target_link_libraries(${TEST_BAYESNET} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
target_link_libraries(${TEST_PLATFORM} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
add_test(NAME ${TEST_BAYESNET} COMMAND ${TEST_BAYESNET})
|
||||
add_test(NAME ${TEST_PLATFORM} COMMAND ${TEST_PLATFORM})
|
||||
endif(ENABLE_TESTING)
|
||||
|
63
tests/TestBayesMetrics.cc
Normal file
63
tests/TestBayesMetrics.cc
Normal file
@@ -0,0 +1,63 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "BayesMetrics.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
TEST_CASE("Metrics Test", "[BayesNet]")
|
||||
{
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
map<string, pair<int, vector<int>>> resultsKBest = {
|
||||
{"glass", {7, { 0, 1, 7, 6, 3, 5, 2 }}},
|
||||
{"iris", {3, { 0, 3, 2 }} },
|
||||
{"ecoli", {6, { 2, 4, 1, 0, 6, 5 }}},
|
||||
{"diabetes", {2, { 7, 1 }}}
|
||||
};
|
||||
map<string, double> resultsMI = {
|
||||
{"glass", 0.12805398},
|
||||
{"iris", 0.3158139948},
|
||||
{"ecoli", 0.0089431099},
|
||||
{"diabetes", 0.0345470614}
|
||||
};
|
||||
map<pair<string, int>, vector<pair<int, int>>> resultsMST = {
|
||||
{ {"glass", 0}, { {0, 6}, {0, 5}, {0, 3}, {5, 1}, {5, 8}, {5, 4}, {6, 2}, {6, 7} } },
|
||||
{ {"glass", 1}, { {1, 5}, {5, 0}, {5, 8}, {5, 4}, {0, 6}, {0, 3}, {6, 2}, {6, 7} } },
|
||||
{ {"iris", 0}, { {0, 1}, {0, 2}, {1, 3} } },
|
||||
{ {"iris", 1}, { {1, 0}, {1, 3}, {0, 2} } },
|
||||
{ {"ecoli", 0}, { {0, 1}, {0, 2}, {1, 5}, {1, 3}, {5, 6}, {5, 4} } },
|
||||
{ {"ecoli", 1}, { {1, 0}, {1, 5}, {1, 3}, {5, 6}, {5, 4}, {0, 2} } },
|
||||
{ {"diabetes", 0}, { {0, 7}, {0, 2}, {0, 6}, {2, 3}, {3, 4}, {3, 5}, {4, 1} } },
|
||||
{ {"diabetes", 1}, { {1, 4}, {4, 3}, {3, 2}, {3, 5}, {2, 0}, {0, 7}, {0, 6} } }
|
||||
};
|
||||
auto raw = RawDatasets(file_name, true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.featurest, raw.classNamet, raw.classNumStates);
|
||||
|
||||
SECTION("Test Constructor")
|
||||
{
|
||||
REQUIRE(metrics.getScoresKBest().size() == 0);
|
||||
}
|
||||
|
||||
SECTION("Test SelectKBestWeighted")
|
||||
{
|
||||
vector<int> kBest = metrics.SelectKBestWeighted(raw.weights, true, resultsKBest.at(file_name).first);
|
||||
REQUIRE(kBest.size() == resultsKBest.at(file_name).first);
|
||||
REQUIRE(kBest == resultsKBest.at(file_name).second);
|
||||
}
|
||||
|
||||
SECTION("Test Mutual Information")
|
||||
{
|
||||
auto result = metrics.mutualInformation(raw.dataset.index({ 1, "..." }), raw.dataset.index({ 2, "..." }), raw.weights);
|
||||
REQUIRE(result == Catch::Approx(resultsMI.at(file_name)).epsilon(raw.epsilon));
|
||||
}
|
||||
|
||||
SECTION("Test Maximum Spanning Tree")
|
||||
{
|
||||
auto weights_matrix = metrics.conditionalEdge(raw.weights);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
auto result = metrics.maximumSpanningTree(raw.featurest, weights_matrix, i);
|
||||
REQUIRE(result == resultsMST.at({ file_name, i }));
|
||||
}
|
||||
}
|
||||
}
|
141
tests/TestBayesModels.cc
Normal file
141
tests/TestBayesModels.cc
Normal file
@@ -0,0 +1,141 @@
|
||||
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "TAN.h"
|
||||
#include "SPODE.h"
|
||||
#include "AODE.h"
|
||||
#include "BoostAODE.h"
|
||||
#include "TANLd.h"
|
||||
#include "KDBLd.h"
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
map <pair<string, string>, float> scores = {
|
||||
// Diabetes
|
||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f},
|
||||
// Ecoli
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
{{"ecoli", "AODELd"}, 0.8869f}, {{"ecoli", "KDBLd"}, 0.875f}, {{"ecoli", "SPODELd"}, 0.84226f}, {{"ecoli", "TANLd"}, 0.86905f}, {{"ecoli", "BoostAODE"}, 0.89583f},
|
||||
// Glass
|
||||
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
{{"glass", "AODELd"}, 0.79439f}, {{"glass", "KDBLd"}, 0.85047f}, {{"glass", "SPODELd"}, 0.79439f}, {{"glass", "TANLd"}, 0.86449f}, {{"glass", "BoostAODE"}, 0.84579f},
|
||||
// Iris
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
||||
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
||||
};
|
||||
