Compare commits

...

42 Commits

Author SHA1 Message Date
c35030f137 Upgrade models version and Add class diagram 2023-09-02 14:39:43 +02:00
182b07ed90 Solve voting vector error 2023-09-02 13:58:12 +02:00
7806f961e2 Remove threads 2023-08-31 20:30:28 +02:00
7c3e315ae7 Add Linux specific options to compile 2023-08-29 18:20:55 +02:00
284ef6dfd1 Add significanceModels to AODELd 2023-08-24 12:58:53 +02:00
1c6af619b5 Exception if hyperparameters not valid 2023-08-24 12:09:35 +02:00
86ffdfd6f3 Add const feature and className to fit models 2023-08-23 23:15:39 +02:00
d82148079d Add KDB hyperparameters K and theta 2023-08-23 00:44:10 +02:00
067430fd1b Add xlsxopen submodule 2023-08-22 23:45:11 +02:00
f5d0d16365 Merge pull request 'Add excel report to manage results' (#6) from xlsx into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/6
2023-08-22 21:40:11 +00:00
97ca8ac084 Move check valid hyperparameters to Classifier 2023-08-22 22:12:20 +02:00
1c1385b768 Fix maxModels mistake in BoostAODE if !repeatSp
Throw exception if wrong hyperparmeter is supplied
2023-08-22 21:55:17 +02:00
35432b6294 Fix time std was not saved in experiment 2023-08-22 12:30:27 +02:00
c59dd30e53 Complete Excel Report with data 2023-08-22 11:55:15 +02:00
d2da0ddb88 Create ReportExcel eq to ReportConsole 2023-08-21 17:51:49 +02:00
8066701c3c Refactor Report class into ReportBase & ReportCons 2023-08-21 17:16:29 +02:00
0f66ac73d0 Revert "Refactor Report into ReportBase & ReportConsole"
This reverts commit 4370bf51d7.
2023-08-21 17:15:14 +02:00
4370bf51d7 Refactor Report into ReportBase & ReportConsole 2023-08-21 17:14:23 +02:00
2b7353b9e0 Add default sorting by date in manage 2023-08-21 16:30:10 +02:00
b686b3c9c3 Enhance copy in Makefile 2023-08-21 12:18:23 +02:00
2dd04a6c44 enhance saving results and add Makefile copy 2023-08-21 11:57:45 +02:00
1da83662d0 Always save results 2023-08-21 10:55:20 +02:00
3ac9593c65 Fix mistake in sample 2023-08-20 20:36:46 +02:00
6b317accf1 Add hyperparameters and processing order to Boost 2023-08-20 20:31:23 +02:00
4964aab722 Add hyperparameters management in experiments 2023-08-20 17:57:38 +02:00
7a6ec73d63 Merge pull request 'boostAode' (#5) from boostAode into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/5
Implement boostAODE
add list datasets
add manage results
2023-08-20 09:02:07 +00:00
1a534888d6 Fix report format 2023-08-19 23:30:44 +02:00
59ffd179f4 Fix report format 2023-08-19 21:26:48 +02:00
9972738deb Add list datasets and add locale format 2023-08-19 19:05:16 +02:00
bafcb26bb6 Add manage to build target 2023-08-18 13:43:53 +02:00
2d7999d5f2 Add manage to release targets 2023-08-18 13:43:13 +02:00
a6bb22dfb5 Complete first BoostAODE 2023-08-18 11:50:34 +02:00
704dc937be Remove FeatureSel, add SelectKBest to BayesMetrics 2023-08-16 19:05:18 +02:00
a3e665eed6 make weights double 2023-08-16 12:46:09 +02:00
918a7b4180 Remove unneeded output 2023-08-16 12:36:38 +02:00
80b20f35b4 Fix weights mistakes in computation 2023-08-16 12:32:51 +02:00
4d4780c1d5 Add BoostAODE model based on AODE 2023-08-15 16:16:04 +02:00
fa612c531e Complete Adding weights to Models 2023-08-15 15:59:56 +02:00
24b68f9ae2 Add weigths as parameter 2023-08-15 15:04:56 +02:00
a062ebf445 Merge pull request 'reports' (#4) from reports into boostAode
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/4
2023-08-14 16:58:48 +00:00
f26ea1f0ac Add weights to BayesMetrics 2023-08-13 12:56:06 +02:00
af0419c9da First approx with const 1 weights 2023-08-13 00:59:02 +02:00
71 changed files with 1088 additions and 504 deletions

31
.clang-uml Normal file
View File

@@ -0,0 +1,31 @@
compilation_database_dir: build
output_directory: puml
diagrams:
BayesNet:
type: class
glob:
- src/BayesNet/*.cc
- src/Platform/*.cc
using_namespace: bayesnet
include:
namespaces:
- bayesnet
- platform
plantuml:
after:
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
sequence:
type: sequence
glob:
- src/Platform/main.cc
combine_free_functions_into_file_participants: true
using_namespace:
- std
- bayesnet
- platform
include:
paths:
- src/BayesNet
- src/Platform
start_from:
- function: main(int,const char **)

1
.gitignore vendored
View File

@@ -35,3 +35,4 @@ build/
*.dSYM/** *.dSYM/**
cmake-build*/** cmake-build*/**
.idea .idea
puml/**

3
.gitmodules vendored
View File

@@ -10,3 +10,6 @@
[submodule "lib/json"] [submodule "lib/json"]
path = lib/json path = lib/json
url = https://github.com/nlohmann/json.git url = https://github.com/nlohmann/json.git
[submodule "lib/openXLSX"]
path = lib/openXLSX
url = https://github.com/troldal/OpenXLSX.git

21
.vscode/launch.json vendored
View File

@@ -10,7 +10,7 @@
"-d", "-d",
"iris", "iris",
"-m", "-m",
"KDB", "TANLd",
"-s", "-s",
"271", "271",
"-p", "-p",
@@ -25,14 +25,17 @@
"program": "${workspaceFolder}/build/src/Platform/main", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [ "args": [
"-m", "-m",
"SPODELd", "AODE",
"-p", "-p",
"/Users/rmontanana/Code/discretizbench/datasets", "/home/rmontanana/Code/discretizbench/datasets",
"--stratified", "--stratified",
"-d", "-d",
"iris" "mfeat-morphological",
"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
], ],
"cwd": "/Users/rmontanana/Code/discretizbench", "cwd": "/home/rmontanana/Code/discretizbench",
}, },
{ {
"type": "lldb", "type": "lldb",
@@ -45,6 +48,14 @@
], ],
"cwd": "/Users/rmontanana/Code/discretizbench", "cwd": "/Users/rmontanana/Code/discretizbench",
}, },
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/list",
"args": [],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{ {
"name": "Build & debug active file", "name": "Build & debug active file",
"type": "cppdbg", "type": "cppdbg",

23
.vscode/tasks.json vendored
View File

@@ -32,6 +32,29 @@
], ],
"group": "build", "group": "build",
"detail": "Task generated by Debugger." "detail": "Task generated by Debugger."
},
{
"type": "cppbuild",
"label": "C/C++: g++ build active file",
"command": "/usr/bin/g++",
"args": [
"-fdiagnostics-color=always",
"-g",
"${file}",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"options": {
"cwd": "${fileDirname}"
},
"problemMatcher": [
"$gcc"
],
"group": {
"kind": "build",
"isDefault": true
},
"detail": "Task generated by Debugger."
} }
] ]
} }

View File

@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20) cmake_minimum_required(VERSION 3.20)
project(BayesNet project(BayesNet
VERSION 0.1.0 VERSION 0.2.0
DESCRIPTION "Bayesian Network and basic classifiers Library." DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet" HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX LANGUAGES CXX
@@ -30,7 +30,7 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF) option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF) option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF) option(CODE_COVERAGE "Collect coverage from test library" OFF)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# CMakes modules # CMakes modules
# -------------- # --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH}) set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
@@ -40,8 +40,7 @@ if (CODE_COVERAGE)
enable_testing() enable_testing()
include(CodeCoverage) include(CodeCoverage)
MESSAGE("Code coverage enabled") MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage") set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage") SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE) endif (CODE_COVERAGE)
@@ -55,6 +54,7 @@ endif (ENABLE_CLANG_TIDY)
add_git_submodule("lib/mdlp") add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse") add_git_submodule("lib/argparse")
add_git_submodule("lib/json") add_git_submodule("lib/json")
add_git_submodule("lib/openXLSX")
# Subdirectories # Subdirectories
# -------------- # --------------

View File

@@ -11,17 +11,30 @@ setup: ## Install dependencies for tests and coverage
pip install gcovr; \ pip install gcovr; \
fi fi
dest ?= ../discretizbench
copy: ## Copy binary files to selected folder
@echo "Destination folder: $(dest)"
make build
@echo ">>> Copying files to $(dest)"
@cp build/src/Platform/main $(dest)
@cp build/src/Platform/list $(dest)
@cp build/src/Platform/manage $(dest)
@echo ">>> Done"
dependency: ## Create a dependency graph diagram of the project (build/dependency.png) dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -j 32 cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
clean: ## Clean the debug info clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ..."; @echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done"; @echo ">>> Done";
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
debug: ## Build a debug version of the project debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ..."; @echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi
@@ -35,7 +48,7 @@ release: ## Build a Release version of the project
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build; @mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \ cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -j 32; cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
@echo ">>> Done"; @echo ">>> Done";
test: ## Run tests test: ## Run tests

View File

@@ -1,12 +0,0 @@
digraph BayesNet {
label=<BayesNet >
fontsize=30
fontcolor=blue
labelloc=t
layout=circo
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
petallength -> sepallength petalwidth [shape=circle]
sepallength [shape=circle]
sepallength -> sepalwidth sepalwidth [shape=circle]
sepalwidth -> petalwidth }

View File

@@ -1 +0,0 @@
null

BIN
diagrams/BayesNet.pdf Executable file

Binary file not shown.

