Compare commits
32 Commits
Author | SHA1 | Date | |
---|---|---|---|
97ca8ac084
|
|||
1c1385b768
|
|||
35432b6294
|
|||
c59dd30e53
|
|||
d2da0ddb88
|
|||
8066701c3c
|
|||
0f66ac73d0
|
|||
4370bf51d7
|
|||
2b7353b9e0
|
|||
b686b3c9c3
|
|||
2dd04a6c44
|
|||
1da83662d0
|
|||
3ac9593c65
|
|||
6b317accf1
|
|||
4964aab722
|
|||
7a6ec73d63 | |||
1a534888d6
|
|||
59ffd179f4
|
|||
9972738deb
|
|||
bafcb26bb6
|
|||
2d7999d5f2
|
|||
a6bb22dfb5
|
|||
704dc937be
|
|||
a3e665eed6
|
|||
918a7b4180
|
|||
80b20f35b4
|
|||
4d4780c1d5
|
|||
fa612c531e
|
|||
24b68f9ae2
|
|||
a062ebf445 | |||
f26ea1f0ac
|
|||
af0419c9da
|
15
.vscode/launch.json
vendored
15
.vscode/launch.json
vendored
@@ -25,12 +25,15 @@
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"args": [
|
||||
"-m",
|
||||
"SPODELd",
|
||||
"BoostAODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--discretize",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris"
|
||||
"glass",
|
||||
"--hyperparameters",
|
||||
"{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
@@ -45,6 +48,14 @@
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/list",
|
||||
"args": [],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
"type": "cppdbg",
|
||||
|
23
.vscode/tasks.json
vendored
23
.vscode/tasks.json
vendored
@@ -32,6 +32,29 @@
|
||||
],
|
||||
"group": "build",
|
||||
"detail": "Task generated by Debugger."
|
||||
},
|
||||
{
|
||||
"type": "cppbuild",
|
||||
"label": "C/C++: g++ build active file",
|
||||
"command": "/usr/bin/g++",
|
||||
"args": [
|
||||
"-fdiagnostics-color=always",
|
||||
"-g",
|
||||
"${file}",
|
||||
"-o",
|
||||
"${fileDirname}/${fileBasenameNoExtension}"
|
||||
],
|
||||
"options": {
|
||||
"cwd": "${fileDirname}"
|
||||
},
|
||||
"problemMatcher": [
|
||||
"$gcc"
|
||||
],
|
||||
"group": {
|
||||
"kind": "build",
|
||||
"isDefault": true
|
||||
},
|
||||
"detail": "Task generated by Debugger."
|
||||
}
|
||||
]
|
||||
}
|
@@ -55,6 +55,7 @@ endif (ENABLE_CLANG_TIDY)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/argparse")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/openXLSX")
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
|
14
Makefile
14
Makefile
@@ -11,11 +11,21 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
fi
|
||||
|
||||
dest ?= ../discretizbench
|
||||
copy: ## Copy binary files to selected folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make build
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@cp build/src/Platform/main $(dest)
|
||||
@cp build/src/Platform/list $(dest)
|
||||
@cp build/src/Platform/manage $(dest)
|
||||
@echo ">>> Done"
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
build: ## Build the main and BayesNetSample
|
||||
cmake --build build -t main -t BayesNetSample -j 32
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
|
||||
|
||||
clean: ## Clean the debug info
|
||||
@echo ">>> Cleaning Debug BayesNet ...";
|
||||
@@ -35,7 +45,7 @@ release: ## Build a Release version of the project
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
|
||||
cmake --build build -t main -t BayesNetSample -j 32;
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
|
||||
@echo ">>> Done";
|
||||
|
||||
test: ## Run tests
|
||||
|
@@ -1,2 +1 @@
|
||||
add_library(ArffFiles ArffFiles.cc)
|
||||
#target_link_libraries(BayesNet "${TORCH_LIBRARIES}")
|
||||
add_library(ArffFiles ArffFiles.cc)
|
1
lib/openXLSX
Submodule
1
lib/openXLSX
Submodule
Submodule lib/openXLSX added at b80da42d14
@@ -3,5 +3,6 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
111
sample/sample.cc
111
sample/sample.cc
@@ -3,6 +3,7 @@
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "ArffFiles.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
@@ -178,59 +179,59 @@ int main(int argc, char** argv)
|
||||
cout << "end." << endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
cout << "Score: " << score << endl;
|
||||
// auto graph = clf->graph();
|
||||
// auto dot_file = model_name + "_" + file_name;
|
||||
// ofstream file(dot_file + ".dot");
|
||||
// file << graph;
|
||||
// file.close();
|
||||
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||
// string stratified_string = stratified ? " Stratified" : "";
|
||||
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||
// cout << "==========================================" << endl;
|
||||
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
// for (int i = 0; i < features.size(); ++i) {
|
||||
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
// }
|
||||
// float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
// Fold* fold;
|
||||
// if (stratified)
|
||||
// fold = new StratifiedKFold(nFolds, y, seed);
|
||||
// else
|
||||
// fold = new KFold(nFolds, y.size(), seed);
|
||||
// for (auto i = 0; i < nFolds; ++i) {
|
||||
// auto [train, test] = fold->getFold(i);
|
||||
// cout << "Fold: " << i + 1 << endl;
|
||||
// if (tensors) {
|
||||
// auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
// auto ttest = torch::tensor(test, torch::kInt64);
|
||||
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
// torch::Tensor ytraint = yt.index({ ttrain });
|
||||
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
// torch::Tensor ytestt = yt.index({ ttest });
|
||||
// clf->fit(Xtraint, ytraint, features, className, states);
|
||||
// auto temp = clf->predict(Xtraint);
|
||||
// score_train = clf->score(Xtraint, ytraint);
|
||||
// score_test = clf->score(Xtestt, ytestt);
|
||||
// } else {
|
||||
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
// clf->fit(Xtrain, ytrain, features, className, states);
|
||||
// score_train = clf->score(Xtrain, ytrain);
|
||||
// score_test = clf->score(Xtest, ytest);
|
||||
// }
|
||||
// if (dump_cpt) {
|
||||
// cout << "--- CPT Tables ---" << endl;
|
||||
// clf->dump_cpt();
|
||||
// }
|
||||
// total_score_train += score_train;
|
||||
// total_score += score_test;
|
||||
// cout << "Score Train: " << score_train << endl;
|
||||
// cout << "Score Test : " << score_test << endl;
|
||||
// cout << "-------------------------------------------------------------------------------" << endl;
|
||||
// }
|
||||
// cout << "**********************************************************************************" << endl;
|
||||
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||
auto graph = clf->graph();
|
||||
auto dot_file = model_name + "_" + file_name;
|
||||
ofstream file(dot_file + ".dot");
|
||||
file << graph;
|
||||
file.close();
|
||||
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||
string stratified_string = stratified ? " Stratified" : "";
|
||||
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||
cout << "==========================================" << endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
}
|
||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nFolds, y, seed);
|
||||
else
|
||||
fold = new KFold(nFolds, y.size(), seed);
|
||||
for (auto i = 0; i < nFolds; ++i) {
|
||||
auto [train, test] = fold->getFold(i);
|
||||