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto raw = RawDatasets(file_name, false);
|
||||
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
//scores[{file_name, "TAN"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test TANLd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TANLd();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
//scores[{file_name, "TANLd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TANLd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test KDB classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
//scores[{file_name, "KDB"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test KDBLd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDBLd(2);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
//scores[{file_name, "KDBLd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDBLd"
|
||||
}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODE(1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "SPODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test SPODELd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODELd(1);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
// scores[{file_name, "SPODELd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODELd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test AODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "AODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test AODELd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODELd();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
// scores[{file_name, "AODELd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODELd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test BoostAODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "BoostAODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "BoostAODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
// for (auto scores : scores) {
|
||||
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// }
|
||||
}
|
||||
TEST_CASE("Models features", "[BayesNet]")
|
||||
{
|
||||
auto graph = vector<string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
||||
"class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
|
||||
"class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n",
|
||||
"petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n",
|
||||
"sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n"
|
||||
}
|
||||
);
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 6);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.show() == vector<string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
}
|
||||
TEST_CASE("Get num features & num edges", "[BayesNet]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 6);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
263
tests/TestBayesNetwork.cc
Normal file
263
tests/TestBayesNetwork.cc
Normal file
@@ -0,0 +1,263 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <string>
|
||||
#include "TestUtils.h"
|
||||
#include "Network.h"
|
||||
|
||||
void buildModel(bayesnet::Network& net, const vector<string>& features, const string& className)
|
||||
{
|
||||
vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
|
||||
for (const auto& feature : features) {
|
||||
net.addNode(feature);
|
||||
}
|
||||
net.addNode(className);
|
||||
for (const auto& edge : network) {
|
||||
net.addEdge(features.at(edge.first), features.at(edge.second));
|
||||
}
|
||||
for (const auto& feature : features) {
|
||||
net.addEdge(className, feature);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Test Bayesian Network", "[BayesNet]")
|
||||
{
|
||||
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto net = bayesnet::Network();
|
||||
|
||||
SECTION("Test get features")
|
||||
{
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
||||
net.addNode("C");
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
||||
}
|
||||
SECTION("Test get edges")
|
||||
{
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
net.addEdge("A", "B");
|
||||
net.addEdge("B", "C");
|
||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
|
||||
REQUIRE(net.getNumEdges() == 2);
|
||||