View File

@@ -1,2 +1 @@
add_library(ArffFiles ArffFiles.cc) add_library(ArffFiles ArffFiles.cc)
#target_link_libraries(BayesNet "${TORCH_LIBRARIES}")

1
lib/openXLSX Submodule

Submodule lib/openXLSX added at b80da42d14

View File

@@ -3,5 +3,6 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include) include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc) add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}") target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -3,13 +3,14 @@
#include <string> #include <string>
#include <map> #include <map>
#include <argparse/argparse.hpp> #include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "ArffFiles.h" #include "ArffFiles.h"
#include "BayesMetrics.h" #include "BayesMetrics.h"
#include "CPPFImdlp.h" #include "CPPFImdlp.h"
#include "Folding.h" #include "Folding.h"
#include "Models.h" #include "Models.h"
#include "modelRegister.h" #include "modelRegister.h"
#include <fstream>
using namespace std; using namespace std;
@@ -178,59 +179,59 @@ int main(int argc, char** argv)
cout << "end." << endl; cout << "end." << endl;
auto score = clf->score(Xd, y); auto score = clf->score(Xd, y);
cout << "Score: " << score << endl; cout << "Score: " << score << endl;
// auto graph = clf->graph(); auto graph = clf->graph();
// auto dot_file = model_name + "_" + file_name; auto dot_file = model_name + "_" + file_name;
// ofstream file(dot_file + ".dot"); ofstream file(dot_file + ".dot");
// file << graph; file << graph;
// file.close(); file.close();
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl; cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl; cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
// string stratified_string = stratified ? " Stratified" : ""; string stratified_string = stratified ? " Stratified" : "";
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl; cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
// cout << "==========================================" << endl; cout << "==========================================" << endl;
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32); torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
// torch::Tensor yt = torch::tensor(y, torch::kInt32); torch::Tensor yt = torch::tensor(y, torch::kInt32);
// for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32)); Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
// } }
// float total_score = 0, total_score_train = 0, score_train, score_test; float total_score = 0, total_score_train = 0, score_train, score_test;
// Fold* fold; platform::Fold* fold;
// if (stratified) if (stratified)
// fold = new StratifiedKFold(nFolds, y, seed); fold = new platform::StratifiedKFold(nFolds, y, seed);
// else else
// fold = new KFold(nFolds, y.size(), seed); fold = new platform::KFold(nFolds, y.size(), seed);
// for (auto i = 0; i < nFolds; ++i) { for (auto i = 0; i < nFolds; ++i) {
// auto [train, test] = fold->getFold(i); auto [train, test] = fold->getFold(i);
// cout << "Fold: " << i + 1 << endl; cout << "Fold: " << i + 1 << endl;
// if (tensors) { if (tensors) {
// auto ttrain = torch::tensor(train, torch::kInt64); auto ttrain = torch::tensor(train, torch::kInt64);
// auto ttest = torch::tensor(test, torch::kInt64); auto ttest = torch::tensor(test, torch::kInt64);
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain); torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
// torch::Tensor ytraint = yt.index({ ttrain }); torch::Tensor ytraint = yt.index({ ttrain });
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest); torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
// torch::Tensor ytestt = yt.index({ ttest }); torch::Tensor ytestt = yt.index({ ttest });
// clf->fit(Xtraint, ytraint, features, className, states); clf->fit(Xtraint, ytraint, features, className, states);
// auto temp = clf->predict(Xtraint); auto temp = clf->predict(Xtraint);
// score_train = clf->score(Xtraint, ytraint); score_train = clf->score(Xtraint, ytraint);
// score_test = clf->score(Xtestt, ytestt); score_test = clf->score(Xtestt, ytestt);
// } else { } else {
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y); auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
// auto [Xtest, ytest] = extract_indices(test, Xd, y); auto [Xtest, ytest] = extract_indices(test, Xd, y);
// clf->fit(Xtrain, ytrain, features, className, states); clf->fit(Xtrain, ytrain, features, className, states);
// score_train = clf->score(Xtrain, ytrain); score_train = clf->score(Xtrain, ytrain);
// score_test = clf->score(Xtest, ytest); score_test = clf->score(Xtest, ytest);
// } }
// if (dump_cpt) { if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl; cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt(); clf->dump_cpt();
// } }
// total_score_train += score_train; total_score_train += score_train;
// total_score += score_test; total_score += score_test;
// cout << "Score Train: " << score_train << endl; cout << "Score Train: " << score_train << endl;
// cout << "Score Test : " << score_test << endl; cout << "Score Test : " << score_test << endl;
// cout << "-------------------------------------------------------------------------------" << endl; cout << "-------------------------------------------------------------------------------" << endl;
// } }
// cout << "**********************************************************************************" << endl; cout << "**********************************************************************************" << endl;
// cout << "Average Score Train: " << total_score_train / nFolds << endl; cout << "Average Score Train: " << total_score_train / nFolds << endl;
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0; cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
} }

View File

@@ -2,12 +2,14 @@
namespace bayesnet { namespace bayesnet {
AODE::AODE() : Ensemble() {} AODE::AODE() : Ensemble() {}
void AODE::buildModel() void AODE::buildModel(const torch::Tensor& weights)
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i)); models.push_back(std::make_unique<SPODE>(i));
} }
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
} }
vector<string> AODE::graph(const string& title) const vector<string> AODE::graph(const string& title) const
{ {

View File

@@ -5,7 +5,7 @@
namespace bayesnet { namespace bayesnet {
class AODE : public Ensemble { class AODE : public Ensemble {
protected: protected:
void buildModel() override; void buildModel(const torch::Tensor& weights) override;
public: public:
AODE(); AODE();
virtual ~AODE() {}; virtual ~AODE() {};

View File

@@ -4,9 +4,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {} AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;
@@ -19,15 +19,16 @@ namespace bayesnet {
return *this; return *this;
} }
void AODELd::buildModel() void AODELd::buildModel(const torch::Tensor& weights)
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i)); models.push_back(std::make_unique<SPODELd>(i));
} }
n_models = models.size(); n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
} }
void AODELd::trainModel() void AODELd::trainModel(const torch::Tensor& weights)
{ {
for (const auto& model : models) { for (const auto& model : models) {
model->fit(Xf, y, features, className, states); model->fit(Xf, y, features, className, states);

View File

@@ -8,13 +8,13 @@ namespace bayesnet {
using namespace std; using namespace std;
class AODELd : public Ensemble, public Proposal { class AODELd : public Ensemble, public Proposal {
protected: protected:
void trainModel() override; void trainModel(const torch::Tensor& weights) override;
void buildModel() override; void buildModel(const torch::Tensor& weights) override;
public: public:
AODELd(); AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override; AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default; virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODE") const override; vector<string> graph(const string& name = "AODELd") const override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };
} }

View File

@@ -1,18 +1,20 @@
#ifndef BASE_H #ifndef BASE_H
#define BASE_H #define BASE_H
#include <torch/torch.h> #include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <vector> #include <vector>
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
class BaseClassifier { class BaseClassifier {
protected: protected:
virtual void trainModel() = 0; virtual void trainModel(const torch::Tensor& weights) = 0;
public: public:
// X is nxm vector, y is nx1 vector // X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor // X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default; virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0; torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0; vector<int> virtual predict(vector<vector<int>>& X) = 0;
@@ -23,9 +25,10 @@ namespace bayesnet {
int virtual getNumberOfStates() const = 0; int virtual getNumberOfStates() const = 0;
vector<string> virtual show() const = 0; vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") const = 0; vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.1.0"; }; const string inline getVersion() const { return "0.2.0"; };
vector<string> virtual topological_order() = 0; vector<string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0; void virtual dump_cpt()const = 0;
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
}; };
} }
#endif #endif