cout << "Fold: " << i + 1 << endl;
|
||||
if (tensors) {
|
||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
auto ttest = torch::tensor(test, torch::kInt64);
|
||||
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
torch::Tensor ytraint = yt.index({ ttrain });
|
||||
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
torch::Tensor ytestt = yt.index({ ttest });
|
||||
clf->fit(Xtraint, ytraint, features, className, states);
|
||||
auto temp = clf->predict(Xtraint);
|
||||
score_train = clf->score(Xtraint, ytraint);
|
||||
score_test = clf->score(Xtestt, ytestt);
|
||||
} else {
|
||||
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
clf->fit(Xtrain, ytrain, features, className, states);
|
||||
score_train = clf->score(Xtrain, ytrain);
|
||||
score_test = clf->score(Xtest, ytest);
|
||||
}
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
total_score_train += score_train;
|
||||
total_score += score_test;
|
||||
cout << "Score Train: " << score_train << endl;
|
||||
cout << "Score Test : " << score_test << endl;
|
||||
cout << "-------------------------------------------------------------------------------" << endl;
|
||||
}
|
||||
cout << "**********************************************************************************" << endl;
|
||||
cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||
}
|
@@ -2,12 +2,14 @@
|
||||
|
||||
namespace bayesnet {
|
||||
AODE::AODE() : Ensemble() {}
|
||||
void AODE::buildModel()
|
||||
void AODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
models.push_back(std::make_unique<SPODE>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = vector<double>(n_models, 1.0);
|
||||
}
|
||||
vector<string> AODE::graph(const string& title) const
|
||||
{
|
||||
|
@@ -5,11 +5,12 @@
|
||||
namespace bayesnet {
|
||||
class AODE : public Ensemble {
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODE();
|
||||
virtual ~AODE() {};
|
||||
vector<string> graph(const string& title = "AODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
return *this;
|
||||
|
||||
}
|
||||
void AODELd::buildModel()
|
||||
void AODELd::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
@@ -27,7 +27,7 @@ namespace bayesnet {
|
||||
}
|
||||
n_models = models.size();
|
||||
}
|
||||
void AODELd::trainModel()
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
for (const auto& model : models) {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
|
@@ -8,14 +8,15 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
class AODELd : public Ensemble, public Proposal {
|
||||
protected:
|
||||
void trainModel() override;
|
||||
void buildModel() override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODELd();
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
|
||||
virtual ~AODELd() = default;
|
||||
vector<string> graph(const string& name = "AODE") const override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
};
|
||||
}
|
||||
#endif // !AODELD_H
|
@@ -1,18 +1,20 @@
|
||||
#ifndef BASE_H
|
||||
#define BASE_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel() = 0;
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
public:
|
||||
// X is nxm vector, y is nx1 vector
|
||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
@@ -26,6 +28,7 @@ namespace bayesnet {
|
||||
const string inline getVersion() const { return "0.1.0"; };
|
||||
vector<string> virtual topological_order() = 0;
|
||||
void virtual dump_cpt()const = 0;
|
||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -21,6 +21,45 @@ namespace bayesnet {
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = samples.size(0) - 1;
|
||||
if (k == 0) {
|
||||
k = n;
|
||||
}
|
||||
// compute scores
|
||||
scoresKBest.clear();
|
||||
featuresKBest.clear();
|
||||
auto label = samples.index({ -1, "..." });
|
||||
for (int i = 0; i < n; ++i) {
|
||||
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
|
||||
featuresKBest.push_back(i);
|
||||
}
|
||||
// sort & reduce scores and features
|
||||
if (ascending) {
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] < scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
|
||||
if (k < n) {
|
||||
for (int i = 0; i < n - k; ++i) {
|
||||
featuresKBest.erase(featuresKBest.begin());
|
||||
scoresKBest.erase(scoresKBest.begin());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] > scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
|
||||
featuresKBest.resize(k);
|
||||
scoresKBest.resize(k);
|
||||
}
|
||||
return featuresKBest;
|
||||
}
|
||||
vector<double> Metrics::getScoresKBest() const
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
@@ -32,17 +71,18 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
torch::Tensor Metrics::conditionalEdge()
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = vector<double>();
|
||||
auto source = vector<string>(features);
|
||||
source.push_back(className);
|
||||
auto combinations = doCombinations(source);
|
||||
double totalWeight = weights.sum().item<double>();
|
||||
// Compute class prior
|
||||
auto margin = torch::zeros({ classNumStates });
|
||||
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
margin[value] = mask.sum().item<float>() / samples.size(1);
|
||||
margin[value] = mask.sum().item<double>() / samples.size(1);
|
||||
}
|
||||
for (auto [first, second] : combinations) {
|
||||
int index_first = find(features.begin(), features.end(), first) - features.begin();
|
||||
@@ -52,8 +92,9 @@ namespace bayesnet {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
auto first_dataset = samples.index({ index_first, mask });
|
||||
auto second_dataset = samples.index({ index_second, mask });
|
||||
auto mi = mutualInformation(first_dataset, second_dataset);
|
||||
auto pb = margin[value].item<float>();
|
||||
auto weights_dataset = weights.index({ mask });
|
||||
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
|
||||
auto pb = margin[value].item<double>();
|
||||
accumulated += pb * mi;
|
||||
}
|
||||
result.push_back(accumulated);
|
||||
@@ -70,31 +111,32 @@ namespace bayesnet {
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
vector<float> Metrics::conditionalEdgeWeights()
|
||||
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
|
||||
{
|
||||
auto matrix = conditionalEdge();
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
double Metrics::entropy(const torch::Tensor& feature)
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount();
|
||||
int totalWeight = counts.sum().item<int>();
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
double totalWeight = counts.sum().item<double>();
|
||||
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
|
||||
torch::Tensor logProbs = torch::log(probs);
|
||||
torch::Tensor entropy = -probs * logProbs;
|
||||
return entropy.nansum().item<double>();
|
||||
}
|
||||
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
int numSamples = firstFeature.sizes()[0];
|
||||
torch::Tensor featureCounts = secondFeature.bincount();
|
||||
torch::Tensor featureCounts = secondFeature.bincount(weights);
