253 lines
11 KiB
C++
253 lines
11 KiB
C++
#include <sstream>
|
|
#include "Statistics.h"
|
|
#include "Colors.h"
|
|
#include "Symbols.h"
|
|
#include <boost/math/distributions/chi_squared.hpp>
|
|
#include <boost/math/distributions/normal.hpp>
|
|
#include "CLocale.h"
|
|
|
|
|
|
namespace platform {
|
|
|
|
Statistics::Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance, bool output) :
|
|
models(models), datasets(datasets), data(data), significance(significance), output(output)
|
|
{
|
|
nModels = models.size();
|
|
nDatasets = datasets.size();
|
|
auto temp = ConfigLocale();
|
|
};
|
|
|
|
void Statistics::fit()
|
|
{
|
|
if (nModels < 3 || nDatasets < 3) {
|
|
cerr << "nModels: " << nModels << endl;
|
|
cerr << "nDatasets: " << nDatasets << endl;
|
|
throw runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
|
|
}
|
|
ranksModels.clear();
|
|
computeRanks();
|
|
// Set the control model as the one with the lowest average rank
|
|
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
|
|
computeWTL();
|
|
maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
|
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
|
|
fitted = true;
|
|
}
|
|
map<string, float> assignRanks(vector<pair<string, double>>& ranksOrder)
|
|
{
|
|
// sort the ranksOrder vector by value
|
|
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, double>& a, const pair<string, double>& b) {
|
|
return a.second > b.second;
|
|
});
|
|
//Assign ranks to values and if they are the same they share the same averaged rank
|
|
map<string, float> ranks;
|
|
for (int i = 0; i < ranksOrder.size(); i++) {
|
|
ranks[ranksOrder[i].first] = i + 1.0;
|
|
}
|
|
int i = 0;
|
|
while (i < static_cast<int>(ranksOrder.size())) {
|
|
int j = i + 1;
|
|
int sumRanks = ranks[ranksOrder[i].first];
|
|
while (j < static_cast<int>(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) {
|
|
sumRanks += ranks[ranksOrder[j++].first];
|
|
}
|
|
if (j > i + 1) {
|
|
float averageRank = (float)sumRanks / (j - i);
|
|
for (int k = i; k < j; k++) {
|
|
ranks[ranksOrder[k].first] = averageRank;
|
|
}
|
|
}
|
|
i = j;
|
|
}
|
|
return ranks;
|
|
}
|
|
void Statistics::computeRanks()
|
|
{
|
|
map<string, float> ranksLine;
|
|
for (const auto& dataset : datasets) {
|
|
vector<pair<string, double>> ranksOrder;
|
|
for (const auto& model : models) {
|
|
double value = data[model].at(dataset).at(0).get<double>();
|
|
ranksOrder.push_back({ model, value });
|
|
}
|
|
// Assign the ranks
|
|
ranksLine = assignRanks(ranksOrder);
|
|
// Store the ranks of the dataset
|
|
ranksModels[dataset] = ranksLine;
|
|
if (ranks.size() == 0) {
|
|
ranks = ranksLine;
|
|
} else {
|
|
for (const auto& rank : ranksLine) {
|
|
ranks[rank.first] += rank.second;
|
|
}
|
|
}
|
|
}
|
|
// Average the ranks
|
|
for (const auto& rank : ranks) {
|
|
ranks[rank.first] /= nDatasets;
|
|
}
|
|
}
|
|
void Statistics::computeWTL()
|
|
{
|
|
// Compute the WTL matrix
|
|
for (int i = 0; i < nModels; ++i) {
|
|
wtl[i] = { 0, 0, 0 };
|
|
}
|
|
json origin = data.begin().value();
|
|
for (auto const& item : origin.items()) {
|
|
auto controlModel = models.at(controlIdx);
|
|
double controlValue = data[controlModel].at(item.key()).at(0).get<double>();
|
|
for (int i = 0; i < nModels; ++i) {
|
|
if (i == controlIdx) {
|
|
continue;
|
|
}
|
|
double value = data[models[i]].at(item.key()).at(0).get<double>();
|
|
if (value < controlValue) {
|
|
wtl[i].win++;
|
|
} else if (value == controlValue) {
|
|
wtl[i].tie++;
|
|
} else {
|
|
wtl[i].loss++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Statistics::postHocHolmTest(bool friedmanResult)
|
|
{
|
|
if (!fitted) {
|
|
fit();
|
|
}
|
|
stringstream oss;
|
|
// Reference https://link.springer.com/article/10.1007/s44196-022-00083-8
|
|
// Post-hoc Holm test
|
|
// Calculate the p-value for the models paired with the control model
|
|
map<int, double> stats; // p-value of each model paired with the control model
|
|
boost::math::normal dist(0.0, 1.0);
|
|
double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets));
|
|
for (int i = 0; i < nModels; i++) {
|
|
if (i == controlIdx) {
|
|
stats[i] = 0.0;
|
|
continue;
|
|
}
|
|
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
|
|
double p_value = (long double)2 * (1 - cdf(dist, z));
|
|
stats[i] = p_value;
|
|
}
|
|
// Sort the models by p-value
|
|
vector<pair<int, double>> statsOrder;
|
|
for (const auto& stat : stats) {
|
|
statsOrder.push_back({ stat.first, stat.second });
|
|
}
|
|
sort(statsOrder.begin(), statsOrder.end(), [](const pair<int, double>& a, const pair<int, double>& b) {
|
|
return a.second < b.second;
|
|
});
|
|
|
|
// Holm adjustment
|
|
for (int i = 0; i < statsOrder.size(); ++i) {
|
|
auto item = statsOrder.at(i);
|
|
double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second;
|
|
double p_value = min((double)1.0, item.second * (nModels - i));
|
|
p_value = max(before, p_value);
|
|
statsOrder[i] = { item.first, p_value };
|
|
}
|
|
holmResult.model = models.at(controlIdx);
|
|
auto color = friedmanResult ? Colors::CYAN() : Colors::YELLOW();
|
|
oss << color;
|
|
oss << " *************************************************************************************************************" << endl;
|
|
oss << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << endl;
|
|
oss << " Control model: " << models.at(controlIdx) << endl;
|
|
oss << " " << left << setw(maxModelName) << string("Model") << " p-value rank win tie loss Status" << endl;
|
|
oss << " " << string(maxModelName, '=') << " ============ ========= === === ==== =============" << endl;
|
|
// sort ranks from lowest to highest
|
|
vector<pair<string, float>> ranksOrder;
|
|
for (const auto& rank : ranks) {
|
|
ranksOrder.push_back({ rank.first, rank.second });
|
|
}
|
|
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, float>& a, const pair<string, float>& b) {
|
|
return a.second < b.second;
|
|
});
|
|
// Show the control model info.