View File

@@ -21,6 +21,45 @@ namespace bayesnet {
} }
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32)); samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
} }
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
if (k == 0) {
k = n;
}
// compute scores
scoresKBest.clear();
featuresKBest.clear();
auto label = samples.index({ -1, "..." });
for (int i = 0; i < n; ++i) {
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
featuresKBest.push_back(i);
}
// sort & reduce scores and features
if (ascending) {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] < scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
if (k < n) {
for (int i = 0; i < n - k; ++i) {
featuresKBest.erase(featuresKBest.begin());
scoresKBest.erase(scoresKBest.begin());
}
}
} else {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] > scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
featuresKBest.resize(k);
scoresKBest.resize(k);
}
return featuresKBest;
}
vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source) vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{ {
vector<pair<string, string>> result; vector<pair<string, string>> result;
@@ -32,17 +71,17 @@ namespace bayesnet {
} }
return result; return result;
} }
torch::Tensor Metrics::conditionalEdge() torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{ {
auto result = vector<double>(); auto result = vector<double>();
auto source = vector<string>(features); auto source = vector<string>(features);
source.push_back(className); source.push_back(className);
auto combinations = doCombinations(source); auto combinations = doCombinations(source);
// Compute class prior // Compute class prior
auto margin = torch::zeros({ classNumStates }); auto margin = torch::zeros({ classNumStates }, torch::kFloat);
for (int value = 0; value < classNumStates; ++value) { for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value; auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<float>() / samples.size(1); margin[value] = mask.sum().item<double>() / samples.size(1);
} }
for (auto [first, second] : combinations) { for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin(); int index_first = find(features.begin(), features.end(), first) - features.begin();
@@ -52,8 +91,9 @@ namespace bayesnet {
auto mask = samples.index({ -1, "..." }) == value; auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ index_first, mask }); auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ index_second, mask }); auto second_dataset = samples.index({ index_second, mask });
auto mi = mutualInformation(first_dataset, second_dataset); auto weights_dataset = weights.index({ mask });
auto pb = margin[value].item<float>(); auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
auto pb = margin[value].item<double>();
accumulated += pb * mi; accumulated += pb * mi;
} }
result.push_back(accumulated); result.push_back(accumulated);
@@ -70,31 +110,32 @@ namespace bayesnet {
return matrix; return matrix;
} }
// To use in Python // To use in Python
vector<float> Metrics::conditionalEdgeWeights() vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
{ {
auto matrix = conditionalEdge(); const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel()); std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v; return v;
} }
double Metrics::entropy(const torch::Tensor& feature) double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{ {
torch::Tensor counts = feature.bincount(); torch::Tensor counts = feature.bincount(weights);
int totalWeight = counts.sum().item<int>(); double totalWeight = counts.sum().item<double>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight; torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs); torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs; torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>(); return entropy.nansum().item<double>();
} }
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x) // H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature) double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{ {
int numSamples = firstFeature.sizes()[0]; int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(); torch::Tensor featureCounts = secondFeature.bincount(weights);
unordered_map<int, unordered_map<int, double>> jointCounts; unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0; double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) { for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1; jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
totalWeight += 1; totalWeight += weights[i].item<float>();
} }
if (totalWeight == 0) if (totalWeight == 0)
return 0; return 0;
@@ -115,9 +156,9 @@ namespace bayesnet {
return entropyValue; return entropyValue;
} }
// I(X;Y) = H(Y) - H(Y|X) // I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature) double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{ {
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature); return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
} }
/* /*
Compute the maximum spanning tree considering the weights as distances Compute the maximum spanning tree considering the weights as distances

View File

@@ -12,16 +12,20 @@ namespace bayesnet {
vector<string> features; vector<string> features;
string className; string className;
int classNumStates = 0; int classNumStates = 0;
vector<double> scoresKBest;
vector<int> featuresKBest; // sorted indices of the features
double entropy(const Tensor& feature, const Tensor& weights);
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<pair<string, string>> doCombinations(const vector<string>&);
public: public:
Metrics() = default; Metrics() = default;
Metrics(const Tensor&, const vector<string>&, const string&, const int); Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int); Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
double entropy(const Tensor&); vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
double conditionalEntropy(const Tensor&, const Tensor&); vector<double> getScoresKBest() const;
double mutualInformation(const Tensor&, const Tensor&); double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<float> conditionalEdgeWeights(); // To use in Python vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
Tensor conditionalEdge(); Tensor conditionalEdge(const torch::Tensor& weights);
vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root); vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
}; };
} }

90
src/BayesNet/BoostAODE.cc Normal file
View File

@@ -0,0 +1,90 @@
#include "BoostAODE.h"
#include <set>
#include "BayesMetrics.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
}
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
models.clear();
n_models = 0;
if (maxModels == 0)
maxModels = .1 * n > 10 ? .1 * n : n;
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
auto y_ = dataset.index({ -1, "..." });
bool exitCondition = false;
unordered_set<int> featuresUsed;
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == maxModels
while (!exitCondition) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
unique_ptr<Classifier> model;
auto feature = featureSelection[0];
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
bool found = false;
for (auto feat : featureSelection) {
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
continue;
}
found = true;
feature = feat;
break;
}
if (!found) {
exitCondition = true;
continue;
}
}
featuresUsed.insert(feature);
model = std::make_unique<SPODE>(feature);
n_models++;
model->fit(dataset, features, className, states, weights_);
auto ypred = model->predict(X_);
// Step 3.1: Compute the classifier amout of say
auto mask_wrong = ypred != y_;
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
double wrongWeights = masked_weights.sum().item<double>();
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights_).item<double>();
weights_ = weights_ / totalWeights;
// Step 3.4: Store classifier and its accuracy to weigh its future vote
models.push_back(std::move(model));
significanceModels.push_back(significance);
exitCondition = n_models == maxModels && repeatSparent;
}
if (featuresUsed.size() != features.size()) {
cout << "Warning: BoostAODE did not use all the features" << endl;
}
weights.copy_(weights_);
}
vector<string> BoostAODE::graph(const string& title) const
{
return Ensemble::graph(title);
}
}

21
src/BayesNet/BoostAODE.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include "Ensemble.h"
#include "SPODE.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
public:
BoostAODE();
virtual ~BoostAODE() {};
vector<string> graph(const string& title = "BoostAODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
bool repeatSparent=false;
int maxModels=0;
bool ascending=false; //Process KBest features ascending or descending order
};
}
#endif

View File

@@ -1,7 +1,9 @@
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet) include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform) include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc) KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}") Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -5,7 +5,7 @@ namespace bayesnet {
using namespace torch; using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {} Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
{ {
this->features = features; this->features = features;
this->className = className; this->className = className;
@@ -13,15 +13,14 @@ namespace bayesnet {
m = dataset.size(1); m = dataset.size(1);
n = dataset.size(0) - 1; n = dataset.size(0) - 1;
checkFitParameters(); checkFitParameters();
auto n_classes = states[className].size(); auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes); metrics = Metrics(dataset, features, className, n_classes);
model.initialize(); model.initialize();
buildModel(); buildModel(weights);
trainModel(); trainModel(weights);
fitted = true; fitted = true;
return *this; return *this;
} }
void Classifier::buildDataset(Tensor& ytmp) void Classifier::buildDataset(Tensor& ytmp)
{ {
try { try {
@@ -35,19 +34,20 @@ namespace bayesnet {
exit(1); exit(1);
} }
} }
void Classifier::trainModel() void Classifier::trainModel(const torch::Tensor& weights)
{ {
model.fit(dataset, features, className, states); model.fit(dataset, weights, features, className, states);
} }
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{ {
dataset = X; dataset = X;
buildDataset(y); buildDataset(y);
return build(features, className, states); const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
} }
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{ {
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32); dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
for (int i = 0; i < X.size(); ++i) { for (int i = 0; i < X.size(); ++i) {
@@ -55,15 +55,25 @@ namespace bayesnet {
} }
auto ytmp = torch::tensor(y, kInt32); auto ytmp = torch::tensor(y, kInt32);
buildDataset(ytmp); buildDataset(ytmp);
return build(features, className, states); const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
} }
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states)
{ {
this->dataset = dataset; this->dataset = dataset;
return build(features, className, states); const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
} }
void Classifier::checkFitParameters() void Classifier::checkFitParameters()
{ {
if (torch::is_floating_point(dataset)) {
throw invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) { if (n != features.size()) {
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features"); throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
} }
@@ -145,4 +155,18 @@ namespace bayesnet {
{ {
model.dump_cpt(); model.dump_cpt();
} }
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const vector<string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
}
} }

View File

@@ -11,25 +11,27 @@ namespace bayesnet {
class Classifier : public BaseClassifier { class Classifier : public BaseClassifier {
private: private:
void buildDataset(torch::Tensor& y); void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states); Classifier& build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights);
protected: protected:
bool fitted; bool fitted;
Network model;
int m, n; // m: number of samples, n: number of features int m, n; // m: number of samples, n: number of features
Tensor dataset; // (n+1)xm tensor Network model;
Metrics metrics; Metrics metrics;
vector<string> features; vector<string> features;
string className; string className;
map<string, vector<int>> states; map<string, vector<int>> states;
Tensor dataset; // (n+1)xm tensor
void checkFitParameters(); void checkFitParameters();
virtual void buildModel() = 0; virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel() override; void trainModel(const torch::Tensor& weights) override;
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
public: public:
Classifier(Network model); Classifier(Network model);
virtual ~Classifier() = default; virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
void addNodes(); void addNodes();
int getNumberOfNodes() const override; int getNumberOfNodes() const override;
int getNumberOfEdges() const override; int getNumberOfEdges() const override;
@@ -41,6 +43,7 @@ namespace bayesnet {
vector<string> show() const override; vector<string> show() const override;
vector<string> topological_order() override; vector<string> topological_order() override;
void dump_cpt() const override; void dump_cpt() const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
}; };
} }
#endif #endif