net.addEdge("A", "C");
|
||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
|
||||
REQUIRE(net.getNumEdges() == 3);
|
||||
}
|
||||
SECTION("Test getNodes")
|
||||
{
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
auto& nodes = net.getNodes();
|
||||
REQUIRE(nodes.count("A") == 1);
|
||||
REQUIRE(nodes.count("B") == 1);
|
||||
}
|
||||
|
||||
SECTION("Test fit Network")
|
||||
{
|
||||
auto net2 = bayesnet::Network();
|
||||
auto net3 = bayesnet::Network();
|
||||
net3.initialize();
|
||||
net2.initialize();
|
||||
net.initialize();
|
||||
buildModel(net, raw.featuresv, raw.classNamev);
|
||||
buildModel(net2, raw.featurest, raw.classNamet);
|
||||
buildModel(net3, raw.featurest, raw.classNamet);
|
||||
vector<pair<string, string>> edges = {
|
||||
{"class", "sepallength"}, {"class", "sepalwidth"}, {"class", "petallength"},
|
||||
{"class", "petalwidth" }, {"sepallength", "sepalwidth"}, {"sepallength", "petallength"},
|
||||
{"sepalwidth", "petalwidth"}
|
||||
};
|
||||
REQUIRE(net.getEdges() == edges);
|
||||
REQUIRE(net2.getEdges() == edges);
|
||||
REQUIRE(net3.getEdges() == edges);
|
||||
vector<string> features = { "sepallength", "sepalwidth", "petallength", "petalwidth", "class" };
|
||||
REQUIRE(net.getFeatures() == features);
|
||||
REQUIRE(net2.getFeatures() == features);
|
||||
REQUIRE(net3.getFeatures() == features);
|
||||
auto& nodes = net.getNodes();
|
||||
auto& nodes2 = net2.getNodes();
|
||||
auto& nodes3 = net3.getNodes();
|
||||
// Check Nodes parents & children
|
||||
for (const auto& feature : features) {
|
||||
// Parents
|
||||
vector<string> parents, parents2, parents3, children, children2, children3;
|
||||
auto nodeParents = nodes[feature]->getParents();
|
||||
auto nodeParents2 = nodes2[feature]->getParents();
|
||||
auto nodeParents3 = nodes3[feature]->getParents();
|
||||
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
||||
transform(nodeParents2.begin(), nodeParents2.end(), back_inserter(parents2), [](const auto& p) { return p->getName(); });
|
||||
transform(nodeParents3.begin(), nodeParents3.end(), back_inserter(parents3), [](const auto& p) { return p->getName(); });
|
||||
REQUIRE(parents == parents2);
|
||||
REQUIRE(parents == parents3);
|
||||
// Children
|
||||
auto nodeChildren = nodes[feature]->getChildren();
|
||||
auto nodeChildren2 = nodes2[feature]->getChildren();
|
||||
auto nodeChildren3 = nodes2[feature]->getChildren();
|
||||
transform(nodeChildren.begin(), nodeChildren.end(), back_inserter(children), [](const auto& p) { return p->getName(); });
|
||||
transform(nodeChildren2.begin(), nodeChildren2.end(), back_inserter(children2), [](const auto& p) { return p->getName(); });
|
||||
transform(nodeChildren3.begin(), nodeChildren3.end(), back_inserter(children3), [](const auto& p) { return p->getName(); });
|
||||
REQUIRE(children == children2);
|
||||
REQUIRE(children == children3);
|
||||
}
|
||||
// Fit networks
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
net2.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
||||
net3.fit(raw.Xt, raw.yt, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
||||
REQUIRE(net.getStates() == net2.getStates());
|
||||
REQUIRE(net.getStates() == net3.getStates());
|
||||
// Check Conditional Probabilities tables
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
auto feature = features.at(i);
|
||||
for (const auto& feature : features) {
|
||||
auto cpt = nodes[feature]->getCPT();
|
||||
auto cpt2 = nodes2[feature]->getCPT();
|
||||
auto cpt3 = nodes3[feature]->getCPT();
|
||||
REQUIRE(cpt.equal(cpt2));
|
||||
REQUIRE(cpt.equal(cpt3));
|
||||
}
|
||||
}
|
||||
}
|
||||
SECTION("Test show")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
net.addEdge("A", "B");
|
||||
net.addEdge("A", "C");
|
||||
auto str = net.show();
|
||||
REQUIRE(str.size() == 3);
|
||||
REQUIRE(str[0] == "A -> B, C, ");
|
||||
REQUIRE(str[1] == "B -> ");
|
||||
REQUIRE(str[2] == "C -> ");
|
||||
}
|
||||
SECTION("Test topological_sort")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
net.addEdge("A", "B");
|
||||
net.addEdge("A", "C");
|