|
|
oss << " " << Colors::BLUE() << left << setw(maxModelName) << ranksOrder.at(0).first << " ";
|
|
oss << setw(12) << " " << setprecision(7) << fixed << " " << ranksOrder.at(0).second << endl;
|
|
for (const auto& item : ranksOrder) {
|
|
auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first));
|
|
double pvalue = 0.0;
|
|
for (const auto& stat : statsOrder) {
|
|
if (stat.first == idx) {
|
|
pvalue = stat.second;
|
|
}
|
|
}
|
|
holmResult.holmLines.push_back({ item.first, pvalue, item.second, wtl.at(idx), pvalue < significance });
|
|
if (item.first == models.at(controlIdx)) {
|
|
continue;
|
|
}
|
|
auto colorStatus = pvalue > significance ? Colors::GREEN() : Colors::MAGENTA();
|
|
auto status = pvalue > significance ? Symbols::check_mark : Symbols::cross;
|
|
auto textStatus = pvalue > significance ? " accepted H0" : " rejected H0";
|
|
oss << " " << colorStatus << left << setw(maxModelName) << item.first << " ";
|
|
oss << setprecision(6) << scientific << pvalue << setprecision(7) << fixed << " " << item.second;
|
|
oss << " " << right << setw(3) << wtl.at(idx).win << " " << setw(3) << wtl.at(idx).tie << " " << setw(4) << wtl.at(idx).loss;
|
|
oss << " " << status << textStatus << endl;
|
|
}
|
|
oss << color << " *************************************************************************************************************" << endl;
|
|
oss << Colors::RESET();
|
|
if (output) {
|
|
cout << oss.str();
|
|
}
|
|
}
|
|
bool Statistics::friedmanTest()
|
|
{
|
|
if (!fitted) {
|
|
fit();
|
|
}
|
|
stringstream oss;
|
|
// Friedman test
|
|
// Calculate the Friedman statistic
|
|
oss << Colors::BLUE() << endl;
|
|
oss << "***************************************************************************************************************" << endl;
|
|
oss << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << endl;
|
|
double degreesOfFreedom = nModels - 1.0;
|
|
double sumSquared = 0;
|
|
for (const auto& rank : ranks) {
|
|
sumSquared += pow(rank.second, 2);
|
|
}
|
|
// Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8
|
|
double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4);
|
|
// Calculate the critical value
|
|
boost::math::chi_squared chiSquared(degreesOfFreedom);
|
|
long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ);
|
|
double criticalValue = quantile(chiSquared, 1 - significance);
|
|
oss << "Friedman statistic: " << friedmanQ << endl;
|
|
oss << "Critical χ2 Value for df=" << fixed << (int)degreesOfFreedom
|
|
<< " and alpha=" << setprecision(2) << fixed << significance << ": " << setprecision(7) << scientific << criticalValue << std::endl;
|
|
oss << "p-value: " << scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << setprecision(2) << fixed << significance << endl;
|
|
bool result;
|
|
if (p_value < significance) {
|
|
oss << Colors::GREEN() << "The null hypothesis H0 is rejected." << endl;
|
|
result = true;
|
|
} else {
|
|
oss << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << endl;
|
|
result = false;
|
|
}
|
|
oss << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << endl;
|
|
if (output) {
|
|
cout << oss.str();
|
|
}
|
|
friedmanResult = { friedmanQ, criticalValue, p_value, result };
|
|
return result;
|
|
}
|
|
FriedmanResult& Statistics::getFriedmanResult()
|
|
{
|
|
return friedmanResult;
|
|
}
|
|
HolmResult& Statistics::getHolmResult()
|
|
{
|
|
return holmResult;
|
|
}
|
|
map<string, map<string, float>>& Statistics::getRanks()
|
|
{
|
|
return ranksModels;
|
|
}
|
|
} // namespace platform
|