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
Ensemble::Ensemble() : Classifier(Network()) {} Ensemble::Ensemble() : Classifier(Network()), n_models(0) {}
void Ensemble::trainModel() void Ensemble::trainModel(const torch::Tensor& weights)
{ {
n_models = models.size(); n_models = models.size();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -17,10 +17,14 @@ namespace bayesnet {
{ {
auto y_pred_ = y_pred.accessor<int, 2>(); auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final; vector<int> y_pred_final;
int numClasses = states.at(className).size();
// y_pred is m x n_models with the prediction of every model for each sample
for (int i = 0; i < y_pred.size(0); ++i) { for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(y_pred.size(1), 0); // votes store in each index (value of class) the significance added by each model
for (int j = 0; j < y_pred.size(1); ++j) { // i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
votes[y_pred_[i][j]] += 1; vector<double> votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
votes[y_pred_[i][j]] += significanceModels[j];
} }
// argsort in descending order // argsort in descending order
auto indices = argsort(votes); auto indices = argsort(votes);
@@ -34,7 +38,6 @@ namespace bayesnet {
throw logic_error("Ensemble has not been fitted"); throw logic_error("Ensemble has not been fitted");
} }
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32); Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool
auto threads{ vector<thread>() }; auto threads{ vector<thread>() };
mutex mtx; mutex mtx;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {

View File

@@ -14,7 +14,8 @@ namespace bayesnet {
protected: protected:
unsigned n_models; unsigned n_models;
vector<unique_ptr<Classifier>> models; vector<unique_ptr<Classifier>> models;
void trainModel() override; vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
vector<int> voting(Tensor& y_pred); vector<int> voting(Tensor& y_pred);
public: public:
Ensemble(); Ensemble();

View File

@@ -4,7 +4,19 @@ namespace bayesnet {
using namespace torch; using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::buildModel() void KDB::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "k", "theta" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
}
}
void KDB::buildModel(const torch::Tensor& weights)
{ {
/* /*
1. For each feature Xi, compute mutual information, I(X;C), 1. For each feature Xi, compute mutual information, I(X;C),
@@ -29,13 +41,13 @@ namespace bayesnet {
// where C is the class. // where C is the class.
addNodes(); addNodes();
const Tensor& y = dataset.index({ -1, "..." }); const Tensor& y = dataset.index({ -1, "..." });
vector <float> mi; vector<double> mi;
for (auto i = 0; i < features.size(); i++) { for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = dataset.index({ i, "..." }); Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y)); mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
} }
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each // 2. Compute class conditional mutual information I(Xi;XjIC), f or each
auto conditionalEdgeWeights = metrics.conditionalEdge(); auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
// 3. Let the used variable list, S, be empty. // 3. Let the used variable list, S, be empty.
vector<int> S; vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single // 4. Let the DAG network being constructed, BN, begin with a single

View File

@@ -1,5 +1,6 @@
#ifndef KDB_H #ifndef KDB_H
#define KDB_H #define KDB_H
#include <torch/torch.h>
#include "Classifier.h" #include "Classifier.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
@@ -11,10 +12,11 @@ namespace bayesnet {
float theta; float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights); void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected: protected:
void buildModel() override; void buildModel(const torch::Tensor& weights) override;
public: public:
explicit KDB(int k, float theta = 0.03); explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {}; virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override;
vector<string> graph(const string& name = "KDB") const override; vector<string> graph(const string& name = "KDB") const override;
}; };
} }

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {} KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;

View File

@@ -10,7 +10,7 @@ namespace bayesnet {
public: public:
explicit KDBLd(int k); explicit KDBLd(int k);
virtual ~KDBLd() = default; virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override; vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };

View File

@@ -3,9 +3,8 @@
#include "Network.h" #include "Network.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {} Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other. Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted) getmaxThreads()), fitted(other.fitted)
{ {
@@ -104,8 +103,11 @@ namespace bayesnet {
{ {
return nodes; return nodes;
} }
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states) void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
{ {
if (weights.size(0) != n_samples) {
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
}
if (n_samples != n_samples_y) { if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")"); throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
} }
@@ -136,28 +138,29 @@ namespace bayesnet {
classNumStates = nodes[className]->getNumStates(); classNumStates = nodes[className]->getNumStates();
} }
// X comes in nxm, where n is the number of features and m the number of samples // X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states) void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states); checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
this->className = className; this->className = className;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0); samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." }); auto row_feature = X.index({ i, "..." });
} }
completeFit(states); completeFit(states, weights);
} }
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states) void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states); checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
this->className = className; this->className = className;
this->samples = samples; this->samples = samples;
completeFit(states); completeFit(states, weights);
} }
// input_data comes in nxm, where n is the number of features and m the number of samples // input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states) void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states); const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
this->className = className; this->className = className;
// Build tensor of samples (nxm) (n+1 because of the class) // Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32); samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
@@ -165,48 +168,17 @@ namespace bayesnet {
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32)); samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
} }
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32)); samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states); completeFit(states, weights);
} }
void Network::completeFit(const map<string, vector<int>>& states) void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
{ {
setStates(states); setStates(states);
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
if (maxThreadsRunning < 1) { for (auto& node : nodes) {
maxThreadsRunning = 1; node.second->computeCPT(samples, features, laplaceSmoothing, weights);
}
vector<thread> threads;
mutex mtx;
condition_variable cv;
int activeThreads = 0;
int nextNodeIndex = 0;
while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
while (true) {
unique_lock<mutex> lock(mtx);
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex;
lock.unlock();
pair.second->computeCPT(samples, features, laplaceSmoothing);
lock.lock();
nodes[pair.first] = std::move(pair.second);
lock.unlock();
}
lock_guard<mutex> lock(mtx);
--activeThreads;
cv.notify_one();
});
++activeThreads;
}
for (auto& thread : threads) {
thread.join();
}
fitted = true; fitted = true;
} }
}
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba) torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{ {
if (!fitted) { if (!fitted) {
@@ -343,7 +315,7 @@ namespace bayesnet {
} }
// Normalize result // Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0); double sum = accumulate(result.begin(), result.end(), 0.0);
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; }); transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
return result; return result;
} }
vector<string> Network::show() const vector<string> Network::show() const
@@ -395,7 +367,6 @@ namespace bayesnet {
auto result = features; auto result = features;
result.erase(remove(result.begin(), result.end(), className), result.end()); result.erase(remove(result.begin(), result.end(), className), result.end());
bool ending{ false }; bool ending{ false };
int idx = 0;
while (!ending) { while (!ending) {
ending = true; ending = true;
for (auto feature : features) { for (auto feature : features) {
@@ -431,6 +402,7 @@ namespace bayesnet {
{ {
for (auto& node : nodes) { for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl; cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
cout << node.second->getCPT() << endl;
} }
} }
} }

View File

@@ -13,21 +13,21 @@ namespace bayesnet {
int classNumStates; int classNumStates;
vector<string> features; // Including classname vector<string> features; // Including classname
string className; string className;
int laplaceSmoothing = 1; double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&); bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&); vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&); vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&); vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&); double computeFactor(map<string, int>&);
void completeFit(const map<string, vector<int>>&); void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&); void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
void setStates(const map<string, vector<int>>&); void setStates(const map<string, vector<int>>&);
public: public:
Network(); Network();
explicit Network(float, int);
explicit Network(float); explicit Network(float);
explicit Network(Network&); explicit Network(Network&);
~Network() = default;
torch::Tensor& getSamples(); torch::Tensor& getSamples();
float getmaxThreads(); float getmaxThreads();
void addNode(const string&); void addNode(const string&);
@@ -39,9 +39,9 @@ namespace bayesnet {
int getNumEdges() const; int getNumEdges() const;
int getClassNumStates() const; int getClassNumStates() const;
string getClassName() const; string getClassName() const;
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&); void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&); void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&); void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba); torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
@@ -53,7 +53,7 @@ namespace bayesnet {
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize(); void initialize();
void dump_cpt() const; void dump_cpt() const;
inline string version() { return "0.1.0"; } inline string version() { return "0.2.0"; }
}; };
} }
#endif #endif