||||
auto sorted = net.topological_sort();
|
||||
REQUIRE(sorted.size() == 3);
|
||||
REQUIRE(sorted[0] == "A");
|
||||
bool result = sorted[1] == "B" && sorted[2] == "C";
|
||||
REQUIRE(result);
|
||||
}
|
||||
SECTION("Test graph")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
net.addEdge("A", "B");
|
||||
net.addEdge("A", "C");
|
||||
auto str = net.graph("Test Graph");
|
||||
REQUIRE(str.size() == 7);
|
||||
REQUIRE(str[0] == "digraph BayesNet {\nlabel=<BayesNet Test Graph>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
|
||||
REQUIRE(str[1] == "A [shape=circle] \n");
|
||||
REQUIRE(str[2] == "A -> B");
|
||||
REQUIRE(str[3] == "A -> C");
|
||||
REQUIRE(str[4] == "B [shape=circle] \n");
|
||||
REQUIRE(str[5] == "C [shape=circle] \n");
|
||||
REQUIRE(str[6] == "}\n");
|
||||
}
|
||||
|
||||
|
||||
// SECTION("Test predict")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// vector<vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
|
||||
// vector<int> y_test = { 0, 1, 1, 0, 2 };
|
||||
// auto y_pred = net.predict(test);
|
||||
// REQUIRE(y_pred == y_test);
|
||||
// }
|
||||
|
||||
// SECTION("Test predict_proba")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// vector<vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
|
||||
// auto y_test = { 0, 1, 1, 0, 2 };
|
||||
// auto y_pred = net.predict(test);
|
||||
// REQUIRE(y_pred == y_test);
|
||||
// }
|
||||
}
|
||||
|
||||
// SECTION("Test score")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// net.fit(Xd, y, weights, features, className, states);
|
||||
// auto test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
|
||||
// auto score = net.score(X, y);
|
||||
// REQUIRE(score == Catch::Approx();
|
||||
// }
|
||||
|
||||
//
|
||||
//
|
||||
|
||||
// SECTION("Test graph")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// net.addNode("A");
|
||||
// net.addNode("B");
|
||||
// net.addNode("C");
|
||||
// net.addEdge("A", "B");
|
||||
// net.addEdge("A", "C");
|
||||
// auto str = net.graph("Test Graph");
|
||||
// REQUIRE(str.size() == 6);
|
||||
// REQUIRE(str[0] == "digraph \"Test Graph\" {");
|
||||
// REQUIRE(str[1] == " A -> B;");
|
||||
// REQUIRE(str[2] == " A -> C;");
|
||||
// REQUIRE(str[3] == " B [shape=ellipse];");
|
||||
// REQUIRE(str[4] == " C [shape=ellipse];");
|
||||
// REQUIRE(str[5] == "}");
|
||||
// }
|
||||
|
||||
// SECTION("Test initialize")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// net.addNode("A");
|
||||
// net.addNode("B");
|
||||
// net.addNode("C");
|
||||
// net.addEdge("A", "B");
|
||||
// net.addEdge("A", "C");
|
||||
// net.initialize();
|
||||
// REQUIRE(net.getNodes().size() == 0);
|
||||
// REQUIRE(net.getEdges().size() == 0);
|
||||
// REQUIRE(net.getFeatures().size() == 0);
|
||||
// REQUIRE(net.getClassNumStates() == 0);
|
||||
// REQUIRE(net.getClassName().empty());
|
||||
// REQUIRE(net.getStates() == 0);
|
||||
// REQUIRE(net.getSamples().numel() == 0);
|
||||
// }
|
||||
|
||||
// SECTION("Test dump_cpt")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// net.addNode("A");
|
||||
// net.addNode("B");
|
||||
// net.addNode("C");
|
||||
// net.addEdge("A", "B");
|
||||
// net.addEdge("A", "C");
|
||||
// net.setClassName("C");
|
||||
// net.setStates({ {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
|
||||
// net.fit({ {0, 0}, {0, 1}, {1, 0}, {1, 1} }, { 0, 1, 1, 2 }, {}, { "A", "B" }, "C", { {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
|
||||
// net.dump_cpt();
|
||||
// // TODO: Check that the file was created and contains the expected data
|
||||
// }
|
||||
|
||||
// SECTION("Test version")
|
||||
// {
|
||||
// auto net = bayesnet::Network();
|
||||
// REQUIRE(net.version() == "0.2.0");
|
||||
// }
|
||||
// }
|
||||
|
||||
// }
|
95
tests/TestFolding.cc
Normal file
95
tests/TestFolding.cc
Normal file
@@ -0,0 +1,95 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "TestUtils.h"
|
||||
#include "Folding.h"
|
||||
|
||||
TEST_CASE("KFold Test", "[Platform][KFold]")
|
||||
{
|
||||
// Initialize a KFold object with k=5 and a seed of 19.
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto raw = RawDatasets(file_name, true);
|
||||
int nFolds = 5;
|
||||
platform::KFold kfold(nFolds, raw.nSamples, 19);
|
||||
int number = raw.nSamples * (kfold.getNumberOfFolds() - 1) / kfold.getNumberOfFolds();
|
||||
|
||||
SECTION("Number of Folds")
|
||||
{
|
||||
REQUIRE(kfold.getNumberOfFolds() == nFolds);
|
||||
}
|
||||
SECTION("Fold Test")
|
||||
{
|
||||
// Test each fold's size and contents.
|
||||
for (int i = 0; i < nFolds; ++i) {
|
||||
auto [train_indices, test_indices] = kfold.getFold(i);
|
||||
bool result = train_indices.size() == number || train_indices.size() == number + 1;
|
||||
REQUIRE(result);
|
||||
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
map<int, int> counts(vector<int> y, vector<int> indices)
|
||||
{
|
||||
map<int, int> result;
|
||||
for (auto i = 0; i < indices.size(); ++i) {
|
||||
result[y[indices[i]]]++;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
TEST_CASE("StratifiedKFold Test", "[Platform][StratifiedKFold]")
|
||||
{
|
||||
// Initialize a StratifiedKFold object with k=3, using the y vector, and a seed of 17.
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
int nFolds = GENERATE(3, 5, 10);
|
||||
auto raw = RawDatasets(file_name, true);
|
||||
platform::StratifiedKFold stratified_kfoldt(nFolds, raw.yt, 17);
|
||||
platform::StratifiedKFold stratified_kfoldv(nFolds, raw.yv, 17);
|
||||
int number = raw.nSamples * (stratified_kfoldt.getNumberOfFolds() - 1) / stratified_kfoldt.getNumberOfFolds();
|
||||
|
||||
SECTION("Stratified Number of Folds")
|
||||
{
|
||||
REQUIRE(stratified_kfoldt.getNumberOfFolds() == nFolds);
|
||||
}
|
||||
SECTION("Stratified Fold Test")
|
||||
{
|
||||
// Test each fold's size and contents.
|
||||
auto counts = map<int, vector<int>>();
|
||||
// Initialize the counts per Fold
|
||||
for (int i = 0; i < nFolds; ++i) {
|
||||
counts[i] = vector<int>(raw.classNumStates, 0);
|
||||
}
|
||||
// Check fold and compute counts of each fold
|
||||
for (int fold = 0; fold < nFolds; ++fold) {
|
||||
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(fold);
|
||||
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(fold);
|
||||
REQUIRE(train_indicest == train_indicesv);
|
||||
REQUIRE(test_indicest == test_indicesv);
|
||||
// In the worst case scenario, the number of samples in the training set is number + raw.classNumStates
|
||||
// because in that fold can come one remainder sample from each class.
|
||||
REQUIRE(train_indicest.size() <= number + raw.classNumStates);
|
||||
// If the number of samples in any class is less than the number of folds, then the fold is faulty.
|
||||
// and the number of samples in the training set + test set will be less than nSamples
|
||||
if (!stratified_kfoldt.isFaulty()) {
|
||||
REQUIRE(train_indicest.size() + test_indicest.size() == raw.nSamples);
|
||||
} else {
|
||||
REQUIRE(train_indicest.size() + test_indicest.size() <= raw.nSamples);
|
||||
}
|
||||
auto train_t = torch::tensor(train_indicest);
|
||||
auto ytrain = raw.yt.index({ train_t });
|
||||
// Check that the class labels have been equally assign to each fold
|
||||
for (const auto& idx : train_indicest) {
|
||||
counts[fold][raw.yt[idx].item<int>()]++;
|
||||
}
|
||||
}
|
||||
// Test the fold counting of every class
|
||||
for (int fold = 0; fold < nFolds; ++fold) {
|
||||
for (int j = 1; j < nFolds - 1; ++j) {
|
||||
for (int k = 0; k < raw.classNumStates; ++k) {
|
||||
REQUIRE(abs(counts.at(fold).at(k) - counts.at(j).at(k)) <= 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,18 +1,14 @@
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
vector<string> split(const string& text, char delimiter)
|
||||
{
|
||||
vector<string> result;
|
||||
stringstream ss(text);
|
||||
string token;
|
||||
while (getline(ss, token, delimiter)) {
|
||||
result.push_back(token);
|
||||
class Paths {
|
||||
public:
|
||||
static string datasets()
|
||||
{
|
||||
return "../../data/";
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
@@ -50,10 +46,10 @@ bool file_exists(const string& name)
|
||||
}
|
||||
}
|
||||
|
||||
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset)
|
||||
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last, bool discretize_dataset)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(path + static_cast<string>(name) + ".arff", class_last);
|
||||
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff", class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
@@ -66,19 +62,19 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
||||
auto states = map<string, vector<int>>();
|
||||
if (discretize_dataset) {
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||
}
|
||||
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
} else {
|
||||
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
||||
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xd.index_put_({ "...", i }, torch::tensor(X[i]));
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(X[i]));
|
||||
}
|
||||
}
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
@@ -87,7 +83,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
|
||||
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
@@ -107,4 +103,4 @@ tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vect
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
return { Xd, y, features, className, states };
|
||||
}
|
||||
}
|
44
tests/TestUtils.h
Normal file
44
tests/TestUtils.h
Normal file
@@ -0,0 +1,44 @@
|
||||
#ifndef TEST_UTILS_H
|
||||
#define TEST_UTILS_H
|
||||
#include <torch/torch.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include "ArffFiles.h"
|
||||
#include "CPPFImdlp.h"
|
||||
using namespace std;
|
||||
|
||||
bool file_exists(const std::string& name);
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
|
||||
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last, bool discretize_dataset);
|
||||
|
||||
class RawDatasets {
|
||||
public:
|
||||
RawDatasets(const string& file_name, bool discretize)
|
||||
{
|
||||
// Xt can be either discretized or not
|
||||
tie(Xt, yt, featurest, classNamet, statest) = loadDataset(file_name, true, discretize);
|
||||
// Xv is always discretized
|
||||
tie(Xv, yv, featuresv, classNamev, statesv) = loadFile(file_name);
|
||||
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ Xt, yresized }, 0);
|
||||
nSamples = dataset.size(1);
|
||||
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
|
||||
weightsv = vector<double>(nSamples, 1.0 / nSamples);
|
||||
classNumStates = discretize ? statest.at(classNamet).size() : 0;
|
||||
}
|
||||
torch::Tensor Xt, yt, dataset, weights;
|
||||
vector<vector<int>> Xv;
|
||||
vector<double> weightsv;
|
||||
vector<int> yv;
|
||||
vector<string> featurest, featuresv;
|
||||
map<string, vector<int>> statest, statesv;
|
||||
string classNamet, classNamev;
|
||||
int nSamples, classNumStates;
|
||||
double epsilon = 1e-5;
|
||||
};
|
||||
|
||||
#endif //TEST_UTILS_H
|
Reference in New Issue
Block a user