|
||||
unordered_map<int, unordered_map<int, double>> jointCounts;
|
||||
double totalWeight = 0;
|
||||
for (auto i = 0; i < numSamples; i++) {
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
|
||||
totalWeight += 1;
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
|
||||
totalWeight += weights[i].item<float>();
|
||||
}
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
@@ -115,9 +157,9 @@ namespace bayesnet {
|
||||
return entropyValue;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
|
@@ -12,16 +12,20 @@ namespace bayesnet {
|
||||
vector<string> features;
|
||||
string className;
|
||||
int classNumStates = 0;
|
||||
vector<double> scoresKBest;
|
||||
vector<int> featuresKBest; // sorted indices of the features
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
public:
|
||||
Metrics() = default;
|
||||
Metrics(const Tensor&, const vector<string>&, const string&, const int);
|
||||
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
|
||||
double entropy(const Tensor&);
|
||||
double conditionalEntropy(const Tensor&, const Tensor&);
|
||||
double mutualInformation(const Tensor&, const Tensor&);
|
||||
vector<float> conditionalEdgeWeights(); // To use in Python
|
||||
Tensor conditionalEdge();
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
|
||||
vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
|
||||
};
|
||||
}
|
||||
|
91
src/BayesNet/BoostAODE.cc
Normal file
91
src/BayesNet/BoostAODE.cc
Normal file
@@ -0,0 +1,91 @@
|
||||
#include "BoostAODE.h"
|
||||
#include <set>
|
||||
#include "BayesMetrics.h"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
}
|
||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
}
|
||||
if (hyperparameters.contains("maxModels")) {
|
||||
maxModels = hyperparameters["maxModels"];
|
||||
}
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
}
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
bool exitCondition = false;
|
||||
unordered_set<int> featuresUsed;
|
||||
// Step 0: Set the finish condition
|
||||
// if not repeatSparent a finish condition is run out of features
|
||||
// n_models == maxModels
|
||||
int numClasses = states[className].size();
|
||||
while (!exitCondition) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
unique_ptr<Classifier> model;
|
||||
auto feature = featureSelection[0];
|
||||
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
||||
bool found = false;
|
||||
for (auto feat : featureSelection) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
|
||||
continue;
|
||||
}
|
||||
found = true;
|
||||
feature = feat;
|
||||
break;
|
||||
}
|
||||
if (!found) {
|
||||
exitCondition = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
featuresUsed.insert(feature);
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
n_models++;
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
exitCondition = n_models == maxModels && repeatSparent;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
cout << "Warning: BoostAODE did not use all the features" << endl;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
}
|
||||
vector<string> BoostAODE::graph(const string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
21
src/BayesNet/BoostAODE.h
Normal file
21
src/BayesNet/BoostAODE.h
Normal file
@@ -0,0 +1,21 @@
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include "Ensemble.h"
|
||||
#include "SPODE.h"
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
public:
|
||||
BoostAODE();
|
||||
virtual ~BoostAODE() {};
|
||||
vector<string> graph(const string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
bool repeatSparent=false;
|
||||
int maxModels=0;
|
||||
bool ascending=false; //Process KBest features ascending or descending order
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,7 +1,9 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
@@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@@ -16,12 +16,11 @@ namespace bayesnet {
|
||||
auto n_classes = states[className].size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel();
|
||||
trainModel();
|
||||
buildModel(weights);
|
||||
trainModel(weights);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Classifier::buildDataset(Tensor& ytmp)
|
||||
{
|
||||
try {
|
||||
@@ -35,16 +34,17 @@ namespace bayesnet {
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
void Classifier::trainModel()
|
||||
void Classifier::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
model.fit(dataset, features, className, states);
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
return build(features, className, states);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
@@ -55,12 +55,19 @@ namespace bayesnet {
|
||||
}
|
||||
auto ytmp = torch::tensor(y, kInt32);
|
||||
buildDataset(ytmp);
|
||||
return build(features, className, states);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
@@ -145,4 +152,12 @@ namespace bayesnet {
|
||||
{
|
||||
model.dump_cpt();
|
||||
}
|
||||
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
|
||||
{
|
||||
for (const auto& item : hyperparameters.items()) {
|
||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
||||
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@@ -11,25 +11,27 @@ namespace bayesnet {
|
||||
class Classifier : public BaseClassifier {
|
||||
private:
|
||||
void buildDataset(torch::Tensor& y);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
protected:
|
||||
bool fitted;
|
||||
Network model;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
Network model;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
void checkFitParameters();
|
||||
virtual void buildModel() = 0;
|
||||
void trainModel() override;
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters);
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
|
@@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble() : Classifier(Network()) {}
|
||||
|
||||
void Ensemble::trainModel()
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
@@ -18,9 +18,9 @@ namespace bayesnet {
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
vector<int> y_pred_final;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<float> votes(y_pred.size(1), 0);
|
||||
vector<double> votes(y_pred.size(1), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += 1;
|
||||
votes[y_pred_[i][j]] += significanceModels[j];
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
|
@@ -14,7 +14,8 @@ namespace bayesnet {
|
||||
protected:
|
||||
unsigned n_models;
|
||||
vector<unique_ptr<Classifier>> models;
|
||||
void trainModel() override;
|
||||
vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
vector<int> voting(Tensor& y_pred);
|
||||
public:
|
||||
Ensemble();
|
||||
|
@@ -4,7 +4,7 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||
void KDB::buildModel()
|
||||
void KDB::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
/*
|
||||
1. For each feature Xi, compute mutual information, I(X;C),
|
||||
@@ -29,13 +29,13 @@ namespace bayesnet {
|
||||
// where C is the class.
|
||||
addNodes();
|
||||
const Tensor& y = dataset.index({ -1, "..." });
|
||||
vector <float> mi;
|
||||
vector<double> mi;
|
||||
for (auto i = 0; i < features.size(); i++) {
|
||||
Tensor firstFeature = dataset.index({ i, "..." });
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y));
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
|
||||
}
|
||||
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge();
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
|
||||
// 3. Let the used variable list, S, be empty.
|
||||
vector<int> S;
|
||||
// 4. Let the DAG network being constructed, BN, begin with a single
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#ifndef KDB_H
|
||||
#define KDB_H
|
||||
#include <torch/torch.h>
|
||||
#include "Classifier.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
@@ -11,10 +12,11 @@ namespace bayesnet {
|
||||
float theta;
|
||||
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
|
@@ -13,6 +13,7 @@ namespace bayesnet {
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "KDB") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
static inline string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
|
@@ -5,7 +5,6 @@
|
||||
namespace bayesnet {
|
||||
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
|
||||
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
||||
getmaxThreads()), fitted(other.fitted)
|
||||
{
|
||||
@@ -104,8 +103,11 @@ namespace bayesnet {
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
if (weights.size(0) != n_samples) {
|
||||
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
|
||||
}
|
||||
if (n_samples != n_samples_y) {
|
||||
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||
}
|
||||
@@ -136,28 +138,29 @@ namespace bayesnet {
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X , ytmp }, 0);
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
// Build tensor of samples (nxm) (n+1 because of the class)
|
||||
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
|
||||
@@ -165,11 +168,12 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::completeFit(const map<string, vector<int>>& states)
|
||||
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
@@ -182,7 +186,7 @@ namespace bayesnet {
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
@@ -191,7 +195,7 @@ namespace bayesnet {
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing);
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
@@ -343,7 +347,7 @@ namespace bayesnet {
|
||||
}
|
||||
// Normalize result
|
||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Network::show() const
|
||||
@@ -431,6 +435,7 @@ namespace bayesnet {
|
||||
{
|
||||
for (auto& node : nodes) {
|
||||
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
|
||||
cout << node.second->getCPT() << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -13,19 +13,18 @@ namespace bayesnet {
|
||||
int classNumStates;
|
||||
vector<string> features; // Including classname
|
||||
string className;
|
||||
int laplaceSmoothing = 1;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // nxm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
vector<double> predict_sample(const vector<int>&);
|
||||
vector<double> predict_sample(const torch::Tensor&);
|
||||
vector<double> exactInference(map<string, int>&);
|
||||
double computeFactor(map<string, int>&);
|
||||
void completeFit(const map<string, vector<int>>&);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
|
||||
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const map<string, vector<int>>&);
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float, int);
|
||||
explicit Network(float);
|
||||
explicit Network(Network&);
|
||||
torch::Tensor& getSamples();
|
||||
@@ -39,9 +38,9 @@ namespace bayesnet {
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
|
@@ -84,7 +84,7 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
@@ -111,7 +111,7 @@ namespace bayesnet {
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
|
||||
}
|
||||
// Normalize the counts
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
|
@@ -26,7 +26,7 @@ namespace bayesnet {
|
||||
vector<Node*>& getParents();
|
||||
vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor&, const vector<string>&, const int);
|
||||
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
|
@@ -65,7 +65,8 @@ namespace bayesnet {
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
model.fit(pDataset, pFeatures, pClassName, states);
|
||||
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
||||
}
|
||||
return states;
|
||||
}
|
||||
|
@@ -4,7 +4,7 @@ namespace bayesnet {
|
||||
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||
|
||||
void SPODE::buildModel()
|
||||
void SPODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
|
@@ -7,11 +7,12 @@ namespace bayesnet {
|
||||
private:
|
||||
int root;
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() {};
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -21,7 +21,6 @@ namespace bayesnet {
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
|
||||
y = dataset.index({ -1, "..." }).clone();
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
features = features_;
|
||||
|
@@ -13,6 +13,7 @@ namespace bayesnet {
|
||||
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "SPODE") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
static inline string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
|
@@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
|
||||
void TAN::buildModel()
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
@@ -15,15 +15,15 @@ namespace bayesnet {
|
||||
Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights = metrics.conditionalEdge();
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
auto mst = metrics.maximumSpanningTree(features, weights, root);
|
||||
auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
|
||||
// 4. Add edges from the maximum spanning tree to the model
|
||||
for (auto i = 0; i < mst.size(); ++i) {
|
||||
auto [from, to] = mst[i];
|
||||
|
@@ -3,15 +3,15 @@
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() {};
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -14,6 +14,7 @@ namespace bayesnet {
|
||||
vector<string> graph(const string& name = "TAN") const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override {};
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
@@ -4,7 +4,7 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
// Return the indices in descending order
|
||||
vector<int> argsort(vector<float>& nums)
|
||||
vector<int> argsort(vector<double>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
vector<int> indices(n);
|
||||
|
@@ -5,7 +5,7 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
vector<int> argsort(vector<float>& nums);
|
||||
vector<int> argsort(vector<double>& nums);
|
||||
vector<vector<int>> tensorToVector(Tensor& tensor);
|
||||
}
|
||||
#endif //BAYESNET_UTILS_H
|
@@ -4,7 +4,9 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
|
||||
add_executable(manage manage.cc Results.cc Report.cc)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc)
|
||||
add_executable(list list.cc platformUtils Datasets.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}" OpenXLSX::OpenXLSX)
|
||||
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -24,75 +24,110 @@ namespace platform {
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Datasets::getFeatures(string name)
|
||||
vector<string> Datasets::getFeatures(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getFeatures();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getFeatures();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Datasets::getStates(string name)
|
||||
map<string, vector<int>> Datasets::getStates(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getStates();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getStates();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
string Datasets::getClassName(string name)
|
||||
void Datasets::loadDataset(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getClassName();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return;
|
||||
} else {
|
||||
datasets.at(name)->load();
|
||||
}
|
||||
}
|
||||
string Datasets::getClassName(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getClassName();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNSamples(string name)
|
||||
int Datasets::getNSamples(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getNSamples();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getNSamples();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(string name)
|
||||
int Datasets::getNClasses(const string& name)
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto className = datasets.at(name)->getClassName();
|
||||
if (discretize) {
|
||||
auto states = getStates(name);
|
||||
return states.at(className).size();
|
||||
}
|
||||
auto [Xv, yv] = getVectors(name);
|
||||
return *max_element(yv.begin(), yv.end()) + 1;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
vector<int> Datasets::getClassesCounts(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto [Xv, yv] = datasets.at(name)->getVectors();
|
||||
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
|
||||
for (auto y : yv) {
|
||||
counts[y]++;
|
||||
}
|
||||
return counts;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectors();
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(string name)
|
||||
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectorsDiscretized();
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(string name)
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getTensors();
|
||||
}
|
||||
bool Datasets::isDataset(const string& name)
|
||||
bool Datasets::isDataset(const string& name) const
|
||||
{
|
||||
return datasets.find(name) != datasets.end();
|
||||
}
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
string Dataset::getName()
|
||||
string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
string Dataset::getClassName()
|
||||
string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
vector<string> Dataset::getFeatures()
|
||||
vector<string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
@@ -100,7 +135,7 @@ namespace platform {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures()
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
@@ -108,7 +143,7 @@ namespace platform {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples()
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
@@ -116,7 +151,7 @@ namespace platform {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Dataset::getStates()
|
||||
map<string, vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
|
@@ -29,15 +29,15 @@ namespace platform {
|
||||
public:
|
||||
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
string getName();
|
||||
string getClassName();
|
||||
vector<string> getFeatures();
|
||||
map<string, vector<int>> getStates();
|
||||
string getName() const;
|
||||
string getClassName() const;
|
||||
vector<string> getFeatures() const;
|
||||
map<string, vector<int>> getStates() const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors();
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures();
|
||||
int getNSamples();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
@@ -51,14 +51,17 @@ namespace platform {
|
||||
public:
|
||||
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
|
||||
vector<string> getNames();
|
||||
vector<string> getFeatures(string name);
|
||||
int getNSamples(string name);
|
||||
string getClassName(string name);
|
||||
map<string, vector<int>> getStates(string name);
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors(string name);
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name);
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors(string name);
|
||||
bool isDataset(const string& name);
|
||||
vector<string> getFeatures(const string& name) const;
|
||||
int getNSamples(const string& name) const;
|
||||
string getClassName(const string& name) const;
|
||||
int getNClasses(const string& name);
|
||||
vector<int> getClassesCounts(const string& name) const;
|
||||
map<string, vector<int>> getStates(const string& name) const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
|
||||
bool isDataset(const string& name) const;
|
||||
void loadDataset(const string& name) const;
|
||||
};
|
||||
};
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
#include "Report.h"
|
||||
#include "ReportConsole.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
@@ -25,6 +25,7 @@ namespace platform {
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
|
||||
string Experiment::get_file_name()
|
||||
{
|
||||
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
@@ -90,7 +91,7 @@ namespace platform {
|
||||
void Experiment::report()
|
||||
{
|
||||
json data = build_json();
|
||||
Report report(data);
|
||||
ReportConsole report(data);
|
||||
report.show();
|
||||
}
|
||||
|
||||
@@ -124,6 +125,8 @@ namespace platform {
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
result.setHyperparameters(hyperparameters);
|
||||
// Initialize results vectors
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
|
||||
@@ -144,6 +147,10 @@ namespace platform {
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
if (hyperparameters.size() != 0) {
|
||||
clf->setHyperparameters(hyperparameters);
|
||||
}
|
||||
// Split train - test dataset
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
@@ -153,12 +160,14 @@ namespace platform {
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
@@ -172,11 +181,11 @@ namespace platform {
|
||||
item++;
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
delete fold;
|
||||
}
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
|
||||
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
|
||||
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
|
||||
result.setDataset(fileName);
|
||||
addResult(result);
|
||||
|
@@ -29,7 +29,8 @@ namespace platform {
|
||||
};
|
||||
class Result {
|
||||
private:
|
||||
string dataset, hyperparameters, model_version;
|
||||
string dataset, model_version;
|
||||
json hyperparameters;
|
||||
int samples{ 0 }, features{ 0 }, classes{ 0 };
|
||||
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
|
||||
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
|
||||
@@ -37,7 +38,7 @@ namespace platform {
|
||||
public:
|
||||
Result() = default;
|
||||
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
|
||||
Result& setHyperparameters(const string& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setSamples(int samples) { this->samples = samples; return *this; }
|
||||
Result& setFeatures(int features) { this->features = features; return *this; }
|
||||
Result& setClasses(int classes) { this->classes = classes; return *this; }
|
||||
@@ -59,7 +60,7 @@ namespace platform {
|
||||
const float get_score_train() const { return score_train; }
|
||||
float get_score_test() { return score_test; }
|
||||
const string& getDataset() const { return dataset; }
|
||||
const string& getHyperparameters() const { return hyperparameters; }
|
||||
const json& getHyperparameters() const { return hyperparameters; }
|
||||
const int getSamples() const { return samples; }
|
||||
const int getFeatures() const { return features; }
|
||||
const int getClasses() const { return classes; }
|
||||
@@ -85,11 +86,12 @@ namespace platform {
|
||||
bool discretized{ false }, stratified{ false };
|
||||
vector<Result> results;
|
||||
vector<int> randomSeeds;
|
||||
json hyperparameters = "{}";
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
public:
|
||||
Experiment() = default;
|
||||
Experiment();
|
||||
Experiment& setTitle(const string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
|
||||
@@ -103,6 +105,7 @@ namespace platform {
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
string get_file_name();
|
||||
void save(const string& path);
|
||||
void cross_validation(const string& path, const string& fileName);
|
||||
|
@@ -10,6 +10,7 @@
|
||||
#include "KDBLd.h"
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "BoostAODE.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
|
@@ -1,10 +1,12 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,26 +0,0 @@
|
||||
#ifndef REPORT_H
|
||||
#define REPORT_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Colors.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 121;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
class Report {
|
||||
public:
|
||||
explicit Report(json data_) { data = data_; };
|
||||
virtual ~Report() = default;
|
||||
void show();
|
||||
private:
|
||||
void header();
|
||||
void body();
|
||||
void footer();
|
||||
string fromVector(const string& key);
|
||||
json data;
|
||||
double totalScore; // Total score of all results in a report
|
||||
};
|
||||
};
|
||||
#endif
|
37
src/Platform/ReportBase.cc
Normal file
37
src/Platform/ReportBase.cc
Normal file
@@ -0,0 +1,37 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportBase.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
string ReportBase::fromVector(const string& key)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
oss << sep << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
string ReportBase::fVector(const string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
void ReportBase::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
}
|
||||
}
|
23
src/Platform/ReportBase.h
Normal file
23
src/Platform/ReportBase.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifndef REPORTBASE_H
|
||||
#define REPORTBASE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
class ReportBase {
|
||||
public:
|
||||
explicit ReportBase(json data_) { data = data_; };
|
||||
virtual ~ReportBase() = default;
|
||||
void show();
|
||||
protected:
|
||||
json data;
|
||||
string fromVector(const string& key);
|
||||
string fVector(const string& title, const json& data, const int width, const int precision);
|
||||
virtual void header() = 0;
|
||||
virtual void body() = 0;
|
||||
};
|
||||
};
|
||||
#endif
|
@@ -1,53 +1,45 @@
|
||||
#include "Report.h"
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportConsole.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
string headerLine(const string& text)
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
string ReportConsole::headerLine(const string& text)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + string(n, ' ') + "*\n";
|
||||
}
|
||||
string Report::fromVector(const string& key)
|
||||
{
|
||||
string result = "";
|
||||
|
||||
for (auto& item : data[key]) {
|
||||
result += to_string(item) + ", ";
|
||||
}
|
||||
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||
}
|
||||
string fVector(const json& data)
|
||||
{
|
||||
string result = "";
|
||||
for (const auto& item : data) {
|
||||
result += to_string(item) + ", ";
|
||||
}
|
||||
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||
}
|
||||
void Report::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
footer();
|
||||
}
|
||||
void Report::header()
|
||||
|
||||
void ReportConsole::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
cout << headerLine(data["title"].get<string>());
|
||||
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
|
||||
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
cout << headerLine(oss.str());
|
||||
cout << headerLine("Score is " + data["score_name"].get<string>());
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << endl;
|
||||
}
|
||||
void Report::body()
|
||||
void ReportConsole::body()
|
||||
{
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ======= ======= ======= =============== ================== ===============" << endl;
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
|
||||
json lastResult;
|
||||
totalScore = 0;
|
||||
double totalScore = 0.0;
|
||||
bool odd = true;
|
||||
for (const auto& r : data["results"]) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
@@ -55,9 +47,9 @@ namespace platform {
|
||||
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
|
||||
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
|
||||
try {
|
||||
@@ -73,21 +65,24 @@ namespace platform {
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Train scores: " + fVector(lastResult["scores_train"]));
|
||||
cout << headerLine("Test scores: " + fVector(lastResult["scores_test"]));
|
||||
cout << headerLine("Train times: " + fVector(lastResult["times_train"]));
|
||||
cout << headerLine("Test times: " + fVector(lastResult["times_test"]));
|
||||
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
|
||||
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
|
||||
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
|
||||
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
|
||||
cout << string(MAXL, '*') << endl;
|
||||
} else {
|
||||
footer(totalScore);
|
||||
}
|
||||
}
|
||||
void Report::footer()
|
||||
void ReportConsole::footer(double totalScore)
|
||||
{
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
cout << headerLine(score + " compared to " + BestResult::title() + " .: " + to_string(totalScore / BestResult::score()));
|
||||
stringstream oss;
|
||||
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
|
||||
cout << headerLine(oss.str());
|
||||
}
|
||||
cout << string(MAXL, '*') << endl << Colors::RESET();
|
||||
|
||||
}
|
||||
}
|
22
src/Platform/ReportConsole.h
Normal file
22
src/Platform/ReportConsole.h
Normal file
@@ -0,0 +1,22 @@
|
||||
#ifndef REPORTCONSOLE_H
|
||||
#define REPORTCONSOLE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "ReportBase.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
const int MAXL = 128;
|
||||
class ReportConsole : public ReportBase{
|
||||
public:
|
||||
explicit ReportConsole(json data_) : ReportBase(data_) {};
|
||||
virtual ~ReportConsole() = default;
|
||||
private:
|
||||
string headerLine(const string& text);
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore);
|
||||
};
|
||||
};
|
||||
#endif
|
109
src/Platform/ReportExcel.cc
Normal file
109
src/Platform/ReportExcel.cc
Normal file
@@ -0,0 +1,109 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void ReportExcel::createFile()
|
||||
{
|
||||
doc.create(Paths::excel() + "some_results.xlsx");
|
||||
wks = doc.workbook().worksheet("Sheet1");
|
||||
wks.setName(data["model"].get<string>());
|
||||
}
|
||||
|
||||
void ReportExcel::closeFile()
|
||||
{
|
||||
doc.save();
|
||||
doc.close();
|
||||
}
|
||||
|
||||
void ReportExcel::header()
|
||||
{
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
wks.cell("A1").value().set(
|
||||
"Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " +
|
||||
to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) +
|
||||
" random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
wks.cell("A2").value() = data["title"].get<string>();
|
||||
wks.cell("A3").value() = "Random seeds: " + fromVector("seeds") + " Stratified: " +
|
||||
(data["stratified"].get<bool>() ? "True" : "False");
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, "
|
||||
<< data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
wks.cell("A4").value() = oss.str();
|
||||
wks.cell("A5").value() = "Score is " + data["score_name"].get<string>();
|
||||
}
|
||||
|
||||
void ReportExcel::body()
|
||||
{
|
||||
auto header = vector<string>(
|
||||
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "Time",
|
||||
"Time Std.", "Hyperparameters" });
|
||||
int col = 1;
|
||||
for (const auto& item : header) {
|
||||
wks.cell(8, col++).value() = item;
|
||||
}
|
||||
int row = 9;
|
||||
col = 1;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
string hyperparameters;
|
||||
for (const auto& r : data["results"]) {
|
||||
wks.cell(row, col).value() = r["dataset"].get<string>();
|
||||
wks.cell(row, col + 1).value() = r["samples"].get<int>();
|
||||
wks.cell(row, col + 2).value() = r["features"].get<int>();
|
||||
wks.cell(row, col + 3).value() = r["classes"].get<int>();
|
||||
wks.cell(row, col + 4).value() = r["nodes"].get<float>();
|
||||
wks.cell(row, col + 5).value() = r["leaves"].get<float>();
|
||||
wks.cell(row, col + 6).value() = r["depth"].get<float>();
|
||||
wks.cell(row, col + 7).value() = r["score"].get<double>();
|
||||
wks.cell(row, col + 8).value() = r["score_std"].get<double>();
|
||||
wks.cell(row, col + 9).value() = r["time"].get<double>();
|
||||
wks.cell(row, col + 10).value() = r["time_std"].get<double>();
|
||||
try {
|
||||
hyperparameters = r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
stringstream oss;
|
||||
oss << r["hyperparameters"];
|
||||
hyperparameters = oss.str();
|
||||
}
|
||||
wks.cell(row, col + 11).value() = hyperparameters;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
row++;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
for (const string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
|
||||
row++;
|
||||
col = 1;
|
||||
wks.cell(row, col).value() = group;
|
||||
for (double item : lastResult[group]) {
|
||||
wks.cell(row, ++col).value() = item;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
footer(totalScore, row);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::footer(double totalScore, int row)
|
||||
{
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
wks.cell(row + 2, 1).value() = score + " compared to " + BestResult::title() + " .: ";
|
||||
wks.cell(row + 2, 5).value() = totalScore / BestResult::score();
|
||||
}
|
||||
}
|
||||
}
|
25
src/Platform/ReportExcel.h
Normal file
25
src/Platform/ReportExcel.h
Normal file
@@ -0,0 +1,25 @@
|
||||
#ifndef REPORTEXCEL_H
|
||||
#define REPORTEXCEL_H
|
||||
#include <OpenXLSX.hpp>
|
||||
#include "ReportBase.h"
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using namespace OpenXLSX;
|
||||
const int MAXLL = 128;
|
||||
class ReportExcel : public ReportBase{
|
||||
public:
|
||||
explicit ReportExcel(json data_) : ReportBase(data_) {createFile();};
|
||||
virtual ~ReportExcel() {closeFile();};
|
||||
private:
|
||||
void createFile();
|
||||
void closeFile();
|
||||
XLDocument doc;
|
||||
XLWorksheet wks;
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore, int row);
|
||||
};
|
||||
};
|
||||
#endif // !REPORTEXCEL_H
|
@@ -1,7 +1,8 @@
|
||||
#include <filesystem>
|
||||
#include "platformUtils.h"
|
||||
#include "Results.h"
|
||||
#include "Report.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "ReportExcel.h"
|
||||
#include "BestResult.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
@@ -94,21 +95,26 @@ namespace platform {
|
||||
cout << "Invalid index" << endl;
|
||||
return -1;
|
||||
}
|
||||
void Results::report(const int index) const
|
||||
void Results::report(const int index, const bool excelReport) const
|
||||
{
|
||||
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
|
||||
auto data = files.at(index).load();
|
||||
Report report(data);
|
||||
report.show();
|
||||
if (excelReport) {
|
||||
ReportExcel report(data);
|
||||
report.show();
|
||||
} else {
|
||||
ReportConsole report(data);
|
||||
report.show();
|
||||
}
|
||||
}
|
||||
void Results::menu()
|
||||
{
|
||||
char option;
|
||||
int index;
|
||||
bool finished = false;
|
||||
string filename, line, options = "qldhsr";
|
||||
string filename, line, options = "qldhsre";
|
||||
while (!finished) {
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r'): ";
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
@@ -119,12 +125,14 @@ namespace platform {
|
||||
}
|
||||
option = line[0];
|
||||
} else {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index);
|
||||
} else {
|
||||
cout << "Invalid option" << endl;
|
||||
if (all_of(line.begin(), line.end(), ::isdigit)) {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index, false);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
cout << "Invalid option" << endl;
|
||||
continue;
|
||||
}
|
||||
switch (option) {
|
||||
@@ -164,7 +172,13 @@ namespace platform {
|
||||
index = getIndex("report");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index);
|
||||
report(index, false);
|
||||
break;
|
||||
case 'e':
|
||||
index = getIndex("excel");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index, true);
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
@@ -231,6 +245,7 @@ namespace platform {
|
||||
cout << "No results found!" << endl;
|
||||
exit(0);
|
||||
}
|
||||
sortDate();
|
||||
show();
|
||||
menu();
|
||||
cout << "Done!" << endl;
|
||||
|
@@ -42,7 +42,7 @@ namespace platform {
|
||||
vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
void show() const;
|
||||
void report(const int index) const;
|
||||
void report(const int index, const bool excelReport) const;
|
||||
int getIndex(const string& intent) const;
|
||||
void menu();
|
||||
void sortList();
|
||||
|
57
src/Platform/list.cc
Normal file
57
src/Platform/list.cc
Normal file
@@ -0,0 +1,57 @@
|
||||
#include <iostream>
|
||||
#include <locale>
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
#include "Datasets.h"
|
||||
|
||||
using namespace std;
|
||||
const int BALANCE_LENGTH = 75;
|
||||
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void outputBalance(const string& balance)
|
||||
{
|
||||
auto temp = string(balance);
|
||||
while (temp.size() > BALANCE_LENGTH - 1) {
|
||||
auto part = temp.substr(0, BALANCE_LENGTH);
|
||||
cout << part << endl;
|
||||
cout << setw(48) << " ";
|
||||
temp = temp.substr(BALANCE_LENGTH);
|
||||
}
|
||||
cout << temp << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto data = platform::Datasets(platform::Paths().datasets(), false);
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << endl;
|
||||
string balanceBars = string(BALANCE_LENGTH, '=');
|
||||
cout << "============================== ====== ===== === " << balanceBars << endl;
|
||||
bool odd = true;
|
||||
for (const auto& dataset : data.getNames()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << dataset << " ";
|
||||
data.loadDataset(dataset);
|
||||
auto nSamples = data.getNSamples(dataset);
|
||||
cout << setw(6) << right << nSamples << " ";
|
||||
cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
|
||||
cout << setw(3) << right << data.getNClasses(dataset) << " ";
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
for (auto number : data.getClassesCounts(dataset)) {
|
||||
oss << sep << setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
|
||||
sep = " / ";
|
||||
}
|
||||
outputBalance(oss.str());
|
||||
odd = !odd;
|
||||
}
|
||||
cout << Colors::RESET() << endl;
|
||||
return 0;
|
||||
}
|
@@ -1,5 +1,6 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
@@ -10,12 +11,14 @@
|
||||
|
||||
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ platform::Paths::datasets() });
|
||||
@@ -31,6 +34,7 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
);
|
||||
program.add_argument("--title").default_value("").help("Experiment title");
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
@@ -59,6 +63,8 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto complete_file_name = path + file_name + ".arff";
|
||||
auto title = program.get<string>("title");
|
||||
auto hyperparameters = program.get<string>("hyperparameters");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
}
|
||||
@@ -74,7 +80,6 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
bool saveResults = false;
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
@@ -82,9 +87,11 @@ int main(int argc, char** argv)
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
auto hyperparameters =program.get<string>("hyperparameters");
|
||||
vector<string> filesToTest;
|
||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
||||
auto title = program.get<string>("title");
|
||||
auto saveResults = program.get<bool>("save");
|
||||
if (file_name != "") {
|
||||
if (!datasets.isDataset(file_name)) {
|
||||
cerr << "Dataset " << file_name << " not found" << endl;
|
||||
@@ -103,9 +110,10 @@ int main(int argc, char** argv)
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
auto experiment = platform::Experiment();
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
experiment.setHyperparameters(json::parse(hyperparameters));
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
@@ -113,10 +121,10 @@ int main(int argc, char** argv)
|
||||
timer.start();
|
||||
experiment.go(filesToTest, path);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults)
|
||||
if (saveResults) {
|
||||
experiment.save(platform::Paths::results());
|
||||
else
|
||||
experiment.report();
|
||||
}
|
||||
experiment.report();
|
||||
cout << "Done!" << endl;
|
||||
return 0;
|
||||
}
|
||||
|
@@ -16,4 +16,6 @@ static platform::Registrar registrarA("AODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||
static platform::Registrar registrarALD("AODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||
static platform::Registrar registrarBA("BoostAODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
||||
#endif
|
Reference in New Issue
Block a user