View File

@@ -84,7 +84,7 @@ namespace bayesnet {
} }
return result; return result;
} }
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing) void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
{ {
dimensions.clear(); dimensions.clear();
// Get dimensions of the CPT // Get dimensions of the CPT
@@ -100,7 +100,7 @@ namespace bayesnet {
} }
int name_index = pos - features.begin(); int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) { for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates; c10::List<c10::optional<at::Tensor>> coordinates;
coordinates.push_back(dataset.index({ name_index, n_sample })); coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto parent : parents) { for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName()); pos = find(features.begin(), features.end(), parent->getName());
@@ -111,17 +111,17 @@ namespace bayesnet {
coordinates.push_back(dataset.index({ parent_index, n_sample })); coordinates.push_back(dataset.index({ parent_index, n_sample }));
} }
// Increment the count of the corresponding coordinate // Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1); cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
} }
// Normalize the counts // Normalize the counts
cpTable = cpTable / cpTable.sum(0); cpTable = cpTable / cpTable.sum(0);
} }
float Node::getFactorValue(map<string, int>& evidence) float Node::getFactorValue(map<string, int>& evidence)
{ {
torch::List<c10::optional<torch::Tensor>> coordinates; c10::List<c10::optional<at::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h) // following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name])); coordinates.push_back(at::tensor(evidence[name]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); }); transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<float>(); return cpTable.index({ coordinates }).item<float>();
} }
vector<string> Node::graph(const string& className) vector<string> Node::graph(const string& className)

View File

@@ -26,7 +26,7 @@ namespace bayesnet {
vector<Node*>& getParents(); vector<Node*>& getParents();
vector<Node*>& getChildren(); vector<Node*>& getChildren();
torch::Tensor& getCPT(); torch::Tensor& getCPT();
void computeCPT(const torch::Tensor&, const vector<string>&, const int); void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
int getNumStates() const; int getNumStates() const;
void setNumStates(int); void setNumStates(int);
unsigned minFill(); unsigned minFill();

View File

@@ -9,6 +9,15 @@ namespace bayesnet {
delete value; delete value;
} }
} }
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
{
if (!torch::is_floating_point(X)) {
throw std::invalid_argument("X must be a floating point tensor");
}
if (torch::is_floating_point(y)) {
throw std::invalid_argument("y must be an integer tensor");
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model) map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{ {
// order of local discretization is important. no good 0, 1, 2... // order of local discretization is important. no good 0, 1, 2...
@@ -44,15 +53,6 @@ namespace bayesnet {
auto xvf_ptr = Xf.index({ index }).data_ptr<float>(); auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1)); auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv); discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
} }
if (upgrade) { if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers // Discretize again X (only the affected indices) with the new fitted discretizers
@@ -65,7 +65,8 @@ namespace bayesnet {
//Update new states of the feature/node //Update new states of the feature/node
states[pFeatures[index]] = xStates; states[pFeatures[index]] = xStates;
} }
model.fit(pDataset, pFeatures, pClassName, states); const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
model.fit(pDataset, weights, pFeatures, pClassName, states);
} }
return states; return states;
} }

View File

@@ -13,6 +13,7 @@ namespace bayesnet {
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_); Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal(); virtual ~Proposal();
protected: protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X); torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model); map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y); map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
SPODE::SPODE(int root) : Classifier(Network()), root(root) {} SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::buildModel() void SPODE::buildModel(const torch::Tensor& weights)
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();

View File

@@ -7,7 +7,7 @@ namespace bayesnet {
private: private:
int root; int root;
protected: protected:
void buildModel() override; void buildModel(const torch::Tensor& weights) override;
public: public:
explicit SPODE(int root); explicit SPODE(int root);
virtual ~SPODE() {}; virtual ~SPODE() {};

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {} SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;
@@ -18,12 +18,13 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model); states = localDiscretizationProposal(states, model);
return *this; return *this;
} }
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_) SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone(); Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
y = dataset.index({ -1, "..." }).clone(); y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_; features = features_;
className = className_; className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y

View File

@@ -9,8 +9,8 @@ namespace bayesnet {
public: public:
explicit SPODELd(int root); explicit SPODELd(int root);
virtual ~SPODELd() = default; virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override; SPODELd& fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override; vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };

View File

@@ -5,7 +5,7 @@ namespace bayesnet {
TAN::TAN() : Classifier(Network()) {} TAN::TAN() : Classifier(Network()) {}
void TAN::buildModel() void TAN::buildModel(const torch::Tensor& weights)
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
@@ -15,15 +15,15 @@ namespace bayesnet {
Tensor class_dataset = dataset.index({ -1, "..." }); Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) { for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ i, "..." }); Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
mi.push_back({ i, mi_value }); mi.push_back({ i, mi_value });
} }
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;}); sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
auto root = mi[mi.size() - 1].first; auto root = mi[mi.size() - 1].first;
// 2. Compute mutual information between each feature and the class // 2. Compute mutual information between each feature and the class
auto weights = metrics.conditionalEdge(); auto weights_matrix = metrics.conditionalEdge(weights);
// 3. Compute the maximum spanning tree // 3. Compute the maximum spanning tree
auto mst = metrics.maximumSpanningTree(features, weights, root); auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
// 4. Add edges from the maximum spanning tree to the model // 4. Add edges from the maximum spanning tree to the model
for (auto i = 0; i < mst.size(); ++i) { for (auto i = 0; i < mst.size(); ++i) {
auto [from, to] = mst[i]; auto [from, to] = mst[i];

View File

@@ -3,11 +3,10 @@
#include "Classifier.h" #include "Classifier.h"
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch;
class TAN : public Classifier { class TAN : public Classifier {
private: private:
protected: protected:
void buildModel() override; void buildModel(const torch::Tensor& weights) override;
public: public:
TAN(); TAN();
virtual ~TAN() {}; virtual ~TAN() {};

View File

@@ -3,9 +3,9 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {} TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... checkInput(X_, y_);
features = features_; features = features_;
className = className_; className = className_;
Xf = X_; Xf = X_;

View File

@@ -10,7 +10,7 @@ namespace bayesnet {
public: public:
TANLd(); TANLd();
virtual ~TANLd() = default; virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; TANLd& fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override; vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
// Return the indices in descending order // Return the indices in descending order
vector<int> argsort(vector<float>& nums) vector<int> argsort(vector<double>& nums)
{ {
int n = nums.size(); int n = nums.size();
vector<int> indices(n); vector<int> indices(n);

View File

@@ -5,7 +5,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
vector<int> argsort(vector<float>& nums); vector<int> argsort(vector<double>& nums);
vector<vector<int>> tensorToVector(Tensor& tensor); vector<vector<int>> tensorToVector(Tensor& tensor);
} }
#endif //BAYESNET_UTILS_H #endif //BAYESNET_UTILS_H

View File

@@ -4,7 +4,9 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include) include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include) include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc) add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(manage manage.cc Results.cc Report.cc) add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
add_executable(list list.cc platformUtils Datasets.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}") target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(manage "${TORCH_LIBRARIES}") target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,6 +1,7 @@
#include "Datasets.h" #include "Datasets.h"
#include "platformUtils.h" #include "platformUtils.h"
#include "ArffFiles.h" #include "ArffFiles.h"
#include <fstream>
namespace platform { namespace platform {
void Datasets::load() void Datasets::load()
{ {
@@ -24,75 +25,110 @@ namespace platform {
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; }); transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result; return result;
} }
vector<string> Datasets::getFeatures(string name) vector<string> Datasets::getFeatures(const string& name) const
{ {
if (datasets[name]->isLoaded()) { if (datasets.at(name)->isLoaded()) {
return datasets[name]->getFeatures(); return datasets.at(name)->getFeatures();
} else { } else {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
map<string, vector<int>> Datasets::getStates(string name) map<string, vector<int>> Datasets::getStates(const string& name) const
{ {
if (datasets[name]->isLoaded()) { if (datasets.at(name)->isLoaded()) {
return datasets[name]->getStates(); return datasets.at(name)->getStates();
} else { } else {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
string Datasets::getClassName(string name) void Datasets::loadDataset(const string& name) const
{ {
if (datasets[name]->isLoaded()) { if (datasets.at(name)->isLoaded()) {
return datasets[name]->getClassName(); return;
} else {
datasets.at(name)->load();
}
}
string Datasets::getClassName(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else { } else {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
int Datasets::getNSamples(string name) int Datasets::getNSamples(const string& name) const
{ {
if (datasets[name]->isLoaded()) { if (datasets.at(name)->isLoaded()) {
return datasets[name]->getNSamples(); return datasets.at(name)->getNSamples();
} else { } else {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(string name) int Datasets::getNClasses(const string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
if (discretize) {
auto states = getStates(name);
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *max_element(yv.begin(), yv.end()) + 1;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
vector<int> Datasets::getClassesCounts(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
{ {
if (!datasets[name]->isLoaded()) { if (!datasets[name]->isLoaded()) {
datasets[name]->load(); datasets[name]->load();
} }
return datasets[name]->getVectors(); return datasets[name]->getVectors();
} }
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(string name) pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
{ {
if (!datasets[name]->isLoaded()) { if (!datasets[name]->isLoaded()) {
datasets[name]->load(); datasets[name]->load();
} }
return datasets[name]->getVectorsDiscretized(); return datasets[name]->getVectorsDiscretized();
} }
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(string name) pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
{ {
if (!datasets[name]->isLoaded()) { if (!datasets[name]->isLoaded()) {
datasets[name]->load(); datasets[name]->load();
} }
return datasets[name]->getTensors(); return datasets[name]->getTensors();
} }
bool Datasets::isDataset(const string& name) bool Datasets::isDataset(const string& name) const
{ {
return datasets.find(name) != datasets.end(); return datasets.find(name) != datasets.end();
} }
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType) Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{ {
} }
string Dataset::getName() string Dataset::getName() const
{ {
return name; return name;
} }
string Dataset::getClassName() string Dataset::getClassName() const
{ {
return className; return className;
} }
vector<string> Dataset::getFeatures() vector<string> Dataset::getFeatures() const
{ {
if (loaded) { if (loaded) {
return features; return features;
@@ -100,7 +136,7 @@ namespace platform {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
int Dataset::getNFeatures() int Dataset::getNFeatures() const
{ {
if (loaded) { if (loaded) {
return n_features; return n_features;
@@ -108,7 +144,7 @@ namespace platform {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
int Dataset::getNSamples() int Dataset::getNSamples() const
{ {
if (loaded) { if (loaded) {
return n_samples; return n_samples;
@@ -116,7 +152,7 @@ namespace platform {
throw invalid_argument("Dataset not loaded."); throw invalid_argument("Dataset not loaded.");
} }
} }
map<string, vector<int>> Dataset::getStates() map<string, vector<int>> Dataset::getStates() const
{ {
if (loaded) { if (loaded) {
return states; return states;
@@ -177,10 +213,11 @@ namespace platform {
{ {
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1); states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
iota(begin(states[features[i]]), end(states[features[i]]), 0); auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
} }
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1); states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states[className]), end(states[className]), 0); iota(begin(states.at(className)), end(states.at(className)), 0);
} }
void Dataset::load_arff() void Dataset::load_arff()
{ {

View File

@@ -29,15 +29,15 @@ namespace platform {
public: public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {}; Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&); explicit Dataset(const Dataset&);
string getName(); string getName() const;
string getClassName(); string getClassName() const;
vector<string> getFeatures(); vector<string> getFeatures() const;
map<string, vector<int>> getStates(); map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors(); pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(); pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors(); pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures(); int getNFeatures() const;
int getNSamples(); int getNSamples() const;
void load(); void load();
const bool inline isLoaded() const { return loaded; }; const bool inline isLoaded() const { return loaded; };
}; };
@@ -51,14 +51,17 @@ namespace platform {
public: public:
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); }; explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
vector<string> getNames(); vector<string> getNames();
vector<string> getFeatures(string name); vector<string> getFeatures(const string& name) const;
int getNSamples(string name); int getNSamples(const string& name) const;
string getClassName(string name); string getClassName(const string& name) const;
map<string, vector<int>> getStates(string name); int getNClasses(const string& name);
pair<vector<vector<float>>&, vector<int>&> getVectors(string name); vector<int> getClassesCounts(const string& name) const;
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name); map<string, vector<int>> getStates(const string& name) const;
pair<torch::Tensor&, torch::Tensor&> getTensors(string name); pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
bool isDataset(const string& name); pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
bool isDataset(const string& name) const;
void loadDataset(const string& name) const;
}; };
}; };

View File

@@ -1,8 +1,8 @@
#include "Experiment.h" #include "Experiment.h"
#include "Datasets.h" #include "Datasets.h"
#include "Models.h" #include "Models.h"
#include "Report.h" #include "ReportConsole.h"
#include <fstream>
namespace platform { namespace platform {
using json = nlohmann::json; using json = nlohmann::json;
string get_date() string get_date()
@@ -25,6 +25,7 @@ namespace platform {
oss << std::put_time(timeinfo, "%H:%M:%S"); oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str(); return oss.str();
} }
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
string Experiment::get_file_name() string Experiment::get_file_name()
{ {
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json"; string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
@@ -90,7 +91,7 @@ namespace platform {
void Experiment::report() void Experiment::report()
{ {
json data = build_json(); json data = build_json();
Report report(data); ReportConsole report(data);
report.show(); report.show();
} }
@@ -124,6 +125,8 @@ namespace platform {
auto result = Result(); auto result = Result();
auto [values, counts] = at::_unique(y); auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0)); result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
result.setHyperparameters(hyperparameters);
// Initialize results vectors
int nResults = nfolds * static_cast<int>(randomSeeds.size()); int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64); auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64); auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
@@ -144,6 +147,10 @@ namespace platform {
for (int nfold = 0; nfold < nfolds; nfold++) { for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(model); auto clf = Models::instance()->create(model);
setModelVersion(clf->getVersion()); setModelVersion(clf->getVersion());
if (hyperparameters.size() != 0) {
clf->setHyperparameters(hyperparameters);
}
// Split train - test dataset
train_timer.start(); train_timer.start();
auto [train, test] = fold->getFold(nfold); auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train); auto train_t = torch::tensor(train);
@@ -153,12 +160,14 @@ namespace platform {
auto X_test = X.index({ "...", test_t }); auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t }); auto y_test = y.index({ test_t });
cout << nfold + 1 << ", " << flush; cout << nfold + 1 << ", " << flush;
// Train model
clf->fit(X_train, y_train, features, className, states); clf->fit(X_train, y_train, features, className, states);
nodes[item] = clf->getNumberOfNodes(); nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges(); edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates(); num_states[item] = clf->getNumberOfStates();
train_time[item] = train_timer.getDuration(); train_time[item] = train_timer.getDuration();
auto accuracy_train_value = clf->score(X_train, y_train); auto accuracy_train_value = clf->score(X_train, y_train);
// Test model
test_timer.start(); test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test); auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration(); test_time[item] = test_timer.getDuration();
@@ -170,6 +179,7 @@ namespace platform {
result.addTimeTrain(train_time[item].item<double>()); result.addTimeTrain(train_time[item].item<double>());
result.addTimeTest(test_time[item].item<double>()); result.addTimeTest(test_time[item].item<double>());
item++; item++;
clf.reset();
} }
cout << "end. " << flush; cout << "end. " << flush;
delete fold; delete fold;
@@ -177,6 +187,7 @@ namespace platform {
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>()); result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>()); result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>()); result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>()); result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
result.setDataset(fileName); result.setDataset(fileName);
addResult(result); addResult(result);

View File

@@ -29,7 +29,8 @@ namespace platform {
}; };
class Result { class Result {
private: private:
string dataset, hyperparameters, model_version; string dataset, model_version;
json hyperparameters;
int samples{ 0 }, features{ 0 }, classes{ 0 }; int samples{ 0 }, features{ 0 }, classes{ 0 };
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 }; double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
float nodes{ 0 }, leaves{ 0 }, depth{ 0 }; float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
@@ -37,7 +38,7 @@ namespace platform {
public: public:
Result() = default; Result() = default;
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; } Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(const string& hyperparameters) { this->hyperparameters = hyperparameters; return *this; } Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; } Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; } Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; } Result& setClasses(int classes) { this->classes = classes; return *this; }
@@ -59,7 +60,7 @@ namespace platform {
const float get_score_train() const { return score_train; } const float get_score_train() const { return score_train; }
float get_score_test() { return score_test; } float get_score_test() { return score_test; }
const string& getDataset() const { return dataset; } const string& getDataset() const { return dataset; }
const string& getHyperparameters() const { return hyperparameters; } const json& getHyperparameters() const { return hyperparameters; }
const int getSamples() const { return samples; } const int getSamples() const { return samples; }
const int getFeatures() const { return features; } const int getFeatures() const { return features; }
const int getClasses() const { return classes; } const int getClasses() const { return classes; }
@@ -85,11 +86,12 @@ namespace platform {
bool discretized{ false }, stratified{ false }; bool discretized{ false }, stratified{ false };
vector<Result> results; vector<Result> results;
vector<int> randomSeeds; vector<int> randomSeeds;
json hyperparameters = "{}";
int nfolds{ 0 }; int nfolds{ 0 };
float duration{ 0 }; float duration{ 0 };
json build_json(); json build_json();
public: public:
Experiment() = default; Experiment();
Experiment& setTitle(const string& title) { this->title = title; return *this; } Experiment& setTitle(const string& title) { this->title = title; return *this; }
Experiment& setModel(const string& model) { this->model = model; return *this; } Experiment& setModel(const string& model) { this->model = model; return *this; }
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; } Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
@@ -103,6 +105,7 @@ namespace platform {
Experiment& addResult(Result result) { results.push_back(result); return *this; } Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; } Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; } Experiment& setDuration(float duration) { this->duration = duration; return *this; }
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
string get_file_name(); string get_file_name();
void save(const string& path); void save(const string& path);
void cross_validation(const string& path, const string& fileName); void cross_validation(const string& path, const string& fileName);

View File

@@ -1,6 +1,7 @@
#include "Folding.h" #include "Folding.h"
#include <algorithm> #include <algorithm>
#include <map> #include <map>
namespace platform {
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed) Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
{ {
random_device rd; random_device rd;
@@ -93,3 +94,4 @@ pair<vector<int>, vector<int>> StratifiedKFold::getFold(int nFold)
} }
return { train_indices, test_indices }; return { train_indices, test_indices };
} }
}

View File

@@ -4,7 +4,7 @@
#include <vector> #include <vector>
#include <random> #include <random>
using namespace std; using namespace std;
namespace platform {
class Fold { class Fold {
protected: protected:
int k; int k;
@@ -34,4 +34,5 @@ public:
StratifiedKFold(int k, torch::Tensor& y, int seed = -1); StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override; pair<vector<int>, vector<int>> getFold(int nFold) override;
}; };
}
#endif #endif

View File

@@ -26,7 +26,7 @@ namespace platform {
instance = it->second(); instance = it->second();
// wrap instance in a shared ptr and return // wrap instance in a shared ptr and return
if (instance != nullptr) if (instance != nullptr)
return shared_ptr<bayesnet::BaseClassifier>(instance); return unique_ptr<bayesnet::BaseClassifier>(instance);
else else
return nullptr; return nullptr;
} }

View File

@@ -10,6 +10,7 @@
#include "KDBLd.h" #include "KDBLd.h"
#include "SPODELd.h" #include "SPODELd.h"
#include "AODELd.h" #include "AODELd.h"
#include "BoostAODE.h"
namespace platform { namespace platform {
class Models { class Models {
private: private:

View File

@@ -1,10 +1,12 @@
#ifndef PATHS_H #ifndef PATHS_H
#define PATHS_H #define PATHS_H
#include <string>
namespace platform { namespace platform {
class Paths { class Paths {
public: public:
static std::string datasets() { return "datasets/"; } static std::string datasets() { return "datasets/"; }
static std::string results() { return "results/"; } static std::string results() { return "results/"; }
static std::string excel() { return "excel/"; }
}; };
} }
#endif #endif

View File

@@ -1,26 +0,0 @@
#ifndef REPORT_H
#define REPORT_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
#include "Colors.h"
using json = nlohmann::json;
const int MAXL = 121;
namespace platform {
using namespace std;
class Report {
public:
explicit Report(json data_) { data = data_; };
virtual ~Report() = default;
void show();
private:
void header();
void body();
void footer();
string fromVector(const string& key);
json data;
double totalScore; // Total score of all results in a report
};
};
#endif

View File

@@ -0,0 +1,37 @@
#include <sstream>
#include <locale>
#include "ReportBase.h"
#include "BestResult.h"
namespace platform {
string ReportBase::fromVector(const string& key)
{
stringstream oss;
string sep = "";
oss << "[";
for (auto& item : data[key]) {
oss << sep << item.get<double>();
sep = ", ";
}
oss << "]";
return oss.str();
}
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
{
stringstream oss;
string sep = "";
oss << title << "[";
for (const auto& item : data) {
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
sep = ", ";
}
oss << "]";
return oss.str();
}
void ReportBase::show()
{
header();
body();
}
}

23
src/Platform/ReportBase.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef REPORTBASE_H
#define REPORTBASE_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
using namespace std;
class ReportBase {
public:
explicit ReportBase(json data_) { data = data_; };
virtual ~ReportBase() = default;
void show();
protected:
json data;
string fromVector(const string& key);
string fVector(const string& title, const json& data, const int width, const int precision);
virtual void header() = 0;
virtual void body() = 0;
};
};
#endif

View File

@@ -1,53 +1,45 @@
#include "Report.h" #include <sstream>
#include <locale>
#include "ReportConsole.h"
#include "BestResult.h" #include "BestResult.h"
namespace platform { namespace platform {
string headerLine(const string& text) struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
string ReportConsole::headerLine(const string& text)
{ {
int n = MAXL - text.length() - 3; int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n; n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n"; return "* " + text + string(n, ' ') + "*\n";
} }
string Report::fromVector(const string& key)
{
string result = "";
for (auto& item : data[key]) { void ReportConsole::header()
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
string fVector(const json& data)
{
string result = "";
for (const auto& item : data) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
void Report::show()
{
header();
body();
footer();
}
void Report::header()
{ {
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
cout << Colors::MAGENTA() << string(MAXL, '*') << endl; cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>()); cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>()); cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False")); cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>()); oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
cout << headerLine(oss.str());
cout << headerLine("Score is " + data["score_name"].get<string>()); cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl; cout << string(MAXL, '*') << endl;
cout << endl; cout << endl;
} }
void Report::body() void ReportConsole::body()
{ {
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl; cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ======= ======= ======= =============== ================== ===============" << endl; cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
json lastResult; json lastResult;
totalScore = 0; double totalScore = 0.0;
bool odd = true; bool odd = true;
for (const auto& r : data["results"]) { for (const auto& r : data["results"]) {
auto color = odd ? Colors::CYAN() : Colors::BLUE(); auto color = odd ? Colors::CYAN() : Colors::BLUE();
@@ -55,9 +47,9 @@ namespace platform {
cout << setw(6) << right << r["samples"].get<int>() << " "; cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " "; cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " "; cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " "; cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " "; cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " "; cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " "; cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " "; cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
try { try {
@@ -73,21 +65,24 @@ namespace platform {
} }
if (data["results"].size() == 1) { if (data["results"].size() == 1) {
cout << string(MAXL, '*') << endl; cout << string(MAXL, '*') << endl;
cout << headerLine("Train scores: " + fVector(lastResult["scores_train"])); cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
cout << headerLine("Test scores: " + fVector(lastResult["scores_test"])); cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
cout << headerLine("Train times: " + fVector(lastResult["times_train"])); cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
cout << headerLine("Test times: " + fVector(lastResult["times_test"])); cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
cout << string(MAXL, '*') << endl; cout << string(MAXL, '*') << endl;
} else {
footer(totalScore);
} }
} }
void Report::footer() void ReportConsole::footer(double totalScore)
{ {
cout << Colors::MAGENTA() << string(MAXL, '*') << endl; cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
auto score = data["score_name"].get<string>(); auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) { if (score == BestResult::scoreName()) {
cout << headerLine(score + " compared to " + BestResult::title() + " .: " + to_string(totalScore / BestResult::score())); stringstream oss;
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
cout << headerLine(oss.str());
} }
cout << string(MAXL, '*') << endl << Colors::RESET(); cout << string(MAXL, '*') << endl << Colors::RESET();
} }
} }

View File

@@ -0,0 +1,22 @@
#ifndef REPORTCONSOLE_H
#define REPORTCONSOLE_H
#include <string>
#include <iostream>
#include "ReportBase.h"
#include "Colors.h"
namespace platform {
using namespace std;
const int MAXL = 128;
class ReportConsole : public ReportBase{
public:
explicit ReportConsole(json data_) : ReportBase(data_) {};
virtual ~ReportConsole() = default;
private:
string headerLine(const string& text);
void header() override;
void body() override;
void footer(double totalScore);
};
};
#endif

109
src/Platform/ReportExcel.cc Normal file
View File

@@ -0,0 +1,109 @@
#include <sstream>
#include <locale>
#include "ReportExcel.h"
#include "BestResult.h"
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
void ReportExcel::createFile()
{
doc.create(Paths::excel() + "some_results.xlsx");
wks = doc.workbook().worksheet("Sheet1");
wks.setName(data["model"].get<string>());
}
void ReportExcel::closeFile()
{
doc.save();
doc.close();
}
void ReportExcel::header()
{
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
wks.cell("A1").value().set(
"Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " +
to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
wks.cell("A2").value() = data["title"].get<string>();
wks.cell("A3").value() = "Random seeds: " + fromVector("seeds") + " Stratified: " +
(data["stratified"].get<bool>() ? "True" : "False");
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, "
<< data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
wks.cell("A4").value() = oss.str();
wks.cell("A5").value() = "Score is " + data["score_name"].get<string>();
}
void ReportExcel::body()
{
auto head = vector<string>(
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
"Time Std.", "Hyperparameters" });
int col = 1;
for (const auto& item : head) {
wks.cell(8, col++).value() = item;
}
int row = 9;
col = 1;
json lastResult;
double totalScore = 0.0;
string hyperparameters;
for (const auto& r : data["results"]) {
wks.cell(row, col).value() = r["dataset"].get<string>();
wks.cell(row, col + 1).value() = r["samples"].get<int>();
wks.cell(row, col + 2).value() = r["features"].get<int>();
wks.cell(row, col + 3).value() = r["classes"].get<int>();
wks.cell(row, col + 4).value() = r["nodes"].get<float>();
wks.cell(row, col + 5).value() = r["leaves"].get<float>();
wks.cell(row, col + 6).value() = r["depth"].get<float>();
wks.cell(row, col + 7).value() = r["score"].get<double>();
wks.cell(row, col + 8).value() = r["score_std"].get<double>();
wks.cell(row, col + 9).value() = r["time"].get<double>();
wks.cell(row, col + 10).value() = r["time_std"].get<double>();
try {
hyperparameters = r["hyperparameters"].get<string>();
}
catch (const exception& err) {
stringstream oss;
oss << r["hyperparameters"];
hyperparameters = oss.str();
}
wks.cell(row, col + 11).value() = hyperparameters;
lastResult = r;
totalScore += r["score"].get<double>();
row++;
}
if (data["results"].size() == 1) {
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
row++;
col = 1;
wks.cell(row, col).value() = group;
for (double item : lastResult[group]) {
wks.cell(row, ++col).value() = item;
}
}
} else {
footer(totalScore, row);
}
}
void ReportExcel::footer(double totalScore, int row)
{
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
wks.cell(row + 2, 1).value() = score + " compared to " + BestResult::title() + " .: ";
wks.cell(row + 2, 5).value() = totalScore / BestResult::score();
}
}
}

View File

@@ -0,0 +1,25 @@
#ifndef REPORTEXCEL_H
#define REPORTEXCEL_H
#include <OpenXLSX.hpp>
#include "ReportBase.h"
#include "Paths.h"
#include "Colors.h"
namespace platform {
using namespace std;
using namespace OpenXLSX;
const int MAXLL = 128;
class ReportExcel : public ReportBase{
public:
explicit ReportExcel(json data_) : ReportBase(data_) {createFile();};
virtual ~ReportExcel() {closeFile();};
private:
void createFile();
void closeFile();
XLDocument doc;
XLWorksheet wks;
void header() override;
void body() override;
void footer(double totalScore, int row);
};
};
#endif // !REPORTEXCEL_H

View File

@@ -1,7 +1,8 @@
#include <filesystem> #include <filesystem>
#include "platformUtils.h" #include "platformUtils.h"
#include "Results.h" #include "Results.h"
#include "Report.h" #include "ReportConsole.h"
#include "ReportExcel.h"
#include "BestResult.h" #include "BestResult.h"
#include "Colors.h" #include "Colors.h"
namespace platform { namespace platform {
@@ -94,21 +95,26 @@ namespace platform {
cout << "Invalid index" << endl; cout << "Invalid index" << endl;
return -1; return -1;
} }
void Results::report(const int index) const void Results::report(const int index, const bool excelReport) const
{ {
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl; cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
auto data = files.at(index).load(); auto data = files.at(index).load();
Report report(data); if (excelReport) {
report.show(); ReportExcel reporter(data);
reporter.show();
} else {
ReportConsole reporter(data);
reporter.show();
}
} }
void Results::menu() void Results::menu()
{ {
char option; char option;
int index; int index;
bool finished = false; bool finished = false;
string filename, line, options = "qldhsr"; string filename, line, options = "qldhsre";
while (!finished) { while (!finished) {
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r'): "; cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
getline(cin, line); getline(cin, line);
if (line.size() == 0) if (line.size() == 0)
continue; continue;
@@ -119,12 +125,14 @@ namespace platform {
} }
option = line[0]; option = line[0];
} else { } else {
if (all_of(line.begin(), line.end(), ::isdigit)) {
index = stoi(line); index = stoi(line);
if (index >= 0 && index < files.size()) { if (index >= 0 && index < files.size()) {
report(index); report(index, false);
} else { continue;
cout << "Invalid option" << endl;
} }
}
cout << "Invalid option" << endl;
continue; continue;
} }
switch (option) { switch (option) {
@@ -164,7 +172,13 @@ namespace platform {
index = getIndex("report"); index = getIndex("report");
if (index == -1) if (index == -1)
break; break;
report(index); report(index, false);
break;
case 'e':
index = getIndex("excel");
if (index == -1)
break;
report(index, true);
break; break;
default: default:
cout << "Invalid option" << endl; cout << "Invalid option" << endl;
@@ -231,6 +245,7 @@ namespace platform {
cout << "No results found!" << endl; cout << "No results found!" << endl;
exit(0); exit(0);
} }
sortDate();
show(); show();
menu(); menu();
cout << "Done!" << endl; cout << "Done!" << endl;

View File

@@ -42,7 +42,7 @@ namespace platform {
vector<Result> files; vector<Result> files;
void load(); // Loads the list of results void load(); // Loads the list of results
void show() const; void show() const;
void report(const int index) const; void report(const int index, const bool excelReport) const;
int getIndex(const string& intent) const; int getIndex(const string& intent) const;
void menu(); void menu();
void sortList(); void sortList();

57
src/Platform/list.cc Normal file
View File

@@ -0,0 +1,57 @@
#include <iostream>
#include <locale>
#include "Paths.h"
#include "Colors.h"
#include "Datasets.h"
using namespace std;
const int BALANCE_LENGTH = 75;
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
void outputBalance(const string& balance)
{
auto temp = string(balance);
while (temp.size() > BALANCE_LENGTH - 1) {
auto part = temp.substr(0, BALANCE_LENGTH);
cout << part << endl;
cout << setw(48) << " ";
temp = temp.substr(BALANCE_LENGTH);
}
cout << temp << endl;
}
int main(int argc, char** argv)
{
auto data = platform::Datasets(platform::Paths().datasets(), false);
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << endl;
string balanceBars = string(BALANCE_LENGTH, '=');
cout << "============================== ====== ===== === " << balanceBars << endl;
bool odd = true;
for (const auto& dataset : data.getNames()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color << setw(30) << left << dataset << " ";
data.loadDataset(dataset);
auto nSamples = data.getNSamples(dataset);
cout << setw(6) << right << nSamples << " ";
cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
cout << setw(3) << right << data.getNClasses(dataset) << " ";
stringstream oss;
string sep = "";
for (auto number : data.getClassesCounts(dataset)) {
oss << sep << setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
sep = " / ";
}
outputBalance(oss.str());
odd = !odd;
}
cout << Colors::RESET() << endl;
return 0;
}

View File

@@ -1,5 +1,6 @@
#include <iostream> #include <iostream>
#include <argparse/argparse.hpp> #include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "platformUtils.h" #include "platformUtils.h"
#include "Experiment.h" #include "Experiment.h"
#include "Datasets.h" #include "Datasets.h"
@@ -10,12 +11,14 @@
using namespace std; using namespace std;
using json = nlohmann::json;
argparse::ArgumentParser manageArguments(int argc, char** argv) argparse::ArgumentParser manageArguments(int argc, char** argv)
{ {
auto env = platform::DotEnv(); auto env = platform::DotEnv();
argparse::ArgumentParser program("main"); argparse::ArgumentParser program("main");
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name"); program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
program.add_argument("-p", "--path") program.add_argument("-p", "--path")
.help("folder where the data files are located, default") .help("folder where the data files are located, default")
.default_value(string{ platform::Paths::datasets() }); .default_value(string{ platform::Paths::datasets() });
@@ -31,6 +34,7 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
); );
program.add_argument("--title").default_value("").help("Experiment title"); program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true); program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true); program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) { program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
try { try {
@@ -59,6 +63,8 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
auto seeds = program.get<vector<int>>("seeds"); auto seeds = program.get<vector<int>>("seeds");
auto complete_file_name = path + file_name + ".arff"; auto complete_file_name = path + file_name + ".arff";
auto title = program.get<string>("title"); auto title = program.get<string>("title");
auto hyperparameters = program.get<string>("hyperparameters");
auto saveResults = program.get<bool>("save");
if (title == "" && file_name == "") { if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided"); throw runtime_error("title is mandatory if dataset is not provided");
} }
@@ -74,7 +80,6 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
auto program = manageArguments(argc, argv); auto program = manageArguments(argc, argv);
bool saveResults = false;
auto file_name = program.get<string>("dataset"); auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path"); auto path = program.get<string>("path");
auto model_name = program.get<string>("model"); auto model_name = program.get<string>("model");
@@ -82,9 +87,11 @@ int main(int argc, char** argv)
auto stratified = program.get<bool>("stratified"); auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds"); auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds"); auto seeds = program.get<vector<int>>("seeds");
auto hyperparameters =program.get<string>("hyperparameters");
vector<string> filesToTest; vector<string> filesToTest;
auto datasets = platform::Datasets(path, true, platform::ARFF); auto datasets = platform::Datasets(path, true, platform::ARFF);
auto title = program.get<string>("title"); auto title = program.get<string>("title");
auto saveResults = program.get<bool>("save");
if (file_name != "") { if (file_name != "") {
if (!datasets.isDataset(file_name)) { if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << endl; cerr << "Dataset " << file_name << " not found" << endl;
@@ -103,9 +110,10 @@ int main(int argc, char** argv)
*/ */
auto env = platform::DotEnv(); auto env = platform::DotEnv();
auto experiment = platform::Experiment(); auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0"); experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform")); experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy"); experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
experiment.setHyperparameters(json::parse(hyperparameters));
for (auto seed : seeds) { for (auto seed : seeds) {
experiment.addRandomSeed(seed); experiment.addRandomSeed(seed);
} }
@@ -113,9 +121,9 @@ int main(int argc, char** argv)
timer.start(); timer.start();
experiment.go(filesToTest, path); experiment.go(filesToTest, path);
experiment.setDuration(timer.getDuration()); experiment.setDuration(timer.getDuration());
if (saveResults) if (saveResults) {
experiment.save(platform::Paths::results()); experiment.save(platform::Paths::results());
else }
experiment.report(); experiment.report();
cout << "Done!" << endl; cout << "Done!" << endl;
return 0; return 0;

View File

@@ -16,4 +16,6 @@ static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd", static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
static platform::Registrar registrarBA("BoostAODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
#endif #endif

View File

@@ -69,11 +69,12 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32); Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1); states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
iota(begin(states[features[i]]), end(states[features[i]]), 0); auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32)); Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
} }
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1); states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states[className]), end(states[className]), 0); iota(begin(states.at(className)), end(states.at(className)), 0);
} else { } else {
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32); Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {