Compare commits

..

100 Commits

Author SHA1 Message Date
3c7382a93a Enhance tests coverage and report output 2024-04-30 14:00:24 +02:00
b4a222b100 Update gcovr configuration 2024-04-30 12:06:32 +02:00
23ef0cc5f7 Remove catch2 as submodule
Add link to pdf coverage report
2024-04-30 11:02:23 +02:00
793b2d3cd5 Refactor TestUtils to allow partial and shuffle dataset load 2024-04-30 02:11:14 +02:00
ae469b8146 Add hyperparameter convergence_best
move test libraries to test folder
2024-04-30 00:52:09 +02:00
f014928411 Update Makefile actions for coverage 2024-04-21 18:54:13 +02:00
c4b563a339 Add link to the coverage report in the README.md coverage label 2024-04-21 16:44:35 +02:00
49bb0582e6 Add Library Logo 2024-04-21 11:31:27 +02:00
b4c5261e01 Delete .github/workflows/main.yml 2024-04-20 17:54:56 +00:00
b956aa3873 Upgrade version number to 1.0.5
Fix dependency graph
Remove loguru library
2024-04-20 18:00:40 +02:00
1f06631f69 Add check dependencies in make diagrams endpoint 2024-04-19 19:47:37 +02:00
6dd589bd61 Add diagram changes to CHANGELOG 2024-04-19 18:29:43 +02:00
6475f10825 Add class and dependency diagrams 2024-04-19 14:33:00 +02:00
7d906b24d1 Merge pull request 'block_update' (#26) from block_update into main
Reviewed-on: #26
2024-04-15 10:26:50 +00:00
464fe029ea Add dump_cpt classifier test 2024-04-11 18:16:06 +02:00
09a1369122 Add copyright header to source files 2024-04-11 18:02:49 +02:00
503ad687dc Add some more tests to 97% coverage 2024-04-11 17:29:46 +02:00
8eeaa1beee Update changelog with the latest changes 2024-04-11 00:35:55 +02:00
a2de1c9522 Implement block update algorithm fix in BoostAODE 2024-04-11 00:02:43 +02:00
cf9b5716ac block_update and install in local folder 2024-04-10 00:55:36 +02:00
1326891d6a Fix previous tests of BoostAODE
Due to the change of default values for hyperparameters in BoostAODE
2024-04-09 00:13:45 +02:00
da2a969686 Create hyperparameter block_update 2024-04-08 23:36:05 +02:00
f9553a38d7 Fix BoostAODE.md doc 2024-04-08 22:45:32 +02:00
8b6121eaf2 Update readme and boostAODE docs 2024-04-08 22:41:23 +02:00
fbbed8ad68 Make some boostAODE tests 2024-04-08 22:30:55 +02:00
a1178554ff Add Ensemble tests 2024-04-08 19:09:51 +02:00
d12a779bd9 Merge pull request 'bisection proposal' (#24) from bisection into main
Reviewed-on: #24
2024-04-08 14:29:25 +00:00
a8fc29e2b2 Create coverage badge 2024-04-08 11:24:25 +02:00
50543e7929 Add tests for Classifier class 2024-04-08 01:25:14 +02:00
9014649a0d Refactor hyperparameters classifier management 2024-04-08 00:55:30 +02:00
0d6a081d01 Add tests to reach 90% coverage 2024-04-08 00:13:59 +02:00
46cb8d30eb Add codacy code quality badge 2024-04-07 12:35:21 +02:00
cb26ef2562 Add some tests and code quality badge 2024-04-07 02:08:37 +02:00
df45fddd45 Update folding library and test result due to change in random engine 2024-04-05 19:17:53 +02:00
a1f9086780 Fix CFS mistake 2024-04-02 22:53:00 +02:00
e55365c41c Update test Models 2024-04-02 17:56:23 +02:00
de23303801 Refactor tests and add FeatureSelection tests 2024-04-02 17:38:48 +02:00
56b5158ff3 Update BoostAODE class structure 2024-04-02 09:52:40 +02:00
a5a29eb66f Update compiler configuration for Mac 2024-04-02 09:48:03 +02:00
d5eba5710a Update pseudocode 2024-04-01 18:37:51 +02:00
8c61840d81 Update tests 2024-04-01 11:51:29 +02:00
bc0b938cfc Remove dataset clone in BoostAODE 2024-03-21 19:35:08 +01:00
58d5a35a35 Update log output size type 2024-03-21 19:24:51 +01:00
45c048f635 Add initial models to log 2024-03-21 11:23:41 +01:00
6e854dfda3 Fix metrics error in BoostAODE Convergence
Update algorithm
2024-03-20 23:33:02 +01:00
5826702fc7 Remove weights backup 2024-03-20 12:01:57 +01:00
42e2be3263 Implement algorithm and add logging 2024-03-20 11:30:02 +01:00
827b0dd893 Add optimization flags to release 2024-03-19 17:24:21 +01:00
882d905a28 First approach to bisection 2024-03-19 14:13:40 +01:00
422129802a Remove predict_single max_models 2024-03-19 11:35:43 +01:00
eb97a5a14b Remove repeatSparent hyperparameter 2024-03-19 09:42:03 +01:00
eb72f13bf0 Make predict_voting default value false in AODE 2024-03-12 00:27:50 +01:00
5db168d87b Make predict_voting default value false in BoostAODE 2024-03-12 00:26:28 +01:00
8f3bb47cfd Fix Initialize worse_model_count if model accuracy is better in BoostAODE 2024-03-11 22:33:50 +01:00
1986d05c34 Initialize worse_model_count if model accuracy is better in BoostAODE 2024-03-11 21:30:01 +01:00
7c98ba9bea Update License & Readme 2024-03-11 10:57:27 +01:00
538af0253b Fix test & sample issue 2024-03-09 12:45:03 +01:00
0b65e34772 Fix config.h location problem 2024-03-09 12:27:05 +01:00
635ef22520 Refactor library structure 2024-03-08 22:20:54 +01:00
1231f4522a Merge pull request 'Create installation process' (#23) from install_lib into main
Reviewed-on: #23
2024-03-08 11:51:59 +00:00
cc34f79b91 Update changelog and readme 2024-03-08 09:02:22 +01:00
6899033806 Change include of library headers 2024-03-08 01:13:30 +01:00
8e2d05e663 Refactor sample to be out of main CMakeLists 2024-03-08 01:09:39 +01:00
eba2095718 Create installation process 2024-03-08 00:37:36 +01:00
199ffc95d2 Update dates on changelog 2024-03-06 23:42:14 +01:00
cbe15e317d Fix FCBF in select_features 2024-03-06 18:24:27 +01:00
debd890519 Update version number in tests 2024-03-06 17:22:45 +01:00
46e929ff4d Merge pull request 'predict_single' (#22) from predict_single into main
Reviewed-on: #22

close #19
2024-03-06 16:16:15 +00:00
d858e26e4b Update version number and Changelog 2024-03-06 17:04:16 +01:00
0ee3eaed53 Update select features models significance 2024-03-05 12:10:58 +01:00
093c197f0a Replace constant strings in BoostAODE 2024-03-05 11:05:11 +01:00
78d7ea7c4d Add predict_single proposal detailed info 2024-03-03 22:56:01 +01:00
d6af1ffe8e Update gcovr config and fix some warnings 2024-02-28 11:51:37 +01:00
20669dd161 Translate BoostAODE.md to English 2024-02-27 20:29:01 +01:00
272dbad4f3 Update README and docs 2024-02-27 17:16:26 +01:00
8bccc3e4bc Update boostaode algorithm explain 2024-02-27 14:24:58 +01:00
903b143338 Refactor library structure and add sample 2024-02-27 13:06:13 +01:00
f10d0daf2e Update test 2024-02-27 10:16:20 +01:00
d39a17089e Begin implementing predict_single hyperparameter in BoostAODE 2024-02-26 20:29:08 +01:00
2e325cd114 Merge pull request 'change boostaode ascending hyperparameter to order {asc,desc,rand}' (#21) from baode_random into main
Reviewed-on: #21

This PR closes #18
2024-02-26 16:28:48 +00:00
fc3d63b7db change boostaode ascending hyperparameter to order {asc,desc,rand} 2024-02-26 17:07:57 +01:00
43dc79a345 Update version number in ChangeLog 2024-02-25 18:07:50 +01:00
b8589bcd0a Merge pull request 'Add the probabilities aggregation method to compute prediction with ensembles' (#16) from baode_proba into main
Reviewed-on: #16

As only the voting method was implemented, this approach computes the classifiers prediction using a weighted average of the probabilities computed by each model.
Added the predict_proba methods to BaseClassifier - Classifier and Ensemble classes.
Add a hyperparameter to decide the type of computation for ensembles voting - probability aggregation
2024-02-25 11:26:26 +00:00
3007e22a7d Add info to CHANGELOG
Update submodules
2024-02-24 21:33:28 +01:00
02e456befb Complete predict & predict_proba in ensemble 2024-02-24 18:36:09 +01:00
8477698d8d Complete predict & predict_proba with voting & probabilities 2024-02-23 23:11:14 +01:00
52abd2d670 Implement the proba branch and begin with the voting one 2024-02-23 20:36:11 +01:00
3116eaa763 Begin testing ensemble predict_proba 2024-02-22 18:44:40 +01:00
443e5cc882 Implement classifier.predict_proba & test 2024-02-22 11:45:40 +01:00
e1c4221c11 Add predict_voting and predict_prob to ensemble 2024-02-20 10:58:21 +01:00
a63a35df3f Fix epsilont early stopping in BoostAODE 2024-02-20 10:11:22 +01:00
c7555dac3f Add comments to BoostAODE algorithm 2024-02-19 22:58:15 +01:00
f3b8150e2c Add notes to Classifier & Changelog 2024-02-12 10:58:20 +01:00
03f8b8653b Add getNotes test 2024-02-09 12:06:19 +01:00
2163e95c4a add getNotes method 2024-02-09 10:57:19 +01:00
b33da34655 Add notes to Classifier & use them in BoostAODE 2024-02-08 18:01:09 +01:00
e17aee7bdb Remove argparse module 2024-01-09 18:02:17 +01:00
37c31ee4c2 Update libraries 2024-01-08 17:45:11 +01:00
80afdc06f7 Remove unneeded argparse module 2024-01-08 00:55:16 +01:00
Ricardo Montañana Gómez
666782217e Merge pull request #1 from rmontanana/library
Remove other projects' sources
2024-01-07 20:01:37 +01:00
1663 changed files with 624459 additions and 1155 deletions

View File

@@ -5,11 +5,12 @@ Checks: '-*,
cppcoreguidelines-*,
modernize-*,
performance-*,
-modernize-use-nodiscard,
-cppcoreguidelines-pro-type-vararg,
-modernize-use-trailing-return-type,
-bugprone-exception-escape'
HeaderFilterRegex: 'src/*'
HeaderFilterRegex: 'bayesnet/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file

39
.clang-uml Normal file
View File

@@ -0,0 +1,39 @@
compilation_database_dir: build_debug
output_directory: diagrams
diagrams:
BayesNet:
type: class
glob:
- bayesnet/*.h
- bayesnet/classifiers/*.h
- bayesnet/classifiers/*.cc
- bayesnet/ensembles/*.h
- bayesnet/ensembles/*.cc
- bayesnet/feature_selection/*.h
- bayesnet/feature_selection/*.cc
- bayesnet/network/*.h
- bayesnet/network/*.cc
- bayesnet/utils/*.h
- bayesnet/utils/*.cc
include:
# Only include entities from the following namespaces
namespaces:
- bayesnet
exclude:
access:
- private
plantuml:
style:
# Apply this style to all classes in the diagram
class: "#aliceblue;line:blue;line.dotted;text:blue"
# Apply this style to all packages in the diagram
package: "#back:grey"
# Make all template instantiation relations point upwards and draw them
# as green and dotted lines
instantiation: "up[#green,dotted]"
cmd: "/usr/bin/plantuml -tsvg \"diagrams/{}.puml\""
before:
- 'title clang-uml class diagram model'
mermaid:
before:
- 'classDiagram'

2
.gitignore vendored
View File

@@ -38,3 +38,5 @@ cmake-build*/**
.idea
puml/**
.vscode/settings.json
sample/build

14
.gitmodules vendored
View File

@@ -3,21 +3,13 @@
url = https://github.com/rmontanana/mdlp
main = main
update = merge
[submodule "lib/catch2"]
path = lib/catch2
main = v2.x
update = merge
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
master = master
update = merge
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git
master = master
master = master
update = merge
[submodule "lib/folding"]
path = lib/folding
url = https://github.com/rmontanana/folding
main = main
update = merge

View File

@@ -0,0 +1,4 @@
{
"sonarCloudOrganization": "rmontanana",
"projectKey": "rmontanana_BayesNet"
}

View File

@@ -3,15 +3,47 @@
{
"name": "Mac",
"includePath": [
"${workspaceFolder}/**"
"/Users/rmontanana/Code/BayesNet/**"
],
"defines": [],
"macFrameworkPath": [
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
"/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include"
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
"compileCommands": "",
"intelliSenseMode": "macos-clang-arm64",
"mergeConfigurations": false,
"browse": {
"path": [
"/Users/rmontanana/Code/BayesNet/**",
"${workspaceFolder}"
],
"limitSymbolsToIncludedHeaders": true
},
"configurationProvider": "ms-vscode.cmake-tools"
},
{
"name": "Linux",
"includePath": [
"/home/rmontanana/Code/BayesNet/**",
"/home/rmontanana/Code/libtorch/include/torch/csrc/api/include/",
"/home/rmontanana/Code/BayesNet/lib/"
],
"defines": [],
"cStandard": "c17",
"cppStandard": "c++17",
"intelliSenseMode": "linux-gcc-x64",
"mergeConfigurations": false,
"compilerPath": "/usr/bin/g++",
"browse": {
"path": [
"/home/rmontanana/Code/BayesNet/**",
"${workspaceFolder}"
],
"limitSymbolsToIncludedHeaders": true
},
"configurationProvider": "ms-vscode.cmake-tools"
}
],
"version": 4

126
.vscode/launch.json vendored
View File

@@ -5,126 +5,44 @@
"type": "lldb",
"request": "launch",
"name": "sample",
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
"program": "${workspaceFolder}/build_release/sample/bayesnet_sample",
"args": [
"-d",
"iris",
"-m",
"TANLd",
"-s",
"271",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets/",
],
//"cwd": "${workspaceFolder}/build/sample/",
},
{
"type": "lldb",
"request": "launch",
"name": "experimentPy",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"STree",
"--stratified",
"-d",
"iris",
//"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "gridsearch",
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
"args": [
"-m",
"KDB",
"--discretize",
"--continue",
"glass",
"--only",
"--compute"
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "experimentBayes",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"TAN",
"--stratified",
"--discretize",
"-d",
"iris",
"--hyperparameters",
"{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
"args": [
"-m",
"BoostAODE",
"-s",
"accuracy",
"--build",
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
"args": [
"-n",
"20"
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
"args": [],
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
"${workspaceFolder}/tests/data/glass.arff"
]
},
{
"type": "lldb",
"request": "launch",
"name": "test",
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
"args": [
"-c=\"Metrics Test\"",
// "-s",
"\"Bisection Best\""
],
"cwd": "${workspaceFolder}/build/tests",
"cwd": "${workspaceFolder}/build_debug/tests"
},
{
"name": "Build & debug active file",
"name": "(gdb) Launch",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceFolder}/build_debug/bayesnet",
"program": "enter program name, for example ${workspaceFolder}/a.out",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"cwd": "${fileDirname}",
"environment": [],
"externalConsole": false,
"MIMode": "lldb",
"preLaunchTask": "CMake: build"
"MIMode": "gdb",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
},
{
"description": "Set Disassembly Flavor to Intel",
"text": "-gdb-set disassembly-flavor intel",
"ignoreFailures": true
}
]
}
]
}

94
CHANGELOG.md Normal file
View File

@@ -0,0 +1,94 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
### Added
- Add the Library logo generated with <https://openart.ai> to README.md
- Add link to the coverage report in the README.md coverage label.
- Add the *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
### Internal
- Refactor library ArffFile to limit the number of samples with a parameter.
- Refactor tests libraries location to test/lib
- Refactor loadDataset function in tests.
- Remove conditionalEdgeWeights method in BayesMetrics.
## [1.0.5] 2024-04-20
### Added
- Install command and instructions in README.md
- Prefix to install command to install the package in the any location.
- The 'block_update' hyperparameter to the BoostAODE class, to control the way weights/significances are updated. Default value is false.
- Html report of coverage in the coverage folder. It is created with *make viewcoverage*
- Badges of coverage and code quality (codacy) in README.md. Coverage badge is updated with *make viewcoverage*
- Tests to reach 97% of coverage.
- Copyright header to source files.
- Diagrams to README.md: UML class diagram & dependency diagram
- Action to create diagrams to Makefile: *make diagrams*
### Changed
- Sample app now is a separate target in the Makefile and shows how to use the library with a sample dataset
- The worse model count in BoostAODE is reset to 0 every time a new model produces better accuracy, so the tolerance of the model is meant to be the number of **consecutive** models that produce worse accuracy.
- Default hyperparameter values in BoostAODE: bisection is true, maxTolerance is 3, convergence is true
### Removed
- The 'predict_single' hyperparameter from the BoostAODE class.
- The 'repeatSparent' hyperparameter from the BoostAODE class.
## [1.0.4] 2024-03-06
### Added
- Change *ascending* hyperparameter to *order* with these possible values *{"asc", "desc", "rand"}*, Default is *"desc"*.
- Add the *predict_single* hyperparameter to control if only the last model created is used to predict in boost training or the whole ensemble (all the models built so far). Default is true.
- sample app to show how to use the library (make sample)
### Changed
- Change the library structure adding folders for each group of classes (classifiers, ensembles, etc).
- The significances of the models generated under the feature selection algorithm are now computed after all the models have been generated and an &alpha;<sub>t</sub> value is computed and assigned to each model.
## [1.0.3] 2024-02-25
### Added
- Voting / probability aggregation in Ensemble classes
- predict_proba method in Classifier
- predict_proba method in BoostAODE
- predict_voting parameter in BoostAODE constructor to use voting or probability to predict (default is voting)
- hyperparameter predict_voting to AODE, AODELd and BoostAODE (Ensemble child classes)
- tests to check predict & predict_proba coherence
## [1.0.2] - 2024-02-20
### Fixed
- Fix bug in BoostAODE: do not include the model if epsilon sub t is greater than 0.5
- Fix bug in BoostAODE: compare accuracy with previous accuracy instead of the first of the ensemble if convergence true
## [1.0.1] - 2024-02-12
### Added
- Notes in Classifier class
- BoostAODE: Add note with used features in initialization with feature selection
- BoostAODE: Add note with the number of models
- BoostAODE: Add note with the number of features used to create models if not all features are used
- Test version number in TestBayesModels
- Add tests with feature_select and notes on BoostAODE
### Fixed
- Network predict test
- Network predict_proba test
- Network score test

View File

@@ -0,0 +1,5 @@
# Set the default graph title
set(GRAPHVIZ_GRAPH_NAME "BayesNet dependency graph")
set(GRAPHVIZ_SHARED_LIBS OFF)
set(GRAPHVIZ_STATIC_LIBS ON)

View File

@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20)
project(BayesNet
VERSION 1.0.0
VERSION 1.0.5
DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX
@@ -25,23 +25,32 @@ set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -O0 -g")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
option(INSTALL_GTEST "Enable installation of googletest." OFF)
# CMakes modules
# --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
MESSAGE("Debug mode")
set(ENABLE_TESTING ON)
set(CODE_COVERAGE ON)
endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
if (ENABLE_CLANG_TIDY)
@@ -52,24 +61,28 @@ endif (ENABLE_CLANG_TIDY)
# ---------------------------------------------
# include(FetchContent)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
# Subdirectories
# --------------
add_subdirectory(config)
add_subdirectory(lib/Files)
add_subdirectory(src/BayesNet)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
add_subdirectory(bayesnet)
# Testing
# -------
if (ENABLE_TESTING)
MESSAGE("Testing enabled")
add_git_submodule("lib/catch2")
MESSAGE("Testing enabled")
add_subdirectory(tests/lib/catch2)
add_subdirectory(tests/lib/Files)
include(CTest)
add_subdirectory(tests)
endif (ENABLE_TESTING)
# Installation
# ------------
install(TARGETS BayesNet
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
CONFIGURATIONS Release)
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) <year> <copyright holders>
Copyright (c) 2023 Ricardo Montañana Gómez
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

View File

@@ -1,11 +1,18 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help buildr buildd test clean debug release
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge
f_release = build_release
f_debug = build_debug
f_diagrams = diagrams
app_targets = BayesNet
test_targets = unit_tests_bayesnet
test_targets = TestBayesNet
clang-uml = clang-uml
plantuml = plantuml
gcovr = gcovr
lcov = lcov
genhtml = genhtml
dot = dot
n_procs = -j 16
define ClearTests
@@ -29,12 +36,23 @@ setup: ## Install dependencies for tests and coverage
fi
@if [ "$(shell uname)" = "Linux" ]; then \
pip install gcovr; \
sudo dnf install lcov;\
fi
@echo "* You should install plantuml & graphviz for the diagrams"
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/BayesNet.png)
@which $(plantuml) || (echo ">>> Please install plantuml"; exit 1)
@which $(dot) || (echo ">>> Please install graphviz"; exit 1)
@which $(clang-uml) || (echo ">>> Please install clang-uml"; exit 1)
@export PLANTUML_LIMIT_SIZE=16384
@echo ">>> Creating UML class diagram of the project...";
@$(clang-uml) -p
@cd $(f_diagrams); \
$(plantuml) -tsvg BayesNet.puml
@echo ">>> Creating dependency graph diagram of the project...";
$(MAKE) debug
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
cd $(f_debug) && cmake .. --graphviz=dependency.dot
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
@@ -47,6 +65,17 @@ clean: ## Clean the tests info
$(call ClearTests)
@echo ">>> Done";
uninstall: ## Uninstall library
@echo ">>> Uninstalling BayesNet...";
xargs rm < $(f_release)/install_manifest.txt
@echo ">>> Done";
prefix = "/usr/local"
install: ## Install library
@echo ">>> Installing BayesNet...";
@cmake --install $(f_release) --prefix $(prefix)
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet...";
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
@@ -59,27 +88,63 @@ release: ## Build a Release version of the project
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
@mkdir $(f_release);
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
@echo ">>> Done";
fname = "tests/data/iris.arff"
sample: ## Build sample
@echo ">>> Building Sample...";
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
@cd sample && cmake -B build -S . && cmake --build build -t bayesnet_sample
sample/build/bayesnet_sample $(fname)
@echo ">>> Done";
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet & Platform tests...";
@echo ">>> Running BayesNet tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@for t in $(test_targets); do \
echo ">>> Running $$t...";\
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
./$$t $(opt) ; \
cd ../.. ; \
fi ; \
done
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo ">>> Building tests with coverage..."
@which $(gcovr) || (echo ">>> Please install gcovr"; exit 1)
@which $(lcov) || (echo ">>> Please install lcov"; exit 1)
@which $(genhtml) || (echo ">>> Please install lcov"; exit 1)
@$(MAKE) test
@gcovr $(f_debug)/tests
@$(gcovr) $(f_debug)/tests
@echo ">>> Building report..."
@cd $(f_debug)/tests; \
$(lcov) --directory CMakeFiles --capture --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory html >/dev/null 2>&1;
@$(MAKE) updatebadge
@echo ">>> Done";
viewcoverage: ## View the html coverage report
@xdg-open html/index.html || open html/index.html 2>/dev/null
@echo ">>> Done";
updatebadge: ## Update the coverage badge in README.md
@which python || (echo ">>> Please install python"; exit 1)
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
echo ">>> No coverage.info file found. Run make coverage first!"; \
exit 1; \
fi
@echo ">>> Updating coverage badge..."
@env python update_coverage.py $(f_debug)/tests
@echo ">>> Done";
help: ## Show help message
@IFS=$$'\n' ; \

View File

@@ -1,14 +1,39 @@
# BayesNet
# <img src="logo.png" alt="logo" width="50"/> BayesNet
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![C++](https://img.shields.io/badge/c++-%2300599C.svg?style=flat&logo=c%2B%2B&logoColor=white)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](<https://opensource.org/licenses/MIT>)
![Gitea Release](https://img.shields.io/gitea/v/release/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/cf3e0ac71d764650b1bf4d8d00d303b1)](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
[![Coverage Badge](https://img.shields.io/badge/Coverage-97,8%25-green)](html/index.html)
Bayesian Network Classifiers using libtorch from scratch
## Dependencies
The only external dependency is [libtorch](https://pytorch.org/cppdocs/installing.html) which can be installed with the following commands:
```bash
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
unzip libtorch-shared-with-deps-latest.zips
```
## Setup
### Getting the code
```bash
git clone --recurse-submodules https://github.com/doctorado-ml/bayesnet
```
### Release
```bash
make release
make buildr
sudo make install
```
### Debug & Tests
@@ -16,7 +41,38 @@ make buildr
```bash
make debug
make test
make coverage
```
## 1. Introduction
### Coverage
```bash
make coverage
make viewcoverage
```
### Sample app
After building and installing the release version, you can run the sample app with the following commands:
```bash
make sample
make sample fname=tests/data/glass.arff
```
## Models
### [BoostAODE](docs/BoostAODE.md)
## Diagrams
### UML Class Diagram
![BayesNet UML Class Diagram](diagrams/BayesNet.svg)
### Dependency Diagram
![BayesNet Dependency Diagram](diagrams/dependency.svg)
## Coverage report
### [Coverage report](docs/coverage.pdf)

View File

@@ -1,8 +1,13 @@
#ifndef BASE_H
#define BASE_H
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#pragma once
#include <vector>
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <vector>
namespace bayesnet {
enum status_t { NORMAL, WARNING, ERROR };
class BaseClassifier {
@@ -16,22 +21,25 @@ namespace bayesnet {
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
std::vector<std::vector<double>> virtual predict_proba(std::vector<std::vector<int >>& X) = 0;
status_t virtual getStatus() const = 0;
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
int virtual getClassNumStates() const = 0;
std::vector<std::string> virtual show() const = 0;
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
virtual std::string getVersion() = 0;
std::vector<std::string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
std::vector<std::string> virtual getNotes() const = 0;
std::string virtual dump_cpt()const = 0;
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
std::vector<std::string> validHyperparameters;
};
}
#endif
}

13
bayesnet/CMakeLists.txt Normal file
View File

@@ -0,0 +1,13 @@
include_directories(
${BayesNet_SOURCE_DIR}/lib/mdlp
${BayesNet_SOURCE_DIR}/lib/Files
${BayesNet_SOURCE_DIR}/lib/folding
${BayesNet_SOURCE_DIR}/lib/json/include
${BayesNet_SOURCE_DIR}
${CMAKE_BINARY_DIR}/configured_files/include
)
file(GLOB_RECURSE Sources "*.cc")
add_library(BayesNet ${Sources})
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,15 +1,23 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <sstream>
#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
n = features.size();
checkFitParameters();
auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes);
@@ -26,10 +34,11 @@ namespace bayesnet {
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
std::cout << "X dimensions: " << dataset.sizes() << "\n";
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
std::stringstream oss;
oss << "* Error in X and y dimensions *\n";
oss << "X dimensions: " << dataset.sizes() << "\n";
oss << "y dimensions: " << ytmp.sizes();
throw std::runtime_error(oss.str());
}
}
void Classifier::trainModel(const torch::Tensor& weights)
@@ -72,11 +81,11 @@ namespace bayesnet {
if (torch::is_floating_point(dataset)) {
throw std::invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) {
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
if (dataset.size(0) - 1 != features.size()) {
throw std::invalid_argument("Classifier: X " + std::to_string(dataset.size(0) - 1) + " and features " + std::to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw std::invalid_argument("className not found in states");
throw std::invalid_argument("class name not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
@@ -87,14 +96,14 @@ namespace bayesnet {
torch::Tensor Classifier::predict(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict(X);
}
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
@@ -105,18 +114,37 @@ namespace bayesnet {
auto yp = model.predict(Xd);
return yp;
}
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
torch::Tensor Classifier::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict_proba(X);
}
std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
// Convert to nxm vector
for (auto i = 0; i < n_; i++) {
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict_proba(Xd);
return yp;
}
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.score(X, y);
}
@@ -145,16 +173,22 @@ namespace bayesnet {
{
return fitted ? model.getStates() : 0;
}
int Classifier::getClassNumStates() const
{
return fitted ? model.getClassNumStates() : 0;
}
std::vector<std::string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
std::string Classifier::dump_cpt() const
{
model.dump_cpt();
return model.dump_cpt();
}
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
//For classifiers that don't have hyperparameters
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
}

View File

@@ -1,28 +1,18 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef CLASSIFIER_H
#define CLASSIFIER_H
#include <torch/torch.h>
#include "BaseClassifier.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "bayesnet/utils/BayesMetrics.h"
#include "bayesnet/network/Network.h"
#include "bayesnet/BaseClassifier.h"
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
protected:
bool fitted;
int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
std::vector<std::string> features;
std::string className;
std::map<std::string, std::vector<int>> states;
torch::Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void buildDataset(torch::Tensor& y);
public:
Classifier(Network model);
virtual ~Classifier() = default;
@@ -34,16 +24,37 @@ namespace bayesnet {
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
int getClassNumStates() const override;
torch::Tensor predict(torch::Tensor& X) override;
status_t getStatus() const override { return status; }
std::string getVersion() override { return "0.2.0"; };
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
status_t getStatus() const override { return status; }
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
std::vector<std::string> show() const override;
std::vector<std::string> topological_order() override;
void dump_cpt() const override;
std::vector<std::string> getNotes() const override { return notes; }
std::string dump_cpt() const override;
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
protected:
bool fitted;
unsigned int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
std::vector<std::string> features;
std::string className;
std::map<std::string, std::vector<int>> states;
torch::Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
std::vector<std::string> notes; // Used to store messages occurred during the fit process
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void buildDataset(torch::Tensor& y);
private:
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
};
}
#endif

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "KDB.h"
namespace bayesnet {
@@ -6,14 +12,18 @@ namespace bayesnet {
validHyperparameters = { "k", "theta" };
}
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
void KDB::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
hyperparameters.erase("k");
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
hyperparameters.erase("theta");
}
Classifier::setHyperparameters(hyperparameters);
}
void KDB::buildModel(const torch::Tensor& weights)
{

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef KDB_H
#define KDB_H
#include <torch/torch.h>
#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
class KDB : public Classifier {
private:
@@ -14,7 +20,7 @@ namespace bayesnet {
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() = default;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
};
}

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "KDBLd.h"
namespace bayesnet {

View File

@@ -1,7 +1,13 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
#include "KDB.h"
namespace bayesnet {
class KDBLd : public KDB, public Proposal {

View File

@@ -1,5 +1,11 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <ArffFiles.h>
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}

View File

@@ -1,10 +1,16 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include <CPPFImdlp.h>
#include "bayesnet/network/Network.h"
#include "Classifier.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "SPODE.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef SPODE_H
#define SPODE_H
#include "Classifier.h"

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "SPODELd.h"
namespace bayesnet {
@@ -5,25 +11,23 @@ namespace bayesnet {
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
return commonFit(features_, className_, states_);
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone();
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
return commonFit(features_, className_, states_);
}
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
features = features_;
className = className_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
@@ -34,7 +38,6 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model);
return *this;
}
torch::Tensor SPODELd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
@@ -10,6 +16,7 @@ namespace bayesnet {
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states);
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "TAN.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef TAN_H
#define TAN_H
#include "Classifier.h"

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "TANLd.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"

View File

@@ -0,0 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "AODE.h"
namespace bayesnet {
AODE::AODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = { "predict_voting" };
}
void AODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
Classifier::setHyperparameters(hyperparameters);
}
void AODE::buildModel(const torch::Tensor& weights)
{
models.clear();
significanceModels.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i));
}
n_models = models.size();
significanceModels = std::vector<double>(n_models, 1.0);
}
std::vector<std::string> AODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

22
bayesnet/ensembles/AODE.h Normal file
View File

@@ -0,0 +1,22 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef AODE_H
#define AODE_H
#include "bayesnet/classifiers/SPODE.h"
#include "Ensemble.h"
namespace bayesnet {
class AODE : public Ensemble {
public:
AODE(bool predict_voting = false);
virtual ~AODE() {};
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& title = "AODE") const override;
protected:
void buildModel(const torch::Tensor& weights) override;
};
}
#endif

View File

@@ -1,7 +1,15 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "AODELd.h"
namespace bayesnet {
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
{
}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);

View File

@@ -1,20 +1,25 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef AODELD_H
#define AODELD_H
#include "bayesnet/classifiers/Proposal.h"
#include "bayesnet/classifiers/SPODELd.h"
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
class AODELd : public Ensemble, public Proposal {
public:
AODELd(bool predict_voting = true);
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
virtual ~AODELd() = default;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -0,0 +1,396 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <set>
#include <functional>
#include <limits.h>
#include <tuple>
#include <folding.hpp>
#include "bayesnet/feature_selection/CFS.h"
#include "bayesnet/feature_selection/FCBF.h"
#include "bayesnet/feature_selection/IWSS.h"
#include "BoostAODE.h"
#include "lib/log/loguru.cpp"
namespace bayesnet {
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = {
"maxModels", "bisection", "order", "convergence", "convergence_best", "threshold",
"select_features", "maxTolerance", "predict_voting", "block_update"
};
}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
models.clear();
significanceModels.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
auto fold = folding::StratifiedKFold(5, y_, 271);
auto [train, test] = fold.getFold(0);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
// Get train and validation sets
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
y_train = dataset.index({ -1, train_t });
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
y_test = dataset.index({ -1, test_t });
dataset = X_train;
m = X_train.size(1);
auto n_classes = states.at(className).size();
// Build dataset with train data
buildDataset(y_train);
metrics = Metrics(dataset, features, className, n_classes);
} else {
// Use all data to train
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("order")) {
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
order_algorithm = hyperparameters["order"];
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
}
hyperparameters.erase("order");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("convergence_best")) {
convergence_best = hyperparameters["convergence_best"];
hyperparameters.erase("convergence_best");
}
if (hyperparameters.contains("bisection")) {
bisection = hyperparameters["bisection"];
hyperparameters.erase("bisection");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("maxTolerance")) {
maxTolerance = hyperparameters["maxTolerance"];
if (maxTolerance < 1 || maxTolerance > 4)
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
hyperparameters.erase("maxTolerance");
}
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
selectFeatures = true;
select_features_algorithm = selectedAlgorithm;
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
}
hyperparameters.erase("select_features");
}
if (hyperparameters.contains("block_update")) {
block_update = hyperparameters["block_update"];
hyperparameters.erase("block_update");
}
Classifier::setHyperparameters(hyperparameters);
}
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
{
bool terminate = false;
double alpha_t = 0;
auto mask_wrong = ypred != ytrain;
auto mask_right = ypred == ytrain;
auto masked_weights = weights * mask_wrong.to(weights.dtype());
double epsilon_t = masked_weights.sum().item<double>();
if (epsilon_t > 0.5) {
// Inverse the weights policy (plot ln(wt))
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
terminate = true;
} else {
double wt = (1 - epsilon_t) / epsilon_t;
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
// Step 3.2.2: Update weights of right samples
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights).item<double>();
weights = weights / totalWeights;
}
return { weights, alpha_t, terminate };
}
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
{
/* Update Block algorithm
k = # of models in block
n_models = # of models in ensemble to make predictions
n_models_bak = # models saved
models = vector of models to make predictions
models_bak = models not used to make predictions
significances_bak = backup of significances vector
Case list
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
B) k = 1, n_models = n + 1 => n_models = n + k
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
D) k > 1, n_models = k => n = 0, n_models = n + k
E) k > 1, n_models = k + n => n_models = n + k
A, D) n=0, k > 0, n_models == k
1. n_models_bak <- n_models
2. significances_bak <- significances
3. significances = vector(k, 1)
4. Dont move any classifiers out of models
5. n_models <- k
6. Make prediction, compute alpha, update weights
7. Dont restore any classifiers to models
8. significances <- significances_bak
9. Update last k significances
10. n_models <- n_models_bak
B, C, E) n > 0, k > 0, n_models == n + k
1. n_models_bak <- n_models
2. significances_bak <- significances
3. significances = vector(k, 1)
4. Move first n classifiers to models_bak
5. n_models <- k
6. Make prediction, compute alpha, update weights
7. Insert classifiers in models_bak to be the first n models
8. significances <- significances_bak
9. Update last k significances
10. n_models <- n_models_bak
*/
//
// Make predict with only the last k models
//
std::unique_ptr<Classifier> model;
std::vector<std::unique_ptr<Classifier>> models_bak;
// 1. n_models_bak <- n_models 2. significances_bak <- significances
auto significance_bak = significanceModels;
auto n_models_bak = n_models;
// 3. significances = vector(k, 1)
significanceModels = std::vector<double>(k, 1.0);
// 4. Move first n classifiers to models_bak
// backup the first n_models - k models (if n_models == k, don't backup any)
for (int i = 0; i < n_models - k; ++i) {
model = std::move(models[0]);
models.erase(models.begin());
models_bak.push_back(std::move(model));
}
assert(models.size() == k);
// 5. n_models <- k
n_models = k;
// 6. Make prediction, compute alpha, update weights
auto ypred = predict(X_train);
//
// Update weights
//
double alpha_t;
bool terminate;
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
//
// Restore the models if needed
//
// 7. Insert classifiers in models_bak to be the first n models
// if n_models_bak == k, don't restore any, because none of them were moved
if (k != n_models_bak) {
// Insert in the same order as they were extracted
int bak_size = models_bak.size();
for (int i = 0; i < bak_size; ++i) {
model = std::move(models_bak[bak_size - 1 - i]);
models_bak.erase(models_bak.end() - 1);
models.insert(models.begin(), std::move(model));
}
}
// 8. significances <- significances_bak
significanceModels = significance_bak;
//
// Update the significance of the last k models
//
// 9. Update last k significances
for (int i = 0; i < k; ++i) {
significanceModels[n_models_bak - k + i] = alpha_t;
}
// 10. n_models <- n_models_bak
n_models = n_models_bak;
return { weights, alpha_t, terminate };
}
std::vector<int> BoostAODE::initializeModels()
{
std::vector<int> featuresUsed;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (select_features_algorithm == SelectFeatures.CFS) {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (select_features_algorithm == SelectFeatures.IWSS) {
if (threshold < 0 || threshold >0.5) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (select_features_algorithm == SelectFeatures.FCBF) {
if (threshold < 1e-7 || threshold > 1) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
auto scores = featureSelector->getScores();
for (const int& feature : cfsFeatures) {
featuresUsed.push_back(feature);
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0); // They will be updated later in trainModel
n_models++;
}
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
delete featureSelector;
return featuresUsed;
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
//
// Logging setup
//
loguru::set_thread_name("BoostAODE");
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
// Algorithm based on the adaboost algorithm for classification
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
fitted = true;
double alpha_t = 0;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool finished = false;
std::vector<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
auto ypred = predict(X_train);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
}
if (finished) {
return;
}
}
int numItemsPack = 0; // The counter of the models inserted in the current pack
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double improvement = 1.0;
double convergence_threshold = 1e-4;
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
// Step 0: Set the finish condition
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
// run out of features
bool ascending = order_algorithm == Orders.ASC;
std::mt19937 g{ 173 };
while (!finished) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
if (order_algorithm == Orders.RAND) {
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
}
// Remove used features
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
end(featureSelection)
);
int k = bisection ? pow(2, tolerance) : 1;
int counter = 0; // The model counter of the current pack
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
while (counter++ < k && featureSelection.size() > 0) {
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
alpha_t = 0.0;
if (!block_update) {
auto ypred = model->predict(X_train);
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
numItemsPack++;
featuresUsed.push_back(feature);
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
}
if (block_update) {
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
}
if (convergence && !finished) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
} else {
improvement = accuracy - priorAccuracy;
}
if (improvement < convergence_threshold) {
VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
tolerance++;
} else {
VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
tolerance = 0; // Reset the counter if the model performs better
numItemsPack = 0;
}
if (convergence_best) {
// Keep the best accuracy until now as the prior accuracy
priorAccuracy = std::max(accuracy, priorAccuracy);
} else {
// Keep the last accuray obtained as the prior accuracy
priorAccuracy = accuracy;
}
}
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
}
if (tolerance > maxTolerance) {
if (numItemsPack < n_models) {
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
for (int i = 0; i < numItemsPack; ++i) {
significanceModels.pop_back();
models.pop_back();
n_models--;
}
} else {
notes.push_back("Convergence threshold reached & 0 models eliminated");
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
}
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
status = WARNING;
}
notes.push_back("Number of models: " + std::to_string(n_models));
}
std::vector<std::string> BoostAODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

View File

@@ -0,0 +1,50 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include <map>
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
#include "Ensemble.h"
namespace bayesnet {
const struct {
std::string CFS = "CFS";
std::string FCBF = "FCBF";
std::string IWSS = "IWSS";
}SelectFeatures;
const struct {
std::string ASC = "asc";
std::string DESC = "desc";
std::string RAND = "rand";
}Orders;
class BoostAODE : public Ensemble {
public:
explicit BoostAODE(bool predict_voting = false);
virtual ~BoostAODE() = default;
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
std::vector<int> initializeModels();
torch::Tensor X_train, y_train, X_test, y_test;
// Hyperparameters
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
int maxTolerance = 3;
std::string order_algorithm; // order to process the KBest features asc, desc, rand
bool convergence = true; //if true, stop when the model does not improve
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
bool selectFeatures = false; // if true, use feature selection
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
bool block_update = false;
};
}
#endif

View File

@@ -0,0 +1,222 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Ensemble.h"
namespace bayesnet {
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
{
};
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
void Ensemble::trainModel(const torch::Tensor& weights)
{
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
// fit with std::vectors
models[i]->fit(dataset, features, className, states);
}
}
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
{
std::vector<int> y_pred;
for (auto i = 0; i < X.size(); ++i) {
auto max = std::max_element(X[i].begin(), X[i].end());
y_pred.push_back(std::distance(X[i].begin(), max));
}
return y_pred;
}
torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
{
auto y_pred = torch::argmax(X, 1);
return y_pred;
}
torch::Tensor Ensemble::voting(torch::Tensor& votes)
{
// Convert m x n_models tensor to a m x n_class_states with voting probabilities
auto y_pred_ = votes.accessor<int, 2>();
std::vector<int> y_pred_final;
int numClasses = states.at(className).size();
// votes is m x n_models with the prediction of every model for each sample
auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
for (int i = 0; i < votes.size(0); ++i) {
// n_votes store in each index (value of class) the significance added by each model
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
std::vector<double> n_votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
n_votes[y_pred_[i][j]] += significanceModels.at(j);
}
result[i] = torch::tensor(n_votes);
}
// To only do one division and gain precision
result /= sum;
return result;
}
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(ENSEMBLE_NOT_FITTED);
}
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
}
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error(ENSEMBLE_NOT_FITTED);
}
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
}
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
{
auto res = predict_proba(X);
return compute_arg_max(res);
}
torch::Tensor Ensemble::predict(torch::Tensor& X)
{
auto res = predict_proba(X);
return compute_arg_max(res);
}
torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
{
auto n_states = models[0]->getClassNumStates();
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict_proba(X);
std::lock_guard<std::mutex> lock(mtx);
y_pred += ypredict * significanceModels[i];
}));
}
for (auto& thread : threads) {
thread.join();
}
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
y_pred /= sum;
return y_pred;
}
std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
{
auto n_states = models[0]->getClassNumStates();
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict_proba(X);
assert(ypredict.size() == y_pred.size());
assert(ypredict[0].size() == y_pred[0].size());
std::lock_guard<std::mutex> lock(mtx);
// Multiply each prediction by the significance of the model and then add it to the final prediction
for (auto j = 0; j < ypredict.size(); ++j) {
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
}
}));
}
for (auto& thread : threads) {
thread.join();
}
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
//Divide each element of the prediction by the sum of the significances
for (auto j = 0; j < y_pred.size(); ++j) {
std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](double x) { return x / sum; });
}
return y_pred;
}
std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
{
torch::Tensor Xt = bayesnet::vectorToTensor(X, false);
auto y_pred = predict_average_voting(Xt);
std::vector<std::vector<double>> result = tensorToVectorDouble(y_pred);
return result;
}
torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
{
// Build a m x n_models tensor with the predictions of each model
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict(X);
std::lock_guard<std::mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
}
return voting(y_pred);
}
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
{
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(0); ++i) {
if (y_pred[i].item<int>() == y[i].item<int>()) {
correct++;
}
}
return (double)correct / y_pred.size(0);
}
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
std::vector<std::string> Ensemble::show() const
{
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->show();
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
std::vector<std::string> Ensemble::graph(const std::string& title) const
{
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->graph(title + "_" + std::to_string(i));
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
nodes += models[i]->getNumberOfNodes();
}
return nodes;
}
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
edges += models[i]->getNumberOfEdges();
}
return edges;
}
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {
nstates += models[i]->getNumberOfStates();
}
return nstates;
}
}

View File

@@ -0,0 +1,53 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef ENSEMBLE_H
#define ENSEMBLE_H
#include <torch/torch.h>
#include "bayesnet/utils/BayesMetrics.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "bayesnet/classifiers/Classifier.h"
namespace bayesnet {
class Ensemble : public Classifier {
public:
Ensemble(bool predict_voting = true);
virtual ~Ensemble() = default;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
std::vector<std::string> show() const override;
std::vector<std::string> graph(const std::string& title) const override;
std::vector<std::string> topological_order() override
{
return std::vector<std::string>();
}
std::string dump_cpt() const override
{
return "";
}
protected:
torch::Tensor predict_average_voting(torch::Tensor& X);
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
torch::Tensor predict_average_proba(torch::Tensor& X);
std::vector<std::vector<double>> predict_average_proba(std::vector<std::vector<int>>& X);
torch::Tensor compute_arg_max(torch::Tensor& X);
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
torch::Tensor voting(torch::Tensor& votes);
unsigned n_models;
std::vector<std::unique_ptr<Classifier>> models;
std::vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
bool predict_voting;
};
}
#endif

View File

@@ -1,6 +1,12 @@
#include "CFS.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <limits>
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "CFS.h"
namespace bayesnet {
void CFS::fit()
{
@@ -11,7 +17,7 @@ namespace bayesnet {
auto feature = featureOrder[0];
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
selectedFeatures.erase(selectedFeatures.begin());
featureOrder.erase(featureOrder.begin());
while (continueCondition) {
double merit = std::numeric_limits<double>::lowest();
int bestFeature = -1;

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef CFS_H
#define CFS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
namespace bayesnet {
class CFS : public FeatureSelect {
public:

View File

@@ -1,4 +1,10 @@
#include "bayesnetUtils.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "bayesnet/utils/bayesnetUtils.h"
#include "FCBF.h"
namespace bayesnet {

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef FCBF_H
#define FCBF_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
namespace bayesnet {
class FCBF : public FeatureSelect {
public:

View File

@@ -1,6 +1,12 @@
#include "FeatureSelect.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <limits>
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "FeatureSelect.h"
namespace bayesnet {
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
@@ -50,7 +56,6 @@ namespace bayesnet {
}
double FeatureSelect::computeMeritCFS()
{
double result;
double rcf = 0;
for (auto feature : selectedFeatures) {
rcf += suLabels[feature];

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef FEATURE_SELECT_H
#define FEATURE_SELECT_H
#include <torch/torch.h>
#include <vector>
#include "BayesMetrics.h"
#include "bayesnet/utils/BayesMetrics.h"
namespace bayesnet {
class FeatureSelect : public Metrics {
public:

View File

@@ -1,6 +1,12 @@
#include "IWSS.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <limits>
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "IWSS.h"
namespace bayesnet {
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
@@ -28,7 +34,7 @@ namespace bayesnet {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;
if (meritNew > merit || delta < threshold) {
if (meritNew > merit) {
merit = meritNew;

View File

@@ -1,7 +1,13 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef IWSS_H
#define IWSS_H
#include <torch/torch.h>
#include <vector>
#include <torch/torch.h>
#include "FeatureSelect.h"
namespace bayesnet {
class IWSS : public FeatureSelect {

View File

@@ -1,27 +1,41 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <thread>
#include <mutex>
#include <sstream>
#include "Network.h"
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
namespace bayesnet {
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
Network::Network() : fitted{ false }, maxThreads{ 0.95 }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
{
}
Network::Network(float maxT) : fitted{ false }, maxThreads{ maxT }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
{
}
Network::Network(const Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
maxThreads(other.getMaxThreads()), fitted(other.fitted), samples(other.samples)
{
if (samples.defined())
samples = samples.clone();
for (const auto& node : other.nodes) {
nodes[node.first] = std::make_unique<Node>(*node.second);
}
}
void Network::initialize()
{
features = std::vector<std::string>();
features.clear();
className = "";
classNumStates = 0;
fitted = false;
nodes.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads()
float Network::getMaxThreads() const
{
return maxThreads;
}
@@ -71,7 +85,7 @@ namespace bayesnet {
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
@@ -114,11 +128,14 @@ namespace bayesnet {
if (n_features != featureNames.size()) {
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
}
if (features.size() == 0) {
throw std::invalid_argument("The network has not been initialized. You must call addNode() before calling fit()");
}
if (n_features != features.size() - 1) {
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw std::invalid_argument("className not found in Network::features");
throw std::invalid_argument("Class Name not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
@@ -238,6 +255,7 @@ namespace bayesnet {
return predictions;
}
// Return mxn std::vector of probabilities
// tsamples is nxm std::vector of samples
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
{
if (!fitted) {
@@ -392,22 +410,20 @@ namespace bayesnet {
result.insert(it2, fatherName);
ending = false;
}
} else {
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
}
return result;
}
void Network::dump_cpt() const
std::string Network::dump_cpt() const
{
std::stringstream oss;
for (auto& node : nodes) {
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
std::cout << node.second->getCPT() << std::endl;
oss << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
oss << node.second->getCPT() << std::endl;
}
return oss.str();
}
}

View File

@@ -1,36 +1,25 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef NETWORK_H
#define NETWORK_H
#include "Node.h"
#include <map>
#include <vector>
#include "config.h"
#include "bayesnet/config.h"
#include "Node.h"
namespace bayesnet {
class Network {
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
std::vector<std::string> features; // Including classname
std::string className;
double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
double computeFactor(std::map<std::string, int>&);
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
public:
Network();
explicit Network(float);
explicit Network(Network&);
explicit Network(const Network&);
~Network() = default;
torch::Tensor& getSamples();
float getmaxThreads();
float getMaxThreads() const;
void addNode(const std::string&);
void addEdge(const std::string&, const std::string&);
std::map<std::string, std::unique_ptr<Node>>& getNodes();
@@ -56,8 +45,25 @@ namespace bayesnet {
std::vector<std::string> show() const;
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
std::string dump_cpt() const;
inline std::string version() { return { project_version.begin(), project_version.end() }; }
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
std::vector<std::string> features; // Including classname
std::string className;
double laplaceSmoothing;
torch::Tensor samples; // n+1xm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
double computeFactor(std::map<std::string, int>&);
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
};
}
#endif

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Node.h"
namespace bayesnet {

View File

@@ -1,9 +1,15 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef NODE_H
#define NODE_H
#include <torch/torch.h>
#include <unordered_set>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Node {
private:

View File

@@ -1,20 +1,26 @@
#include "BayesMetrics.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Mst.h"
#include "BayesMetrics.h"
namespace bayesnet {
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
, features(features)
, classNumStates(classNumStates)
{
}
//samples is nxm std::vector used to fit the model
//samples is n+1xm std::vector used to fit the model
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: features(features)
: samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
, className(className)
, features(features)
, classNumStates(classNumStates)
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
{
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
@@ -24,7 +30,7 @@ namespace bayesnet {
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
auto n = features.size();
if (k == 0) {
k = n;
}
@@ -99,14 +105,6 @@ namespace bayesnet {
}
return matrix;
}
// To use in Python
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
{
const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{
torch::Tensor counts = feature.bincount(weights);

View File

@@ -1,15 +1,25 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <torch/torch.h>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Metrics {
private:
int classNumStates = 0;
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className;
@@ -34,16 +44,11 @@ namespace bayesnet {
v.erase(v.begin());
return temp;
}
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
private:
int classNumStates = 0;
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
};
}
#endif

View File

@@ -1,6 +1,13 @@
#include "Mst.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <sstream>
#include <vector>
#include <list>
#include "Mst.h"
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
@@ -45,15 +52,6 @@ namespace bayesnet {
}
}
}
void Graph::display_mst()
{
std::cout << "Edge :" << " Weight" << std::endl;
for (int i = 0; i < T.size(); i++) {
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
<< T[i].first;
std::cout << std::endl;
}
}
void insertElement(std::list<int>& variables, int variable)
{

View File

@@ -1,33 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef MST_H
#define MST_H
#include <torch/torch.h>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class MST {
private:
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
public:
MST() = default;
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
std::vector<std::pair<int, int>> maximumSpanningTree();
private:
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
};
class Graph {
private:
int V; // number of nodes in graph
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
public:
explicit Graph(int V);
void addEdge(int u, int v, float wt);
int find_set(int i);
void union_set(int u, int v);
void kruskal_algorithm();
void display_mst();
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
private:
int V; // number of nodes in graph
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
};
}
#endif

View File

@@ -0,0 +1,44 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "bayesnetUtils.h"
namespace bayesnet {
// Return the indices in descending order
std::vector<int> argsort(std::vector<double>& nums)
{
int n = nums.size();
std::vector<int> indices(n);
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices;
}
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
{
// convert mxn tensor to mxn std::vector
std::vector<std::vector<double>> result;
// Iterate over cols
for (int i = 0; i < dtensor.size(0); ++i) {
auto col_tensor = dtensor.index({ i, "..." });
auto col = std::vector<double>(col_tensor.data_ptr<float>(), col_tensor.data_ptr<float>() + dtensor.size(1));
result.push_back(col);
}
return result;
}
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose)
{
// convert nxm std::vector to mxn tensor if transpose
long int m = transpose ? vector[0].size() : vector.size();
long int n = transpose ? vector.size() : vector[0].size();
auto tensor = torch::zeros({ m, n }, torch::kInt32);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
tensor[i][j] = transpose ? vector[j][i] : vector[i][j];
}
}
return tensor;
}
}

View File

@@ -0,0 +1,16 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BAYESNET_UTILS_H
#define BAYESNET_UTILS_H
#include <vector>
#include <torch/torch.h>
namespace bayesnet {
std::vector<int> argsort(std::vector<double>& nums);
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor);
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose = true);
}
#endif //BAYESNET_UTILS_H

View File

@@ -1,4 +1,4 @@
configure_file(
"config.h.in"
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
"${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h" ESCAPE_QUOTES
)

Binary file not shown.

412
diagrams/BayesNet.puml Normal file
View File

@@ -0,0 +1,412 @@
@startuml
title clang-uml class diagram model
class "bayesnet::Metrics" as C_0000736965376885623323
class C_0000736965376885623323 #aliceblue;line:blue;line.dotted;text:blue {
+Metrics() = default : void
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
..
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
+conditionalEdgeWeights(std::vector<float> & weights) : std::vector<float>
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
#entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
+getScoresKBest() const : std::vector<double>
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
#pop_first<T>(std::vector<T> & v) : T
__
#className : std::string
#features : std::vector<std::string>
#samples : torch::Tensor
}
class "bayesnet::Node" as C_0001303524929067080934
class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
+Node(const std::string &) : void
..
+addChild(Node *) : void
+addParent(Node *) : void
+clear() : void
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double laplaceSmoothing, const torch::Tensor & weights) : void
+getCPT() : torch::Tensor &
+getChildren() : std::vector<Node *> &
+getFactorValue(std::map<std::string,int> &) : float
+getName() const : std::string
+getNumStates() const : int
+getParents() : std::vector<Node *> &
+graph(const std::string & clasName) : std::vector<std::string>
+minFill() : unsigned int
+removeChild(Node *) : void
+removeParent(Node *) : void
+setNumStates(int) : void
__
}
class "bayesnet::Network" as C_0001186707649890429575
class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
+Network() : void
+Network(float) : void
+Network(const Network &) : void
+~Network() = default : void
..
+addEdge(const std::string &, const std::string &) : void
+addNode(const std::string &) : void
+dump_cpt() const : std::string
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
+getClassName() const : std::string
+getClassNumStates() const : int
+getEdges() const : std::vector<std::pair<std::string,std::string>>
+getFeatures() const : std::vector<std::string>
+getMaxThreads() const : float
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
+getNumEdges() const : int
+getSamples() : torch::Tensor &
+getStates() const : int
+graph(const std::string & title) const : std::vector<std::string>
+initialize() : void
+predict(const std::vector<std::vector<int>> &) : std::vector<int>
+predict(const torch::Tensor &) : torch::Tensor
+predict_proba(const std::vector<std::vector<int>> &) : std::vector<std::vector<double>>
+predict_proba(const torch::Tensor &) : torch::Tensor
+predict_tensor(const torch::Tensor & samples, const bool proba) : torch::Tensor
+score(const std::vector<std::vector<int>> &, const std::vector<int> &) : double
+show() const : std::vector<std::string>
+topological_sort() : std::vector<std::string>
+version() : std::string
__
}
enum "bayesnet::status_t" as C_0000738420730783851375
enum C_0000738420730783851375 {
NORMAL
WARNING
ERROR
}
abstract "bayesnet::BaseClassifier" as C_0000327135989451974539
abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
+~BaseClassifier() = default : void
..
{abstract} +dump_cpt() const = 0 : std::string
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) = 0 : BaseClassifier &
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
{abstract} +getClassNumStates() const = 0 : int
{abstract} +getNotes() const = 0 : std::vector<std::string>
{abstract} +getNumberOfEdges() const = 0 : int
{abstract} +getNumberOfNodes() const = 0 : int
{abstract} +getNumberOfStates() const = 0 : int
{abstract} +getStatus() const = 0 : status_t
+getValidHyperparameters() : std::vector<std::string> &
{abstract} +getVersion() = 0 : std::string
{abstract} +graph(const std::string & title = "") const = 0 : std::vector<std::string>
{abstract} +predict(std::vector<std::vector<int>> & X) = 0 : std::vector<int>
{abstract} +predict(torch::Tensor & X) = 0 : torch::Tensor
{abstract} +predict_proba(std::vector<std::vector<int>> & X) = 0 : std::vector<std::vector<double>>
{abstract} +predict_proba(torch::Tensor & X) = 0 : torch::Tensor
{abstract} +score(std::vector<std::vector<int>> & X, std::vector<int> & y) = 0 : float
{abstract} +score(torch::Tensor & X, torch::Tensor & y) = 0 : float
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
{abstract} +show() const = 0 : std::vector<std::string>
{abstract} +topological_order() = 0 : std::vector<std::string>
{abstract} #trainModel(const torch::Tensor & weights) = 0 : void
__
#validHyperparameters : std::vector<std::string>
}
abstract "bayesnet::Classifier" as C_0002043996622900301644
abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
+Classifier(Network model) : void
+~Classifier() = default : void
..
+addNodes() : void
#buildDataset(torch::Tensor & y) : void
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
#checkFitParameters() : void
+dump_cpt() const : std::string
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) : Classifier &
+getClassNumStates() const : int
+getNotes() const : std::vector<std::string>
+getNumberOfEdges() const : int
+getNumberOfNodes() const : int
+getNumberOfStates() const : int
+getStatus() const : status_t
+getVersion() : std::string
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
+predict(torch::Tensor & X) : torch::Tensor
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
+predict_proba(torch::Tensor & X) : torch::Tensor
+score(torch::Tensor & X, torch::Tensor & y) : float
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
+setHyperparameters(const nlohmann::json & hyperparameters) : void
+show() const : std::vector<std::string>
+topological_order() : std::vector<std::string>
#trainModel(const torch::Tensor & weights) : void
__
#className : std::string
#dataset : torch::Tensor
#features : std::vector<std::string>
#fitted : bool
#m : unsigned int
#metrics : Metrics
#model : Network
#n : unsigned int
#notes : std::vector<std::string>
#states : std::map<std::string,std::vector<int>>
#status : status_t
}
class "bayesnet::KDB" as C_0001112865019015250005
class C_0001112865019015250005 #aliceblue;line:blue;line.dotted;text:blue {
+KDB(int k, float theta = 0.03) : void
+~KDB() = default : void
..
#buildModel(const torch::Tensor & weights) : void
+graph(const std::string & name = "KDB") const : std::vector<std::string>
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
__
}
class "bayesnet::TAN" as C_0001760994424884323017
class C_0001760994424884323017 #aliceblue;line:blue;line.dotted;text:blue {
+TAN() : void
+~TAN() = default : void
..
#buildModel(const torch::Tensor & weights) : void
+graph(const std::string & name = "TAN") const : std::vector<std::string>
__
}
class "bayesnet::Proposal" as C_0002219995589162262979
class C_0002219995589162262979 #aliceblue;line:blue;line.dotted;text:blue {
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
+~Proposal() : void
..
#checkInput(const torch::Tensor & X, const torch::Tensor & y) : void
#fit_local_discretization(const torch::Tensor & y) : std::map<std::string,std::vector<int>>
#localDiscretizationProposal(const std::map<std::string,std::vector<int>> & states, Network & model) : std::map<std::string,std::vector<int>>
#prepareX(torch::Tensor & X) : torch::Tensor
__
#Xf : torch::Tensor
#discretizers : map<std::string,mdlp::CPPFImdlp *>
#y : torch::Tensor
}
class "bayesnet::TANLd" as C_0001668829096702037834
class C_0001668829096702037834 #aliceblue;line:blue;line.dotted;text:blue {
+TANLd() : void
+~TANLd() = default : void
..
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : TANLd &
+graph(const std::string & name = "TAN") const : std::vector<std::string>
+predict(torch::Tensor & X) : torch::Tensor
{static} +version() : std::string
__
}
abstract "bayesnet::FeatureSelect" as C_0001695326193250580823
abstract C_0001695326193250580823 #aliceblue;line:blue;line.dotted;text:blue {
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
+~FeatureSelect() : void
..
#computeMeritCFS() : double
#computeSuFeatures(const int a, const int b) : double
#computeSuLabels() : void
{abstract} +fit() = 0 : void
+getFeatures() const : std::vector<int>
+getScores() const : std::vector<double>
#initialize() : void
#symmetricalUncertainty(int a, int b) : double
__
#fitted : bool
#maxFeatures : int
#selectedFeatures : std::vector<int>
#selectedScores : std::vector<double>
#suFeatures : std::map<std::pair<int,int>,double>
#suLabels : std::vector<double>
#weights : const torch::Tensor &
}
class "bayesnet::CFS" as C_0000011627355691342494
class C_0000011627355691342494 #aliceblue;line:blue;line.dotted;text:blue {
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
+~CFS() : void
..
+fit() : void
__
}
class "bayesnet::FCBF" as C_0000144682015341746929
class C_0000144682015341746929 #aliceblue;line:blue;line.dotted;text:blue {
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
+~FCBF() : void
..
+fit() : void
__
}
class "bayesnet::IWSS" as C_0000008268514674428553
class C_0000008268514674428553 #aliceblue;line:blue;line.dotted;text:blue {
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
+~IWSS() : void
..
+fit() : void
__
}
class "bayesnet::SPODE" as C_0000512022813807538451
class C_0000512022813807538451 #aliceblue;line:blue;line.dotted;text:blue {
+SPODE(int root) : void
+~SPODE() = default : void
..
#buildModel(const torch::Tensor & weights) : void
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
__
}
class "bayesnet::Ensemble" as C_0001985241386355360576
class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
+Ensemble(bool predict_voting = true) : void
+~Ensemble() = default : void
..
#compute_arg_max(std::vector<std::vector<double>> & X) : std::vector<int>
#compute_arg_max(torch::Tensor & X) : torch::Tensor
+dump_cpt() const : std::string
+getNumberOfEdges() const : int
+getNumberOfNodes() const : int
+getNumberOfStates() const : int
+graph(const std::string & title) const : std::vector<std::string>
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
+predict(torch::Tensor & X) : torch::Tensor
#predict_average_proba(torch::Tensor & X) : torch::Tensor
#predict_average_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
#predict_average_voting(torch::Tensor & X) : torch::Tensor
#predict_average_voting(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
+predict_proba(torch::Tensor & X) : torch::Tensor
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
+score(torch::Tensor & X, torch::Tensor & y) : float
+show() const : std::vector<std::string>
+topological_order() : std::vector<std::string>
#trainModel(const torch::Tensor & weights) : void
#voting(torch::Tensor & votes) : torch::Tensor
__
#models : std::vector<std::unique_ptr<Classifier>>
#n_models : unsigned int
#predict_voting : bool
#significanceModels : std::vector<double>
}
class "bayesnet::(anonymous_45089536)" as C_0001186398587753535158
class C_0001186398587753535158 #aliceblue;line:blue;line.dotted;text:blue {
__
+CFS : std::string
+FCBF : std::string
+IWSS : std::string
}
class "bayesnet::(anonymous_45090163)" as C_0000602764946063116717
class C_0000602764946063116717 #aliceblue;line:blue;line.dotted;text:blue {
__
+ASC : std::string
+DESC : std::string
+RAND : std::string
}
class "bayesnet::BoostAODE" as C_0000358471592399852382
class C_0000358471592399852382 #aliceblue;line:blue;line.dotted;text:blue {
+BoostAODE(bool predict_voting = false) : void
+~BoostAODE() = default : void
..
#buildModel(const torch::Tensor & weights) : void
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
#trainModel(const torch::Tensor & weights) : void
__
}
class "bayesnet::MST" as C_0000131858426172291700
class C_0000131858426172291700 #aliceblue;line:blue;line.dotted;text:blue {
+MST() = default : void
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
..
+maximumSpanningTree() : std::vector<std::pair<int,int>>
__
}
class "bayesnet::Graph" as C_0001197041682001898467
class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
+Graph(int V) : void
..
+addEdge(int u, int v, float wt) : void
+find_set(int i) : int
+get_mst() : std::vector<std::pair<float,std::pair<int,int>>>
+kruskal_algorithm() : void
+union_set(int u, int v) : void
__
}
class "bayesnet::KDBLd" as C_0000344502277874806837
class C_0000344502277874806837 #aliceblue;line:blue;line.dotted;text:blue {
+KDBLd(int k) : void
+~KDBLd() = default : void
..
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : KDBLd &
+graph(const std::string & name = "KDB") const : std::vector<std::string>
+predict(torch::Tensor & X) : torch::Tensor
{static} +version() : std::string
__
}
class "bayesnet::AODE" as C_0000786111576121788282
class C_0000786111576121788282 #aliceblue;line:blue;line.dotted;text:blue {
+AODE(bool predict_voting = false) : void
+~AODE() : void
..
#buildModel(const torch::Tensor & weights) : void
+graph(const std::string & title = "AODE") const : std::vector<std::string>
+setHyperparameters(const nlohmann::json & hyperparameters) : void
__
}
class "bayesnet::SPODELd" as C_0001369655639257755354
class C_0001369655639257755354 #aliceblue;line:blue;line.dotted;text:blue {
+SPODELd(int root) : void
+~SPODELd() = default : void
..
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
+predict(torch::Tensor & X) : torch::Tensor
{static} +version() : std::string
__
}
class "bayesnet::AODELd" as C_0000487273479333793647
class C_0000487273479333793647 #aliceblue;line:blue;line.dotted;text:blue {
+AODELd(bool predict_voting = true) : void
+~AODELd() = default : void
..
#buildModel(const torch::Tensor & weights) : void
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_) : AODELd &
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
#trainModel(const torch::Tensor & weights) : void
__
}
C_0001303524929067080934 --> C_0001303524929067080934 : -parents
C_0001303524929067080934 --> C_0001303524929067080934 : -children
C_0001186707649890429575 o-- C_0001303524929067080934 : -nodes
C_0000327135989451974539 ..> C_0000738420730783851375
C_0002043996622900301644 o-- C_0001186707649890429575 : #model
C_0002043996622900301644 o-- C_0000736965376885623323 : #metrics
C_0002043996622900301644 o-- C_0000738420730783851375 : #status
C_0000327135989451974539 <|-- C_0002043996622900301644
C_0002043996622900301644 <|-- C_0001112865019015250005
C_0002043996622900301644 <|-- C_0001760994424884323017
C_0002219995589162262979 ..> C_0001186707649890429575
C_0001760994424884323017 <|-- C_0001668829096702037834
C_0002219995589162262979 <|-- C_0001668829096702037834
C_0000736965376885623323 <|-- C_0001695326193250580823
C_0001695326193250580823 <|-- C_0000011627355691342494
C_0001695326193250580823 <|-- C_0000144682015341746929
C_0001695326193250580823 <|-- C_0000008268514674428553
C_0002043996622900301644 <|-- C_0000512022813807538451
C_0001985241386355360576 o-- C_0002043996622900301644 : #models
C_0002043996622900301644 <|-- C_0001985241386355360576
C_0000358471592399852382 --> C_0001695326193250580823 : -featureSelector
C_0001985241386355360576 <|-- C_0000358471592399852382
C_0001112865019015250005 <|-- C_0000344502277874806837
C_0002219995589162262979 <|-- C_0000344502277874806837
C_0001985241386355360576 <|-- C_0000786111576121788282
C_0000512022813807538451 <|-- C_0001369655639257755354
C_0002219995589162262979 <|-- C_0001369655639257755354
C_0001985241386355360576 <|-- C_0000487273479333793647
C_0002219995589162262979 <|-- C_0000487273479333793647
'Generated with clang-uml, version 0.5.1
'LLVM version clang version 17.0.6 (Fedora 17.0.6-2.fc39)
@enduml

1
diagrams/BayesNet.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 139 KiB

128
diagrams/dependency.svg Normal file
View File

@@ -0,0 +1,128 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Generated by graphviz version 8.1.0 (20230707.0739)
-->
<!-- Title: BayesNet Pages: 1 -->
<svg width="1632pt" height="288pt"
viewBox="0.00 0.00 1631.95 287.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 283.8)">
<title>BayesNet</title>
<polygon fill="white" stroke="none" points="-4,4 -4,-283.8 1627.95,-283.8 1627.95,4 -4,4"/>
<!-- node1 -->
<g id="node1" class="node">
<title>node1</title>
<polygon fill="none" stroke="black" points="826.43,-254.35 826.43,-269.26 796.69,-279.8 754.63,-279.8 724.89,-269.26 724.89,-254.35 754.63,-243.8 796.69,-243.8 826.43,-254.35"/>
<text text-anchor="middle" x="775.66" y="-257.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
</g>
<!-- node2 -->
<g id="node2" class="node">
<title>node2</title>
<polygon fill="none" stroke="black" points="413.32,-185.8 372.39,-201.03 206.66,-207.8 40.93,-201.03 0,-185.8 114.69,-173.59 298.64,-173.59 413.32,-185.8"/>
<text text-anchor="middle" x="206.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
</g>
<!-- node1&#45;&gt;node2 -->
<g id="edge1" class="edge">
<title>node1&#45;&gt;node2</title>
<path fill="none" stroke="black" d="M724.41,-254.5C634.7,-243.46 447.04,-220.38 324.01,-205.24"/>
<polygon fill="black" stroke="black" points="324.77,-201.69 314.42,-203.94 323.92,-208.63 324.77,-201.69"/>
</g>
<!-- node3 -->
<g id="node3" class="node">
<title>node3</title>
<polygon fill="none" stroke="black" points="857.68,-185.8 815.49,-201.03 644.66,-207.8 473.84,-201.03 431.65,-185.8 549.86,-173.59 739.46,-173.59 857.68,-185.8"/>
<text text-anchor="middle" x="644.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
</g>
<!-- node1&#45;&gt;node3 -->
<g id="edge2" class="edge">
<title>node1&#45;&gt;node3</title>
<path fill="none" stroke="black" d="M747.56,-245.79C729.21,-235.98 704.97,-223.03 684.63,-212.16"/>
<polygon fill="black" stroke="black" points="686.47,-208.64 676,-207.02 683.17,-214.82 686.47,-208.64"/>
</g>
<!-- node4 -->
<g id="node4" class="node">
<title>node4</title>
<polygon fill="none" stroke="black" points="939.33,-182.35 939.33,-197.26 920.78,-207.8 894.54,-207.8 875.99,-197.26 875.99,-182.35 894.54,-171.8 920.78,-171.8 939.33,-182.35"/>
<text text-anchor="middle" x="907.66" y="-185.53" font-family="Times,serif" font-size="12.00">mdlp</text>
</g>
<!-- node1&#45;&gt;node4 -->
<g id="edge3" class="edge">
<title>node1&#45;&gt;node4</title>
<path fill="none" stroke="black" d="M803.66,-245.96C824.66,-234.82 853.45,-219.56 875.41,-207.91"/>
<polygon fill="black" stroke="black" points="876.78,-210.61 883.97,-202.84 873.5,-204.43 876.78,-210.61"/>
</g>
<!-- node9 -->
<g id="node5" class="node">
<title>node9</title>
<polygon fill="none" stroke="black" points="1107.74,-195.37 1032.66,-207.8 957.58,-195.37 986.26,-175.24 1079.06,-175.24 1107.74,-195.37"/>
<text text-anchor="middle" x="1032.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_library</text>
</g>
<!-- node1&#45;&gt;node9 -->
<g id="edge4" class="edge">
<title>node1&#45;&gt;node9</title>
<path fill="none" stroke="black" d="M815.25,-250.02C860.25,-237.77 933.77,-217.74 982.68,-204.42"/>
<polygon fill="black" stroke="black" points="983.3,-207.61 992.02,-201.6 981.46,-200.85 983.3,-207.61"/>
</g>
<!-- node10 -->
<g id="node6" class="node">
<title>node10</title>
<polygon fill="none" stroke="black" points="1159.81,-113.8 1086.89,-129.03 791.66,-135.8 496.43,-129.03 423.52,-113.8 627.82,-101.59 955.5,-101.59 1159.81,-113.8"/>
<text text-anchor="middle" x="791.66" y="-113.53" font-family="Times,serif" font-size="12.00">&#45;Wl,&#45;&#45;no&#45;as&#45;needed,&quot;/home/rmontanana/Code/libtorch/lib/libtorch.so&quot; &#45;Wl,&#45;&#45;as&#45;needed</text>
</g>
<!-- node9&#45;&gt;node10 -->
<g id="edge5" class="edge">
<title>node9&#45;&gt;node10</title>
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M985.62,-175.14C949.2,-164.56 898.31,-149.78 857.79,-138.01"/>
<polygon fill="black" stroke="black" points="859.04,-134.44 848.46,-135.01 857.09,-141.16 859.04,-134.44"/>
</g>
<!-- node5 -->
<g id="node7" class="node">
<title>node5</title>
<polygon fill="none" stroke="black" points="1371.56,-123.37 1274.66,-135.8 1177.77,-123.37 1214.78,-103.24 1334.55,-103.24 1371.56,-123.37"/>
<text text-anchor="middle" x="1274.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
</g>
<!-- node9&#45;&gt;node5 -->
<g id="edge6" class="edge">
<title>node9&#45;&gt;node5</title>
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1079.61,-175.22C1120.66,-163.35 1180.2,-146.13 1222.68,-133.84"/>
<polygon fill="black" stroke="black" points="1223.46,-136.97 1232.09,-130.83 1221.51,-130.24 1223.46,-136.97"/>
</g>
<!-- node6 -->
<g id="node8" class="node">
<title>node6</title>
<polygon fill="none" stroke="black" points="1191.4,-27.9 1114.6,-43.12 803.66,-49.9 492.72,-43.12 415.93,-27.9 631.1,-15.68 976.22,-15.68 1191.4,-27.9"/>
<text text-anchor="middle" x="803.66" y="-27.63" font-family="Times,serif" font-size="12.00">&#45;Wl,&#45;&#45;no&#45;as&#45;needed,&quot;/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so&quot; &#45;Wl,&#45;&#45;as&#45;needed</text>
</g>
<!-- node5&#45;&gt;node6 -->
<g id="edge7" class="edge">
<title>node5&#45;&gt;node6</title>
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1210.16,-105.31C1130.55,-91.13 994.37,-66.87 901.77,-50.38"/>
<polygon fill="black" stroke="black" points="902.44,-46.77 891.98,-48.46 901.22,-53.66 902.44,-46.77"/>
</g>
<!-- node7 -->
<g id="node9" class="node">
<title>node7</title>
<polygon fill="none" stroke="black" points="1339.72,-37.46 1274.66,-49.9 1209.61,-37.46 1234.46,-17.34 1314.87,-17.34 1339.72,-37.46"/>
<text text-anchor="middle" x="1274.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
</g>
<!-- node5&#45;&gt;node7 -->
<g id="edge8" class="edge">
<title>node5&#45;&gt;node7</title>
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1274.66,-102.95C1274.66,-91.56 1274.66,-75.07 1274.66,-60.95"/>
<polygon fill="black" stroke="black" points="1278.16,-61.27 1274.66,-51.27 1271.16,-61.27 1278.16,-61.27"/>
</g>
<!-- node8 -->
<g id="node10" class="node">
<title>node8</title>
<polygon fill="none" stroke="black" points="1623.95,-41.76 1490.66,-63.8 1357.37,-41.76 1408.28,-6.09 1573.04,-6.09 1623.95,-41.76"/>
<text text-anchor="middle" x="1490.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
<text text-anchor="middle" x="1490.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
</g>
<!-- node5&#45;&gt;node8 -->
<g id="edge9" class="edge">
<title>node5&#45;&gt;node8</title>
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1310.82,-102.76C1341.68,-90.77 1386.88,-73.21 1424.25,-58.7"/>
<polygon fill="black" stroke="black" points="1425.01,-61.77 1433.06,-54.89 1422.47,-55.25 1425.01,-61.77"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 7.1 KiB

30
docs/BoostAODE.md Normal file
View File

@@ -0,0 +1,30 @@
# BoostAODE Algorithm Operation
## Hyperparameters
The hyperparameters defined in the algorithm are:
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
- ***biesection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
- ***block_update*** (*boolean*): Sets whether the algorithm will update the weights of the models in blocks. If set to false, the algorithm will update the weights of the models one by one. Default value: *false*.
- ***convergence*** (*boolean*): Sets whether the convergence of the result will be used as a termination condition. If this hyperparameter is set to true, the training dataset passed to the model is divided into two sets, one serving as training data and the other as a test set (so the original test partition will become a validation partition in this case). The partition is made by taking the first partition generated by a process of generating a 5 fold partition with stratification using a predetermined seed. The exit condition used in this *convergence* is that the difference between the accuracy obtained by the current model and that obtained by the previous model is greater than *1e-4*; otherwise, one will be added to the number of models that worsen the result (see next hyperparameter). Default value: *true*.
- ***maxTolerance*** (*int*): Sets the maximum number of models that can worsen the result without constituting a termination condition. if ***bisection*** is set to *true*, the value of this hyperparameter will be exponent of base 2 to compute the number of models to insert at once. Default value: *3*
- ***select_features*** (*{"IWSS", "FCBF", "CFS", ""}*): Selects the variable selection method to be used to build initial models for the ensemble that will be included without considering any of the other exit conditions. Once the models of the selected variables are built, the algorithm will update the weights using the ensemble and set the significance of all the models built with the same &alpha;<sub>t</sub>. Default value: *""*.
- ***threshold*** (*double*): Sets the necessary value for the IWSS and FCBF algorithms to function. Accepted values are:
- IWSS: $threshold \in [0, 0.5]$
- FCBF: $threshold \in [10^{-7}, 1]$
Default value is *-1* so every time any of those algorithms are called, the threshold has to be set to the desired value.
- ***predict_voting*** (*boolean*): Sets whether the algorithm will use *model voting* to predict the result. If set to false, the weighted average of the probabilities of each model's prediction will be used. Default value: *false*.
## Operation
### [Algorithm](./algorithm.md)

Binary file not shown.

Binary file not shown.

117
docs/algorithm.md Normal file
View File

@@ -0,0 +1,117 @@
# Algorithm
- // notation
- $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
- $m$ instances.
- $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
- $W$ a weights vector. $W_0$ are the initial weights.
- $D[W]$ dataset with weights $W$ for the instances.
1. // initialization
2. $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
3. $W \leftarrow W_0$
4. $Vars \leftarrow {\cal{X}}$
5. $\delta \leftarrow 10^{-4}$
6. $convergence \leftarrow True$ // hyperparameter
7. $maxTolerancia \leftarrow 3$ // hyperparameter
8. $bisection \leftarrow False$ // hyperparameter
9. $finished \leftarrow False$
10. $AODE \leftarrow \emptyset$ // the ensemble
11. $tolerance \leftarrow 0$
12. $numModelsInPack \leftarrow 0$
13. $maxAccuracy \leftarrow -1$
14.
15. // main loop
16. While $(\lnot finished)$
1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
2. $k \leftarrow 2^{tolerance}$
3. if ($tolerance == 0$) $numItemsPack \leftarrow0$
4. $P \leftarrow Head(\pi,k)$ // first k features in order
5. $spodes \leftarrow \emptyset$
6. $i \leftarrow 0$
7. While ($i < size(P)$)
1. $X \leftarrow P[i]$
2. $i \leftarrow i + 1$
3. $numItemsPack \leftarrow numItemsPack + 1$
4. $Vars.remove(X)$
5. $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
6. $\hat{y}[] \leftarrow spode.Predict(D)$
7. $\epsilon \leftarrow error(\hat{y}[], y[])$
8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
9. if ($\epsilon > 0.5$)
1. $finished \leftarrow True$
2. break
10. $spodes.add( (spode,\alpha_t) )$
11. $W \leftarrow UpdateWeights(W,\alpha,y[],\hat{y}[])$
8. $AODE.add( spodes )$
9. if ($convergence \land \lnot finished$)
1. $\hat{y}[] \leftarrow AODE.Predict(D)$
2. $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
3. $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
4. if $((accuracy - maxAccuracy) < \delta)$ // result doesn't
improve enough
1. $tolerance \leftarrow tolerance + 1$
5. else
1. $tolerance \leftarrow 0$
2. $numItemsPack \leftarrow 0$
10. If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
17. if ($tolerance > maxTolerance$) // algorithm finished because of
lack of convergence
1. $removeModels(AODE, numItemsPack)$
18. Return $AODE$

80
docs/algorithm.tex Normal file
View File

@@ -0,0 +1,80 @@
\section{Algorithm}
\begin{itemize}
\item[] // notation
\item $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
\item $m$ instances.
\item $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
\item $W$ a weights vector. $W_0$ are the initial weights.
\item $D[W]$ dataset with weights $W$ for the instances.
\end{itemize}
\bigskip
\begin{enumerate}
\item[] // initialization
\item $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
\item $W \leftarrow W_0$
\item $Vars \leftarrow {\cal{X}}$
\item $\delta \leftarrow 10^{-4}$
\item $convergence \leftarrow True$ // hyperparameter
\item $maxTolerancia \leftarrow 3$ // hyperparameter
\item $bisection \leftarrow False$ // hyperparameter
\item $finished \leftarrow False$
\item $AODE \leftarrow \emptyset$ \hspace*{2cm} // the ensemble
\item $tolerance \leftarrow 0$
\item $numModelsInPack \leftarrow 0$
\item $maxAccuracy \leftarrow -1$
\item[]
\newpage
\item[] // main loop
\item While $(\lnot finished)$
\begin{enumerate}
\item $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
\item $k \leftarrow 2^{tolerance}$
\item if ($tolerance == 0$) $numItemsPack \leftarrow0$
\item $P \leftarrow Head(\pi,k)$ \hspace*{2cm} // first k features in order
\item $spodes \leftarrow \emptyset$
\item $i \leftarrow 0$
\item While ($ i < size(P)$)
\begin{enumerate}
\item $X \leftarrow P[i]$
\item $i \leftarrow i + 1$
\item $numItemsPack \leftarrow numItemsPack + 1$
\item $Vars.remove(X)$
\item $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
\item $\hat{y}[] \leftarrow spode.Predict(D)$
\item $\epsilon \leftarrow error(\hat{y}[], y[])$
\item $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
\item if ($\epsilon > 0.5$)
\begin{enumerate}
\item $finished \leftarrow True$
\item break
\end{enumerate}
\item $spodes.add( (spode,\alpha_t) )$
\item $W \leftarrow UpdateWeights(W,\alpha,y[],\hat{y}[])$
\end{enumerate}
\item $AODE.add( spodes )$
\item if ($convergence \land \lnot finished$)
\begin{enumerate}
\item $\hat{y}[] \leftarrow AODE.Predict(D)$
\item $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
\item $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
\item if $((accuracy - maxAccuracy) < \delta)$\hspace*{2cm} // result doesn't improve enough
\begin{enumerate}
\item $tolerance \leftarrow tolerance + 1$
\end{enumerate}
\item else
\begin{enumerate}
\item $tolerance \leftarrow 0$
\item $numItemsPack \leftarrow 0$
\end{enumerate}
\end{enumerate}
\item If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
\item $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
\end{enumerate}
\item if ($tolerance > maxTolerance$) \hspace*{1cm} // algorithm finished because of lack of convergence
\begin{enumerate}
\item $removeModels(AODE, numItemsPack)$
\end{enumerate}
\item Return $AODE$
\end{enumerate}

BIN
docs/coverage.pdf Normal file

Binary file not shown.

View File

@@ -1,4 +1,6 @@
filter = src/
filter = bayesnet/
exclude-directories = build_debug/lib/
exclude-directories = build_debug/tests/lib
exclude = bayesnet/utils/loguru.*
print-summary = yes
sort-percentage = yes
sort = uncovered-percent

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/BaseClassifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryLo">50.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="BaseClassifier.h.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFnHi">606</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD2Ev</a></td>
<td class="coverFnAliasHi">606</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/BaseClassifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryLo">50.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="BaseClassifier.h.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFnHi">606</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD2Ev</a></td>
<td class="coverFnAliasHi">606</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,121 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/BaseClassifier.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (source / <a href="BaseClassifier.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryLo">50.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #pragma once</span>
<span id="L8"><span class="lineNum"> 8</span> : #include &lt;vector&gt;</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &lt;torch/torch.h&gt;</span>
<span id="L10"><span class="lineNum"> 10</span> : #include &lt;nlohmann/json.hpp&gt;</span>
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
<span id="L12"><span class="lineNum"> 12</span> : enum status_t { NORMAL, WARNING, ERROR };</span>
<span id="L13"><span class="lineNum"> 13</span> : class BaseClassifier {</span>
<span id="L14"><span class="lineNum"> 14</span> : public:</span>
<span id="L15"><span class="lineNum"> 15</span> : // X is nxm std::vector, y is nx1 std::vector</span>
<span id="L16"><span class="lineNum"> 16</span> : virtual BaseClassifier&amp; fit(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) = 0;</span>
<span id="L17"><span class="lineNum"> 17</span> : // X is nxm tensor, y is nx1 tensor</span>
<span id="L18"><span class="lineNum"> 18</span> : virtual BaseClassifier&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) = 0;</span>
<span id="L19"><span class="lineNum"> 19</span> : virtual BaseClassifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) = 0;</span>
<span id="L20"><span class="lineNum"> 20</span> : virtual BaseClassifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights) = 0;</span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC tlaBgGNC"> 606 : virtual ~BaseClassifier() = default;</span></span>
<span id="L22"><span class="lineNum"> 22</span> : torch::Tensor virtual predict(torch::Tensor&amp; X) = 0;</span>
<span id="L23"><span class="lineNum"> 23</span> : std::vector&lt;int&gt; virtual predict(std::vector&lt;std::vector&lt;int &gt;&gt;&amp; X) = 0;</span>
<span id="L24"><span class="lineNum"> 24</span> : torch::Tensor virtual predict_proba(torch::Tensor&amp; X) = 0;</span>
<span id="L25"><span class="lineNum"> 25</span> : std::vector&lt;std::vector&lt;double&gt;&gt; virtual predict_proba(std::vector&lt;std::vector&lt;int &gt;&gt;&amp; X) = 0;</span>
<span id="L26"><span class="lineNum"> 26</span> : status_t virtual getStatus() const = 0;</span>
<span id="L27"><span class="lineNum"> 27</span> : float virtual score(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y) = 0;</span>
<span id="L28"><span class="lineNum"> 28</span> : float virtual score(torch::Tensor&amp; X, torch::Tensor&amp; y) = 0;</span>
<span id="L29"><span class="lineNum"> 29</span> : int virtual getNumberOfNodes()const = 0;</span>
<span id="L30"><span class="lineNum"> 30</span> : int virtual getNumberOfEdges()const = 0;</span>
<span id="L31"><span class="lineNum"> 31</span> : int virtual getNumberOfStates() const = 0;</span>
<span id="L32"><span class="lineNum"> 32</span> : int virtual getClassNumStates() const = 0;</span>
<span id="L33"><span class="lineNum"> 33</span> : std::vector&lt;std::string&gt; virtual show() const = 0;</span>
<span id="L34"><span class="lineNum"> 34</span> : std::vector&lt;std::string&gt; virtual graph(const std::string&amp; title = &quot;&quot;) const = 0;</span>
<span id="L35"><span class="lineNum"> 35</span> : virtual std::string getVersion() = 0;</span>
<span id="L36"><span class="lineNum"> 36</span> : std::vector&lt;std::string&gt; virtual topological_order() = 0;</span>
<span id="L37"><span class="lineNum"> 37</span> : std::vector&lt;std::string&gt; virtual getNotes() const = 0;</span>
<span id="L38"><span class="lineNum"> 38</span> : std::string virtual dump_cpt()const = 0;</span>
<span id="L39"><span class="lineNum"> 39</span> : virtual void setHyperparameters(const nlohmann::json&amp; hyperparameters) = 0;</span>
<span id="L40"><span class="lineNum"> 40</span> : std::vector&lt;std::string&gt;&amp; getValidHyperparameters() { return validHyperparameters; }</span>
<span id="L41"><span class="lineNum"> 41</span> : protected:</span>
<span id="L42"><span class="lineNum"> 42</span> : virtual void trainModel(const torch::Tensor&amp; weights) = 0;</span>
<span id="L43"><span class="lineNum"> 43</span> : std::vector&lt;std::string&gt; validHyperparameters;</span>
<span id="L44"><span class="lineNum"> 44</span> : };</span>
<span id="L45"><span class="lineNum"> 45</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,243 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Classifier.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">126</td>
<td class="headerCovTableEntry">126</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">24</td>
<td class="headerCovTableEntry">24</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="Classifier.cc.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">_ZN8bayesnet10Classifier17topological_orderB5cxx11Ev</a></td>
<td class="coverFnHi">2</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">_ZNK8bayesnet10Classifier8dump_cptB5cxx11Ev</a></td>
<td class="coverFnHi">2</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">_ZN8bayesnet10Classifier5scoreERSt6vectorIS1_IiSaIiEESaIS3_EERS3_</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">_ZN8bayesnet10Classifier7predictERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">_ZNK8bayesnet10Classifier17getNumberOfStatesEv</a></td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">_ZNK8bayesnet10Classifier4showB5cxx11Ev</a></td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">_ZN8bayesnet10Classifier18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFnHi">42</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">_ZN8bayesnet10Classifier5scoreERN2at6TensorES3_</a></td>
<td class="coverFnHi">56</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">_ZN8bayesnet10Classifier3fitERSt6vectorIS1_IiSaIiEESaIS3_EERS3_RKS1_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISD_EERKSD_RSt3mapISD_S3_St4lessISD_ESaISt4pairISI_S3_EEE</a></td>
<td class="coverFnHi">60</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">_ZN8bayesnet10Classifier3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">64</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">_ZNK8bayesnet10Classifier16getNumberOfEdgesEv</a></td>
<td class="coverFnHi">94</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">_ZNK8bayesnet10Classifier16getNumberOfNodesEv</a></td>
<td class="coverFnHi">94</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">_ZN8bayesnet10Classifier13predict_probaERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFnHi">130</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">_ZN8bayesnet10Classifier12buildDatasetERN2at6TensorE</a></td>
<td class="coverFnHi">162</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">_ZNK8bayesnet10Classifier17getClassNumStatesEv</a></td>
<td class="coverFnHi">170</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">198</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEERKS2_</a></td>
<td class="coverFnHi">330</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">_ZN8bayesnet10Classifier10trainModelERKN2at6TensorE</a></td>
<td class="coverFnHi">560</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">_ZN8bayesnet10Classifier8addNodesEv</a></td>
<td class="coverFnHi">560</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">_ZN8bayesnet10Classifier18checkFitParametersEv</a></td>
<td class="coverFnHi">644</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">_ZN8bayesnet10Classifier5buildERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEERKN2at6TensorE</a></td>
<td class="coverFnHi">644</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">_ZN8bayesnet10Classifier13predict_probaERN2at6TensorE</a></td>
<td class="coverFnHi">742</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">_ZN8bayesnet10Classifier7predictERN2at6TensorE</a></td>
<td class="coverFnHi">850</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">_ZN8bayesnet10ClassifierC2ENS_7NetworkE</a></td>
<td class="coverFnHi">886</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,243 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Classifier.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">126</td>
<td class="headerCovTableEntry">126</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">24</td>
<td class="headerCovTableEntry">24</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="Classifier.cc.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">_ZN8bayesnet10Classifier10trainModelERKN2at6TensorE</a></td>
<td class="coverFnHi">560</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">_ZN8bayesnet10Classifier12buildDatasetERN2at6TensorE</a></td>
<td class="coverFnHi">162</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">_ZN8bayesnet10Classifier13predict_probaERN2at6TensorE</a></td>
<td class="coverFnHi">742</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">_ZN8bayesnet10Classifier13predict_probaERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFnHi">130</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">_ZN8bayesnet10Classifier17topological_orderB5cxx11Ev</a></td>
<td class="coverFnHi">2</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">_ZN8bayesnet10Classifier18checkFitParametersEv</a></td>
<td class="coverFnHi">644</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">_ZN8bayesnet10Classifier18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFnHi">42</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">198</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEERKS2_</a></td>
<td class="coverFnHi">330</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">_ZN8bayesnet10Classifier3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">64</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">_ZN8bayesnet10Classifier3fitERSt6vectorIS1_IiSaIiEESaIS3_EERS3_RKS1_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISD_EERKSD_RSt3mapISD_S3_St4lessISD_ESaISt4pairISI_S3_EEE</a></td>
<td class="coverFnHi">60</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">_ZN8bayesnet10Classifier5buildERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEERKN2at6TensorE</a></td>
<td class="coverFnHi">644</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">_ZN8bayesnet10Classifier5scoreERN2at6TensorES3_</a></td>
<td class="coverFnHi">56</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">_ZN8bayesnet10Classifier5scoreERSt6vectorIS1_IiSaIiEESaIS3_EERS3_</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">_ZN8bayesnet10Classifier7predictERN2at6TensorE</a></td>
<td class="coverFnHi">850</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">_ZN8bayesnet10Classifier7predictERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">_ZN8bayesnet10Classifier8addNodesEv</a></td>
<td class="coverFnHi">560</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">_ZN8bayesnet10ClassifierC2ENS_7NetworkE</a></td>
<td class="coverFnHi">886</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">_ZNK8bayesnet10Classifier16getNumberOfEdgesEv</a></td>
<td class="coverFnHi">94</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">_ZNK8bayesnet10Classifier16getNumberOfNodesEv</a></td>
<td class="coverFnHi">94</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">_ZNK8bayesnet10Classifier17getClassNumStatesEv</a></td>
<td class="coverFnHi">170</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">_ZNK8bayesnet10Classifier17getNumberOfStatesEv</a></td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">_ZNK8bayesnet10Classifier4showB5cxx11Ev</a></td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">_ZNK8bayesnet10Classifier8dump_cptB5cxx11Ev</a></td>
<td class="coverFnHi">2</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,270 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Classifier.cc</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (source / <a href="Classifier.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">126</td>
<td class="headerCovTableEntry">126</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">24</td>
<td class="headerCovTableEntry">24</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &lt;sstream&gt;</span>
<span id="L8"><span class="lineNum"> 8</span> : #include &quot;bayesnet/utils/bayesnetUtils.h&quot;</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &quot;Classifier.h&quot;</span>
<span id="L10"><span class="lineNum"> 10</span> : </span>
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC tlaBgGNC"> 886 : Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}</span></span>
<span id="L13"><span class="lineNum"> 13</span> : const std::string CLASSIFIER_NOT_FITTED = &quot;Classifier has not been fitted&quot;;</span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 644 : Classifier&amp; Classifier::build(const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights)</span></span>
<span id="L15"><span class="lineNum"> 15</span> : {</span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 644 : this-&gt;features = features;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 644 : this-&gt;className = className;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 644 : this-&gt;states = states;</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 644 : m = dataset.size(1);</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 644 : n = features.size();</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 644 : checkFitParameters();</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 628 : auto n_classes = states.at(className).size();</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 628 : metrics = Metrics(dataset, features, className, n_classes);</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 628 : model.initialize();</span></span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 628 : buildModel(weights);</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 628 : trainModel(weights);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 620 : fitted = true;</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 620 : return *this;</span></span>
<span id="L29"><span class="lineNum"> 29</span> : }</span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 162 : void Classifier::buildDataset(torch::Tensor&amp; ytmp)</span></span>
<span id="L31"><span class="lineNum"> 31</span> : {</span>
<span id="L32"><span class="lineNum"> 32</span> : try {</span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 162 : auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 502 : dataset = torch::cat({ dataset, yresized }, 0);</span></span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 162 : }</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 8 : catch (const std::exception&amp; e) {</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 8 : std::stringstream oss;</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 8 : oss &lt;&lt; &quot;* Error in X and y dimensions *\n&quot;;</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 8 : oss &lt;&lt; &quot;X dimensions: &quot; &lt;&lt; dataset.sizes() &lt;&lt; &quot;\n&quot;;</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 8 : oss &lt;&lt; &quot;y dimensions: &quot; &lt;&lt; ytmp.sizes();</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 8 : throw std::runtime_error(oss.str());</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 16 : }</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 324 : }</span></span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 560 : void Classifier::trainModel(const torch::Tensor&amp; weights)</span></span>
<span id="L45"><span class="lineNum"> 45</span> : {</span>
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 560 : model.fit(dataset, weights, features, className, states);</span></span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 560 : }</span></span>
<span id="L48"><span class="lineNum"> 48</span> : // X is nxm where n is the number of features and m the number of samples</span>
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 64 : Classifier&amp; Classifier::fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L50"><span class="lineNum"> 50</span> : {</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 64 : dataset = X;</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 64 : buildDataset(y);</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 60 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 104 : return build(features, className, states, weights);</span></span>
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 60 : }</span></span>
<span id="L56"><span class="lineNum"> 56</span> : // X is nxm where n is the number of features and m the number of samples</span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 60 : Classifier&amp; Classifier::fit(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L58"><span class="lineNum"> 58</span> : {</span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 60 : dataset = torch::zeros({ static_cast&lt;int&gt;(X.size()), static_cast&lt;int&gt;(X[0].size()) }, torch::kInt32);</span></span>
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 418 : for (int i = 0; i &lt; X.size(); ++i) {</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 1432 : dataset.index_put_({ i, &quot;...&quot; }, torch::tensor(X[i], torch::kInt32));</span></span>
<span id="L62"><span class="lineNum"> 62</span> : }</span>
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 60 : auto ytmp = torch::tensor(y, torch::kInt32);</span></span>
<span id="L64"><span class="lineNum"> 64</span> <span class="tlaGNC"> 60 : buildDataset(ytmp);</span></span>
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 56 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 104 : return build(features, className, states, weights);</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 426 : }</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 198 : Classifier&amp; Classifier::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L69"><span class="lineNum"> 69</span> : {</span>
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 198 : this-&gt;dataset = dataset;</span></span>
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 198 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 396 : return build(features, className, states, weights);</span></span>
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 198 : }</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 330 : Classifier&amp; Classifier::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights)</span></span>
<span id="L75"><span class="lineNum"> 75</span> : {</span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 330 : this-&gt;dataset = dataset;</span></span>
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 330 : return build(features, className, states, weights);</span></span>
<span id="L78"><span class="lineNum"> 78</span> : }</span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 644 : void Classifier::checkFitParameters()</span></span>
<span id="L80"><span class="lineNum"> 80</span> : {</span>
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 644 : if (torch::is_floating_point(dataset)) {</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 4 : throw std::invalid_argument(&quot;dataset (X, y) must be of type Integer&quot;);</span></span>
<span id="L83"><span class="lineNum"> 83</span> : }</span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 640 : if (dataset.size(0) - 1 != features.size()) {</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 4 : throw std::invalid_argument(&quot;Classifier: X &quot; + std::to_string(dataset.size(0) - 1) + &quot; and features &quot; + std::to_string(features.size()) + &quot; must have the same number of features&quot;);</span></span>
<span id="L86"><span class="lineNum"> 86</span> : }</span>
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 636 : if (states.find(className) == states.end()) {</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 4 : throw std::invalid_argument(&quot;class name not found in states&quot;);</span></span>
<span id="L89"><span class="lineNum"> 89</span> : }</span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 14208 : for (auto feature : features) {</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 13580 : if (states.find(feature) == states.end()) {</span></span>
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 4 : throw std::invalid_argument(&quot;feature [&quot; + feature + &quot;] not found in states&quot;);</span></span>
<span id="L93"><span class="lineNum"> 93</span> : }</span>
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 13580 : }</span></span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 628 : }</span></span>
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 850 : torch::Tensor Classifier::predict(torch::Tensor&amp; X)</span></span>
<span id="L97"><span class="lineNum"> 97</span> : {</span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 850 : if (!fitted) {</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L100"><span class="lineNum"> 100</span> : }</span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 842 : return model.predict(X);</span></span>
<span id="L102"><span class="lineNum"> 102</span> : }</span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 8 : std::vector&lt;int&gt; Classifier::predict(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X)</span></span>
<span id="L104"><span class="lineNum"> 104</span> : {</span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 8 : if (!fitted) {</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 4 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L107"><span class="lineNum"> 107</span> : }</span>
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 4 : auto m_ = X[0].size();</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 4 : auto n_ = X.size();</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 4 : std::vector&lt;std::vector&lt;int&gt;&gt; Xd(n_, std::vector&lt;int&gt;(m_, 0));</span></span>
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 20 : for (auto i = 0; i &lt; n_; i++) {</span></span>
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 32 : Xd[i] = std::vector&lt;int&gt;(X[i].begin(), X[i].end());</span></span>
<span id="L113"><span class="lineNum"> 113</span> : }</span>
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 4 : auto yp = model.predict(Xd);</span></span>
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 8 : return yp;</span></span>
<span id="L116"><span class="lineNum"> 116</span> <span class="tlaGNC"> 4 : }</span></span>
<span id="L117"><span class="lineNum"> 117</span> <span class="tlaGNC"> 742 : torch::Tensor Classifier::predict_proba(torch::Tensor&amp; X)</span></span>
<span id="L118"><span class="lineNum"> 118</span> : {</span>
<span id="L119"><span class="lineNum"> 119</span> <span class="tlaGNC"> 742 : if (!fitted) {</span></span>
<span id="L120"><span class="lineNum"> 120</span> <span class="tlaGNC"> 4 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L121"><span class="lineNum"> 121</span> : }</span>
<span id="L122"><span class="lineNum"> 122</span> <span class="tlaGNC"> 738 : return model.predict_proba(X);</span></span>
<span id="L123"><span class="lineNum"> 123</span> : }</span>
<span id="L124"><span class="lineNum"> 124</span> <span class="tlaGNC"> 130 : std::vector&lt;std::vector&lt;double&gt;&gt; Classifier::predict_proba(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X)</span></span>
<span id="L125"><span class="lineNum"> 125</span> : {</span>
<span id="L126"><span class="lineNum"> 126</span> <span class="tlaGNC"> 130 : if (!fitted) {</span></span>
<span id="L127"><span class="lineNum"> 127</span> <span class="tlaGNC"> 4 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L128"><span class="lineNum"> 128</span> : }</span>
<span id="L129"><span class="lineNum"> 129</span> <span class="tlaGNC"> 126 : auto m_ = X[0].size();</span></span>
<span id="L130"><span class="lineNum"> 130</span> <span class="tlaGNC"> 126 : auto n_ = X.size();</span></span>
<span id="L131"><span class="lineNum"> 131</span> <span class="tlaGNC"> 126 : std::vector&lt;std::vector&lt;int&gt;&gt; Xd(n_, std::vector&lt;int&gt;(m_, 0));</span></span>
<span id="L132"><span class="lineNum"> 132</span> : // Convert to nxm vector</span>
<span id="L133"><span class="lineNum"> 133</span> <span class="tlaGNC"> 1080 : for (auto i = 0; i &lt; n_; i++) {</span></span>
<span id="L134"><span class="lineNum"> 134</span> <span class="tlaGNC"> 1908 : Xd[i] = std::vector&lt;int&gt;(X[i].begin(), X[i].end());</span></span>
<span id="L135"><span class="lineNum"> 135</span> : }</span>
<span id="L136"><span class="lineNum"> 136</span> <span class="tlaGNC"> 126 : auto yp = model.predict_proba(Xd);</span></span>
<span id="L137"><span class="lineNum"> 137</span> <span class="tlaGNC"> 252 : return yp;</span></span>
<span id="L138"><span class="lineNum"> 138</span> <span class="tlaGNC"> 126 : }</span></span>
<span id="L139"><span class="lineNum"> 139</span> <span class="tlaGNC"> 56 : float Classifier::score(torch::Tensor&amp; X, torch::Tensor&amp; y)</span></span>
<span id="L140"><span class="lineNum"> 140</span> : {</span>
<span id="L141"><span class="lineNum"> 141</span> <span class="tlaGNC"> 56 : torch::Tensor y_pred = predict(X);</span></span>
<span id="L142"><span class="lineNum"> 142</span> <span class="tlaGNC"> 104 : return (y_pred == y).sum().item&lt;float&gt;() / y.size(0);</span></span>
<span id="L143"><span class="lineNum"> 143</span> <span class="tlaGNC"> 52 : }</span></span>
<span id="L144"><span class="lineNum"> 144</span> <span class="tlaGNC"> 8 : float Classifier::score(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y)</span></span>
<span id="L145"><span class="lineNum"> 145</span> : {</span>
<span id="L146"><span class="lineNum"> 146</span> <span class="tlaGNC"> 8 : if (!fitted) {</span></span>
<span id="L147"><span class="lineNum"> 147</span> <span class="tlaGNC"> 4 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L148"><span class="lineNum"> 148</span> : }</span>
<span id="L149"><span class="lineNum"> 149</span> <span class="tlaGNC"> 4 : return model.score(X, y);</span></span>
<span id="L150"><span class="lineNum"> 150</span> : }</span>
<span id="L151"><span class="lineNum"> 151</span> <span class="tlaGNC"> 12 : std::vector&lt;std::string&gt; Classifier::show() const</span></span>
<span id="L152"><span class="lineNum"> 152</span> : {</span>
<span id="L153"><span class="lineNum"> 153</span> <span class="tlaGNC"> 12 : return model.show();</span></span>
<span id="L154"><span class="lineNum"> 154</span> : }</span>
<span id="L155"><span class="lineNum"> 155</span> <span class="tlaGNC"> 560 : void Classifier::addNodes()</span></span>
<span id="L156"><span class="lineNum"> 156</span> : {</span>
<span id="L157"><span class="lineNum"> 157</span> : // Add all nodes to the network</span>
<span id="L158"><span class="lineNum"> 158</span> <span class="tlaGNC"> 13216 : for (const auto&amp; feature : features) {</span></span>
<span id="L159"><span class="lineNum"> 159</span> <span class="tlaGNC"> 12656 : model.addNode(feature);</span></span>
<span id="L160"><span class="lineNum"> 160</span> : }</span>
<span id="L161"><span class="lineNum"> 161</span> <span class="tlaGNC"> 560 : model.addNode(className);</span></span>
<span id="L162"><span class="lineNum"> 162</span> <span class="tlaGNC"> 560 : }</span></span>
<span id="L163"><span class="lineNum"> 163</span> <span class="tlaGNC"> 94 : int Classifier::getNumberOfNodes() const</span></span>
<span id="L164"><span class="lineNum"> 164</span> : {</span>
<span id="L165"><span class="lineNum"> 165</span> : // Features does not include class</span>
<span id="L166"><span class="lineNum"> 166</span> <span class="tlaGNC"> 94 : return fitted ? model.getFeatures().size() : 0;</span></span>
<span id="L167"><span class="lineNum"> 167</span> : }</span>
<span id="L168"><span class="lineNum"> 168</span> <span class="tlaGNC"> 94 : int Classifier::getNumberOfEdges() const</span></span>
<span id="L169"><span class="lineNum"> 169</span> : {</span>
<span id="L170"><span class="lineNum"> 170</span> <span class="tlaGNC"> 94 : return fitted ? model.getNumEdges() : 0;</span></span>
<span id="L171"><span class="lineNum"> 171</span> : }</span>
<span id="L172"><span class="lineNum"> 172</span> <span class="tlaGNC"> 12 : int Classifier::getNumberOfStates() const</span></span>
<span id="L173"><span class="lineNum"> 173</span> : {</span>
<span id="L174"><span class="lineNum"> 174</span> <span class="tlaGNC"> 12 : return fitted ? model.getStates() : 0;</span></span>
<span id="L175"><span class="lineNum"> 175</span> : }</span>
<span id="L176"><span class="lineNum"> 176</span> <span class="tlaGNC"> 170 : int Classifier::getClassNumStates() const</span></span>
<span id="L177"><span class="lineNum"> 177</span> : {</span>
<span id="L178"><span class="lineNum"> 178</span> <span class="tlaGNC"> 170 : return fitted ? model.getClassNumStates() : 0;</span></span>
<span id="L179"><span class="lineNum"> 179</span> : }</span>
<span id="L180"><span class="lineNum"> 180</span> <span class="tlaGNC"> 2 : std::vector&lt;std::string&gt; Classifier::topological_order()</span></span>
<span id="L181"><span class="lineNum"> 181</span> : {</span>
<span id="L182"><span class="lineNum"> 182</span> <span class="tlaGNC"> 2 : return model.topological_sort();</span></span>
<span id="L183"><span class="lineNum"> 183</span> : }</span>
<span id="L184"><span class="lineNum"> 184</span> <span class="tlaGNC"> 2 : std::string Classifier::dump_cpt() const</span></span>
<span id="L185"><span class="lineNum"> 185</span> : {</span>
<span id="L186"><span class="lineNum"> 186</span> <span class="tlaGNC"> 2 : return model.dump_cpt();</span></span>
<span id="L187"><span class="lineNum"> 187</span> : }</span>
<span id="L188"><span class="lineNum"> 188</span> <span class="tlaGNC"> 42 : void Classifier::setHyperparameters(const nlohmann::json&amp; hyperparameters)</span></span>
<span id="L189"><span class="lineNum"> 189</span> : {</span>
<span id="L190"><span class="lineNum"> 190</span> <span class="tlaGNC"> 42 : if (!hyperparameters.empty()) {</span></span>
<span id="L191"><span class="lineNum"> 191</span> <span class="tlaGNC"> 4 : throw std::invalid_argument(&quot;Invalid hyperparameters&quot; + hyperparameters.dump());</span></span>
<span id="L192"><span class="lineNum"> 192</span> : }</span>
<span id="L193"><span class="lineNum"> 193</span> <span class="tlaGNC"> 38 : }</span></span>
<span id="L194"><span class="lineNum"> 194</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,117 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Classifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">80.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="Classifier.h.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">_ZN8bayesnet10Classifier10getVersionB5cxx11Ev</a></td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">_ZNK8bayesnet10Classifier8getNotesB5cxx11Ev</a></td>
<td class="coverFnHi">38</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">_ZNK8bayesnet10Classifier9getStatusEv</a></td>
<td class="coverFnHi">64</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFnHi">606</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD2Ev</a></td>
<td class="coverFnAliasHi">606</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,117 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Classifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">80.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="Classifier.h.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">_ZN8bayesnet10Classifier10getVersionB5cxx11Ev</a></td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFnHi">606</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD2Ev</a></td>
<td class="coverFnAliasHi">606</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">_ZNK8bayesnet10Classifier8getNotesB5cxx11Ev</a></td>
<td class="coverFnHi">38</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">_ZNK8bayesnet10Classifier9getStatusEv</a></td>
<td class="coverFnHi">64</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,141 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Classifier.h</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (source / <a href="Classifier.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">80.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #ifndef CLASSIFIER_H</span>
<span id="L8"><span class="lineNum"> 8</span> : #define CLASSIFIER_H</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &lt;torch/torch.h&gt;</span>
<span id="L10"><span class="lineNum"> 10</span> : #include &quot;bayesnet/utils/BayesMetrics.h&quot;</span>
<span id="L11"><span class="lineNum"> 11</span> : #include &quot;bayesnet/network/Network.h&quot;</span>
<span id="L12"><span class="lineNum"> 12</span> : #include &quot;bayesnet/BaseClassifier.h&quot;</span>
<span id="L13"><span class="lineNum"> 13</span> : </span>
<span id="L14"><span class="lineNum"> 14</span> : namespace bayesnet {</span>
<span id="L15"><span class="lineNum"> 15</span> : class Classifier : public BaseClassifier {</span>
<span id="L16"><span class="lineNum"> 16</span> : public:</span>
<span id="L17"><span class="lineNum"> 17</span> : Classifier(Network model);</span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC tlaBgGNC"> 606 : virtual ~Classifier() = default;</span></span>
<span id="L19"><span class="lineNum"> 19</span> : Classifier&amp; fit(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L20"><span class="lineNum"> 20</span> : Classifier&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L21"><span class="lineNum"> 21</span> : Classifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L22"><span class="lineNum"> 22</span> : Classifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights) override;</span>
<span id="L23"><span class="lineNum"> 23</span> : void addNodes();</span>
<span id="L24"><span class="lineNum"> 24</span> : int getNumberOfNodes() const override;</span>
<span id="L25"><span class="lineNum"> 25</span> : int getNumberOfEdges() const override;</span>
<span id="L26"><span class="lineNum"> 26</span> : int getNumberOfStates() const override;</span>
<span id="L27"><span class="lineNum"> 27</span> : int getClassNumStates() const override;</span>
<span id="L28"><span class="lineNum"> 28</span> : torch::Tensor predict(torch::Tensor&amp; X) override;</span>
<span id="L29"><span class="lineNum"> 29</span> : std::vector&lt;int&gt; predict(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X) override;</span>
<span id="L30"><span class="lineNum"> 30</span> : torch::Tensor predict_proba(torch::Tensor&amp; X) override;</span>
<span id="L31"><span class="lineNum"> 31</span> : std::vector&lt;std::vector&lt;double&gt;&gt; predict_proba(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X) override;</span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 64 : status_t getStatus() const override { return status; }</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 48 : std::string getVersion() override { return { project_version.begin(), project_version.end() }; };</span></span>
<span id="L34"><span class="lineNum"> 34</span> : float score(torch::Tensor&amp; X, torch::Tensor&amp; y) override;</span>
<span id="L35"><span class="lineNum"> 35</span> : float score(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y) override;</span>
<span id="L36"><span class="lineNum"> 36</span> : std::vector&lt;std::string&gt; show() const override;</span>
<span id="L37"><span class="lineNum"> 37</span> : std::vector&lt;std::string&gt; topological_order() override;</span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 38 : std::vector&lt;std::string&gt; getNotes() const override { return notes; }</span></span>
<span id="L39"><span class="lineNum"> 39</span> : std::string dump_cpt() const override;</span>
<span id="L40"><span class="lineNum"> 40</span> : void setHyperparameters(const nlohmann::json&amp; hyperparameters) override; //For classifiers that don't have hyperparameters</span>
<span id="L41"><span class="lineNum"> 41</span> : protected:</span>
<span id="L42"><span class="lineNum"> 42</span> : bool fitted;</span>
<span id="L43"><span class="lineNum"> 43</span> : unsigned int m, n; // m: number of samples, n: number of features</span>
<span id="L44"><span class="lineNum"> 44</span> : Network model;</span>
<span id="L45"><span class="lineNum"> 45</span> : Metrics metrics;</span>
<span id="L46"><span class="lineNum"> 46</span> : std::vector&lt;std::string&gt; features;</span>
<span id="L47"><span class="lineNum"> 47</span> : std::string className;</span>
<span id="L48"><span class="lineNum"> 48</span> : std::map&lt;std::string, std::vector&lt;int&gt;&gt; states;</span>
<span id="L49"><span class="lineNum"> 49</span> : torch::Tensor dataset; // (n+1)xm tensor</span>
<span id="L50"><span class="lineNum"> 50</span> : status_t status = NORMAL;</span>
<span id="L51"><span class="lineNum"> 51</span> : std::vector&lt;std::string&gt; notes; // Used to store messages occurred during the fit process</span>
<span id="L52"><span class="lineNum"> 52</span> : void checkFitParameters();</span>
<span id="L53"><span class="lineNum"> 53</span> : virtual void buildModel(const torch::Tensor&amp; weights) = 0;</span>
<span id="L54"><span class="lineNum"> 54</span> : void trainModel(const torch::Tensor&amp; weights) override;</span>
<span id="L55"><span class="lineNum"> 55</span> : void buildDataset(torch::Tensor&amp; y);</span>
<span id="L56"><span class="lineNum"> 56</span> : private:</span>
<span id="L57"><span class="lineNum"> 57</span> : Classifier&amp; build(const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights);</span>
<span id="L58"><span class="lineNum"> 58</span> : };</span>
<span id="L59"><span class="lineNum"> 59</span> : }</span>
<span id="L60"><span class="lineNum"> 60</span> : #endif</span>
<span id="L61"><span class="lineNum"> 61</span> : </span>
<span id="L62"><span class="lineNum"> 62</span> : </span>
<span id="L63"><span class="lineNum"> 63</span> : </span>
<span id="L64"><span class="lineNum"> 64</span> : </span>
<span id="L65"><span class="lineNum"> 65</span> : </span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,110 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDB.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">96.3&nbsp;%</td>
<td class="headerCovTableEntry">54</td>
<td class="headerCovTableEntry">52</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">5</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDB.cc.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">_ZNK8bayesnet3KDB5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">_ZN8bayesnet3KDB18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFnHi">6</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">_ZN8bayesnet3KDB10buildModelERKN2at6TensorE</a></td>
<td class="coverFnHi">26</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">_ZN8bayesnet3KDBC2Eif</a></td>
<td class="coverFnHi">74</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">_ZN8bayesnet3KDB11add_m_edgesEiRSt6vectorIiSaIiEERN2at6TensorE</a></td>
<td class="coverFnHi">172</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,110 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDB.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">96.3&nbsp;%</td>
<td class="headerCovTableEntry">54</td>
<td class="headerCovTableEntry">52</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">5</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDB.cc.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">_ZN8bayesnet3KDB10buildModelERKN2at6TensorE</a></td>
<td class="coverFnHi">26</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">_ZN8bayesnet3KDB11add_m_edgesEiRSt6vectorIiSaIiEERN2at6TensorE</a></td>
<td class="coverFnHi">172</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">_ZN8bayesnet3KDB18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFnHi">6</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">_ZN8bayesnet3KDBC2Eif</a></td>
<td class="coverFnHi">74</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">_ZNK8bayesnet3KDB5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">4</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,187 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDB.cc</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (source / <a href="KDB.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">96.3&nbsp;%</td>
<td class="headerCovTableEntry">54</td>
<td class="headerCovTableEntry">52</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">5</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;KDB.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 74 : KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)</span></span>
<span id="L11"><span class="lineNum"> 11</span> : {</span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 222 : validHyperparameters = { &quot;k&quot;, &quot;theta&quot; };</span></span>
<span id="L13"><span class="lineNum"> 13</span> : </span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 222 : }</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 6 : void KDB::setHyperparameters(const nlohmann::json&amp; hyperparameters_)</span></span>
<span id="L16"><span class="lineNum"> 16</span> : {</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 6 : auto hyperparameters = hyperparameters_;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 6 : if (hyperparameters.contains(&quot;k&quot;)) {</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 2 : k = hyperparameters[&quot;k&quot;];</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 2 : hyperparameters.erase(&quot;k&quot;);</span></span>
<span id="L21"><span class="lineNum"> 21</span> : }</span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 6 : if (hyperparameters.contains(&quot;theta&quot;)) {</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 2 : theta = hyperparameters[&quot;theta&quot;];</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 2 : hyperparameters.erase(&quot;theta&quot;);</span></span>
<span id="L25"><span class="lineNum"> 25</span> : }</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 6 : Classifier::setHyperparameters(hyperparameters);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 6 : }</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 26 : void KDB::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L29"><span class="lineNum"> 29</span> : {</span>
<span id="L30"><span class="lineNum"> 30</span> : /*</span>
<span id="L31"><span class="lineNum"> 31</span> : 1. For each feature Xi, compute mutual information, I(X;C),</span>
<span id="L32"><span class="lineNum"> 32</span> : where C is the class.</span>
<span id="L33"><span class="lineNum"> 33</span> : 2. Compute class conditional mutual information I(Xi;XjIC), f or each</span>
<span id="L34"><span class="lineNum"> 34</span> : pair of features Xi and Xj, where i#j.</span>
<span id="L35"><span class="lineNum"> 35</span> : 3. Let the used variable list, S, be empty.</span>
<span id="L36"><span class="lineNum"> 36</span> : 4. Let the DAG network being constructed, BN, begin with a single</span>
<span id="L37"><span class="lineNum"> 37</span> : class node, C.</span>
<span id="L38"><span class="lineNum"> 38</span> : 5. Repeat until S includes all domain features</span>
<span id="L39"><span class="lineNum"> 39</span> : 5.1. Select feature Xmax which is not in S and has the largest value</span>
<span id="L40"><span class="lineNum"> 40</span> : I(Xmax;C).</span>
<span id="L41"><span class="lineNum"> 41</span> : 5.2. Add a node to BN representing Xmax.</span>
<span id="L42"><span class="lineNum"> 42</span> : 5.3. Add an arc from C to Xmax in BN.</span>
<span id="L43"><span class="lineNum"> 43</span> : 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with</span>
<span id="L44"><span class="lineNum"> 44</span> : the highest value for I(Xmax;X,jC).</span>
<span id="L45"><span class="lineNum"> 45</span> : 5.5. Add Xmax to S.</span>
<span id="L46"><span class="lineNum"> 46</span> : Compute the conditional probabilility infered by the structure of BN by</span>
<span id="L47"><span class="lineNum"> 47</span> : using counts from DB, and output BN.</span>
<span id="L48"><span class="lineNum"> 48</span> : */</span>
<span id="L49"><span class="lineNum"> 49</span> : // 1. For each feature Xi, compute mutual information, I(X;C),</span>
<span id="L50"><span class="lineNum"> 50</span> : // where C is the class.</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 26 : addNodes();</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 78 : const torch::Tensor&amp; y = dataset.index({ -1, &quot;...&quot; });</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 26 : std::vector&lt;double&gt; mi;</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 198 : for (auto i = 0; i &lt; features.size(); i++) {</span></span>
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 516 : torch::Tensor firstFeature = dataset.index({ i, &quot;...&quot; });</span></span>
<span id="L56"><span class="lineNum"> 56</span> <span class="tlaGNC"> 172 : mi.push_back(metrics.mutualInformation(firstFeature, y, weights));</span></span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 172 : }</span></span>
<span id="L58"><span class="lineNum"> 58</span> : // 2. Compute class conditional mutual information I(Xi;XjIC), f or each</span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 26 : auto conditionalEdgeWeights = metrics.conditionalEdge(weights);</span></span>
<span id="L60"><span class="lineNum"> 60</span> : // 3. Let the used variable list, S, be empty.</span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 26 : std::vector&lt;int&gt; S;</span></span>
<span id="L62"><span class="lineNum"> 62</span> : // 4. Let the DAG network being constructed, BN, begin with a single</span>
<span id="L63"><span class="lineNum"> 63</span> : // class node, C.</span>
<span id="L64"><span class="lineNum"> 64</span> : // 5. Repeat until S includes all domain features</span>
<span id="L65"><span class="lineNum"> 65</span> : // 5.1. Select feature Xmax which is not in S and has the largest value</span>
<span id="L66"><span class="lineNum"> 66</span> : // I(Xmax;C).</span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 26 : auto order = argsort(mi);</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 198 : for (auto idx : order) {</span></span>
<span id="L69"><span class="lineNum"> 69</span> : // 5.2. Add a node to BN representing Xmax.</span>
<span id="L70"><span class="lineNum"> 70</span> : // 5.3. Add an arc from C to Xmax in BN.</span>
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 172 : model.addEdge(className, features[idx]);</span></span>
<span id="L72"><span class="lineNum"> 72</span> : // 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with</span>
<span id="L73"><span class="lineNum"> 73</span> : // the highest value for I(Xmax;X,jC).</span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 172 : add_m_edges(idx, S, conditionalEdgeWeights);</span></span>
<span id="L75"><span class="lineNum"> 75</span> : // 5.5. Add Xmax to S.</span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 172 : S.push_back(idx);</span></span>
<span id="L77"><span class="lineNum"> 77</span> : }</span>
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 224 : }</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 172 : void KDB::add_m_edges(int idx, std::vector&lt;int&gt;&amp; S, torch::Tensor&amp; weights)</span></span>
<span id="L80"><span class="lineNum"> 80</span> : {</span>
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 172 : auto n_edges = std::min(k, static_cast&lt;int&gt;(S.size()));</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 172 : auto cond_w = clone(weights);</span></span>
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 172 : bool exit_cond = k == 0;</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 172 : int num = 0;</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 502 : while (!exit_cond) {</span></span>
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 1320 : auto max_minfo = argmax(cond_w.index({ idx, &quot;...&quot; })).item&lt;int&gt;();</span></span>
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 330 : auto belongs = find(S.begin(), S.end(), max_minfo) != S.end();</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 882 : if (belongs &amp;&amp; cond_w.index({ idx, max_minfo }).item&lt;float&gt;() &gt; theta) {</span></span>
<span id="L89"><span class="lineNum"> 89</span> : try {</span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 160 : model.addEdge(features[max_minfo], features[idx]);</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 160 : num++;</span></span>
<span id="L92"><span class="lineNum"> 92</span> : }</span>
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaUNC tlaBgUNC"> 0 : catch (const std::invalid_argument&amp; e) {</span></span>
<span id="L94"><span class="lineNum"> 94</span> : // Loops are not allowed</span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaUNC"> 0 : }</span></span>
<span id="L96"><span class="lineNum"> 96</span> : }</span>
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC tlaBgGNC"> 1320 : cond_w.index_put_({ idx, max_minfo }, -1);</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 990 : auto candidates_mask = cond_w.index({ idx, &quot;...&quot; }).gt(theta);</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 330 : auto candidates = candidates_mask.nonzero();</span></span>
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 330 : exit_cond = num == n_edges || candidates.size(0) == 0;</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 330 : }</span></span>
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 1346 : }</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 4 : std::vector&lt;std::string&gt; KDB::graph(const std::string&amp; title) const</span></span>
<span id="L104"><span class="lineNum"> 104</span> : {</span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 4 : std::string header{ title };</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 4 : if (title == &quot;KDB&quot;) {</span></span>
<span id="L107"><span class="lineNum"> 107</span> <span class="tlaGNC"> 4 : header += &quot; (k=&quot; + std::to_string(k) + &quot;, theta=&quot; + std::to_string(theta) + &quot;)&quot;;</span></span>
<span id="L108"><span class="lineNum"> 108</span> : }</span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 8 : return model.graph(header);</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 4 : }</span></span>
<span id="L111"><span class="lineNum"> 111</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDB.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDB.h.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFnHi">22</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFnAliasHi">4</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD2Ev</a></td>
<td class="coverFnAliasHi">18</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDB.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDB.h.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFnHi">22</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFnAliasHi">4</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD2Ev</a></td>
<td class="coverFnAliasHi">18</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,103 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDB.h</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (source / <a href="KDB.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #ifndef KDB_H</span>
<span id="L8"><span class="lineNum"> 8</span> : #define KDB_H</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &lt;torch/torch.h&gt;</span>
<span id="L10"><span class="lineNum"> 10</span> : #include &quot;bayesnet/utils/bayesnetUtils.h&quot;</span>
<span id="L11"><span class="lineNum"> 11</span> : #include &quot;Classifier.h&quot;</span>
<span id="L12"><span class="lineNum"> 12</span> : namespace bayesnet {</span>
<span id="L13"><span class="lineNum"> 13</span> : class KDB : public Classifier {</span>
<span id="L14"><span class="lineNum"> 14</span> : private:</span>
<span id="L15"><span class="lineNum"> 15</span> : int k;</span>
<span id="L16"><span class="lineNum"> 16</span> : float theta;</span>
<span id="L17"><span class="lineNum"> 17</span> : void add_m_edges(int idx, std::vector&lt;int&gt;&amp; S, torch::Tensor&amp; weights);</span>
<span id="L18"><span class="lineNum"> 18</span> : protected:</span>
<span id="L19"><span class="lineNum"> 19</span> : void buildModel(const torch::Tensor&amp; weights) override;</span>
<span id="L20"><span class="lineNum"> 20</span> : public:</span>
<span id="L21"><span class="lineNum"> 21</span> : explicit KDB(int k, float theta = 0.03);</span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC tlaBgGNC"> 22 : virtual ~KDB() = default;</span></span>
<span id="L23"><span class="lineNum"> 23</span> : void setHyperparameters(const nlohmann::json&amp; hyperparameters_) override;</span>
<span id="L24"><span class="lineNum"> 24</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; name = &quot;KDB&quot;) const override;</span>
<span id="L25"><span class="lineNum"> 25</span> : };</span>
<span id="L26"><span class="lineNum"> 26</span> : }</span>
<span id="L27"><span class="lineNum"> 27</span> : #endif</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,103 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDBLd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">17</td>
<td class="headerCovTableEntry">17</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDBLd.cc.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">_ZNK8bayesnet5KDBLd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">2</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">_ZN8bayesnet5KDBLd7predictERN2at6TensorE</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">_ZN8bayesnet5KDBLd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">10</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">_ZN8bayesnet5KDBLdC2Ei</a></td>
<td class="coverFnHi">34</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,103 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDBLd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">17</td>
<td class="headerCovTableEntry">17</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDBLd.cc.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">_ZN8bayesnet5KDBLd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">10</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">_ZN8bayesnet5KDBLd7predictERN2at6TensorE</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">_ZN8bayesnet5KDBLdC2Ei</a></td>
<td class="coverFnHi">34</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">_ZNK8bayesnet5KDBLd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">2</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,111 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDBLd.cc</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (source / <a href="KDBLd.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">17</td>
<td class="headerCovTableEntry">17</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;KDBLd.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 34 : KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 10 : KDBLd&amp; KDBLd::fit(torch::Tensor&amp; X_, torch::Tensor&amp; y_, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L12"><span class="lineNum"> 12</span> : {</span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 10 : checkInput(X_, y_);</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 10 : features = features_;</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 10 : className = className_;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 10 : Xf = X_;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 10 : y = y_;</span></span>
<span id="L18"><span class="lineNum"> 18</span> : // Fills std::vectors Xv &amp; yv with the data from tensors X_ (discretized) &amp; y</span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 10 : states = fit_local_discretization(y);</span></span>
<span id="L20"><span class="lineNum"> 20</span> : // We have discretized the input data</span>
<span id="L21"><span class="lineNum"> 21</span> : // 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network</span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 10 : KDB::fit(dataset, features, className, states);</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 10 : states = localDiscretizationProposal(states, model);</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 10 : return *this;</span></span>
<span id="L25"><span class="lineNum"> 25</span> : }</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 8 : torch::Tensor KDBLd::predict(torch::Tensor&amp; X)</span></span>
<span id="L27"><span class="lineNum"> 27</span> : {</span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 8 : auto Xt = prepareX(X);</span></span>
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 16 : return KDB::predict(Xt);</span></span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 8 : }</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 2 : std::vector&lt;std::string&gt; KDBLd::graph(const std::string&amp; name) const</span></span>
<span id="L32"><span class="lineNum"> 32</span> : {</span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 2 : return KDB::graph(name);</span></span>
<span id="L34"><span class="lineNum"> 34</span> : }</span>
<span id="L35"><span class="lineNum"> 35</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDBLd.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDBLd.h.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFnHi">10</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFnAliasHi">4</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD2Ev</a></td>
<td class="coverFnAliasHi">6</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDBLd.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDBLd.h.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFnHi">10</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFnAliasHi">4</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD2Ev</a></td>
<td class="coverFnAliasHi">6</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,100 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/KDBLd.h</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (source / <a href="KDBLd.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #ifndef KDBLD_H</span>
<span id="L8"><span class="lineNum"> 8</span> : #define KDBLD_H</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &quot;Proposal.h&quot;</span>
<span id="L10"><span class="lineNum"> 10</span> : #include &quot;KDB.h&quot;</span>
<span id="L11"><span class="lineNum"> 11</span> : </span>
<span id="L12"><span class="lineNum"> 12</span> : namespace bayesnet {</span>
<span id="L13"><span class="lineNum"> 13</span> : class KDBLd : public KDB, public Proposal {</span>
<span id="L14"><span class="lineNum"> 14</span> : private:</span>
<span id="L15"><span class="lineNum"> 15</span> : public:</span>
<span id="L16"><span class="lineNum"> 16</span> : explicit KDBLd(int k);</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC tlaBgGNC"> 10 : virtual ~KDBLd() = default;</span></span>
<span id="L18"><span class="lineNum"> 18</span> : KDBLd&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L19"><span class="lineNum"> 19</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; name = &quot;KDB&quot;) const override;</span>
<span id="L20"><span class="lineNum"> 20</span> : torch::Tensor predict(torch::Tensor&amp; X) override;</span>
<span id="L21"><span class="lineNum"> 21</span> : static inline std::string version() { return &quot;0.0.1&quot;; };</span>
<span id="L22"><span class="lineNum"> 22</span> : };</span>
<span id="L23"><span class="lineNum"> 23</span> : }</span>
<span id="L24"><span class="lineNum"> 24</span> : #endif // !KDBLD_H</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,145 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Proposal.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">97.7&nbsp;%</td>
<td class="headerCovTableEntry">86</td>
<td class="headerCovTableEntry">84</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">88.9&nbsp;%</td>
<td class="headerCovTableEntry">9</td>
<td class="headerCovTableEntry">8</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="Proposal.cc.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">_ZN8bayesnet8Proposal8prepareXERN2at6TensorE</a></td>
<td class="coverFnHi">84</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFnHi">100</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD2Ev</a></td>
<td class="coverFnAliasHi">100</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">_ZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkE</a></td>
<td class="coverFnHi">106</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">_ZN8bayesnet8Proposal10checkInputERKN2at6TensorES4_</a></td>
<td class="coverFnHi">114</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">_ZN8bayesnet8Proposal24fit_local_discretizationB5cxx11ERKN2at6TensorE</a></td>
<td class="coverFnHi">116</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">_ZN8bayesnet8ProposalC2ERN2at6TensorERSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERSA_</a></td>
<td class="coverFnHi">212</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E0_clIS7_EEDaSO_</a></td>
<td class="coverFnHi">686</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E_clIPNS_4NodeEEEDaSO_</a></td>
<td class="coverFnHi">1348</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,145 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Proposal.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">97.7&nbsp;%</td>
<td class="headerCovTableEntry">86</td>
<td class="headerCovTableEntry">84</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">88.9&nbsp;%</td>
<td class="headerCovTableEntry">9</td>
<td class="headerCovTableEntry">8</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="Proposal.cc.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">_ZN8bayesnet8Proposal10checkInputERKN2at6TensorES4_</a></td>
<td class="coverFnHi">114</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">_ZN8bayesnet8Proposal24fit_local_discretizationB5cxx11ERKN2at6TensorE</a></td>
<td class="coverFnHi">116</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">_ZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkE</a></td>
<td class="coverFnHi">106</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">_ZN8bayesnet8Proposal8prepareXERN2at6TensorE</a></td>
<td class="coverFnHi">84</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">_ZN8bayesnet8ProposalC2ERN2at6TensorERSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERSA_</a></td>
<td class="coverFnHi">212</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFnHi">100</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD2Ev</a></td>
<td class="coverFnAliasHi">100</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E0_clIS7_EEDaSO_</a></td>
<td class="coverFnHi">686</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E_clIPNS_4NodeEEEDaSO_</a></td>
<td class="coverFnHi">1348</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,192 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/Proposal.cc</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (source / <a href="Proposal.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">97.7&nbsp;%</td>
<td class="headerCovTableEntry">86</td>
<td class="headerCovTableEntry">84</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">88.9&nbsp;%</td>
<td class="headerCovTableEntry">9</td>
<td class="headerCovTableEntry">8</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &lt;ArffFiles.h&gt;</span>
<span id="L8"><span class="lineNum"> 8</span> : #include &quot;Proposal.h&quot;</span>
<span id="L9"><span class="lineNum"> 9</span> : </span>
<span id="L10"><span class="lineNum"> 10</span> : namespace bayesnet {</span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 212 : Proposal::Proposal(torch::Tensor&amp; dataset_, std::vector&lt;std::string&gt;&amp; features_, std::string&amp; className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 100 : Proposal::~Proposal()</span></span>
<span id="L13"><span class="lineNum"> 13</span> : {</span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 948 : for (auto&amp; [key, value] : discretizers) {</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 848 : delete value;</span></span>
<span id="L16"><span class="lineNum"> 16</span> : }</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 100 : }</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 114 : void Proposal::checkInput(const torch::Tensor&amp; X, const torch::Tensor&amp; y)</span></span>
<span id="L19"><span class="lineNum"> 19</span> : {</span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 114 : if (!torch::is_floating_point(X)) {</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaUNC tlaBgUNC"> 0 : throw std::invalid_argument(&quot;X must be a floating point tensor&quot;);</span></span>
<span id="L22"><span class="lineNum"> 22</span> : }</span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC tlaBgGNC"> 114 : if (torch::is_floating_point(y)) {</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaUNC tlaBgUNC"> 0 : throw std::invalid_argument(&quot;y must be an integer tensor&quot;);</span></span>
<span id="L25"><span class="lineNum"> 25</span> : }</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC tlaBgGNC"> 114 : }</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 106 : map&lt;std::string, std::vector&lt;int&gt;&gt; Proposal::localDiscretizationProposal(const map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; oldStates, Network&amp; model)</span></span>
<span id="L28"><span class="lineNum"> 28</span> : {</span>
<span id="L29"><span class="lineNum"> 29</span> : // order of local discretization is important. no good 0, 1, 2...</span>
<span id="L30"><span class="lineNum"> 30</span> : // although we rediscretize features after the local discretization of every feature</span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 106 : auto order = model.topological_sort();</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 106 : auto&amp; nodes = model.getNodes();</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 106 : map&lt;std::string, std::vector&lt;int&gt;&gt; states = oldStates;</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 106 : std::vector&lt;int&gt; indicesToReDiscretize;</span></span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 106 : bool upgrade = false; // Flag to check if we need to upgrade the model</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 888 : for (auto feature : order) {</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 782 : auto nodeParents = nodes[feature]-&gt;getParents();</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 782 : if (nodeParents.size() &lt; 2) continue; // Only has class as parent</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 662 : upgrade = true;</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 662 : int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 662 : indicesToReDiscretize.push_back(index); // We need to re-discretize this feature</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 662 : std::vector&lt;std::string&gt; parents;</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 2010 : transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto&amp; p) { return p-&gt;getName(); });</span></span>
<span id="L44"><span class="lineNum"> 44</span> : // Remove class as parent as it will be added later</span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 662 : parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());</span></span>
<span id="L46"><span class="lineNum"> 46</span> : // Get the indices of the parents</span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 662 : std::vector&lt;int&gt; indices;</span></span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 662 : indices.push_back(-1); // Add class index</span></span>
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 1348 : transform(parents.begin(), parents.end(), back_inserter(indices), [&amp;](const auto&amp; p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });</span></span>
<span id="L50"><span class="lineNum"> 50</span> : // Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 662 : std::vector&lt;std::string&gt; yJoinParents(Xf.size(1));</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 2010 : for (auto idx : indices) {</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 479320 : for (int i = 0; i &lt; Xf.size(1); ++i) {</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 1433916 : yJoinParents[i] += to_string(pDataset.index({ idx, i }).item&lt;int&gt;());</span></span>
<span id="L55"><span class="lineNum"> 55</span> : }</span>
<span id="L56"><span class="lineNum"> 56</span> : }</span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 662 : auto arff = ArffFiles();</span></span>
<span id="L58"><span class="lineNum"> 58</span> <span class="tlaGNC"> 662 : auto yxv = arff.factorize(yJoinParents);</span></span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 1324 : auto xvf_ptr = Xf.index({ index }).data_ptr&lt;float&gt;();</span></span>
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 662 : auto xvf = std::vector&lt;mdlp::precision_t&gt;(xvf_ptr, xvf_ptr + Xf.size(1));</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 662 : discretizers[feature]-&gt;fit(xvf, yxv);</span></span>
<span id="L62"><span class="lineNum"> 62</span> <span class="tlaGNC"> 902 : }</span></span>
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 106 : if (upgrade) {</span></span>
<span id="L64"><span class="lineNum"> 64</span> : // Discretize again X (only the affected indices) with the new fitted discretizers</span>
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 768 : for (auto index : indicesToReDiscretize) {</span></span>
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 1324 : auto Xt_ptr = Xf.index({ index }).data_ptr&lt;float&gt;();</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 662 : auto Xt = std::vector&lt;float&gt;(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 2648 : pDataset.index_put_({ index, &quot;...&quot; }, torch::tensor(discretizers[pFeatures[index]]-&gt;transform(Xt)));</span></span>
<span id="L69"><span class="lineNum"> 69</span> <span class="tlaGNC"> 662 : auto xStates = std::vector&lt;int&gt;(discretizers[pFeatures[index]]-&gt;getCutPoints().size() + 1);</span></span>
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 662 : iota(xStates.begin(), xStates.end(), 0);</span></span>
<span id="L71"><span class="lineNum"> 71</span> : //Update new states of the feature/node</span>
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 662 : states[pFeatures[index]] = xStates;</span></span>
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 662 : }</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 106 : const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);</span></span>
<span id="L75"><span class="lineNum"> 75</span> <span class="tlaGNC"> 106 : model.fit(pDataset, weights, pFeatures, pClassName, states);</span></span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 106 : }</span></span>
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 212 : return states;</span></span>
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 480064 : }</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 116 : map&lt;std::string, std::vector&lt;int&gt;&gt; Proposal::fit_local_discretization(const torch::Tensor&amp; y)</span></span>
<span id="L80"><span class="lineNum"> 80</span> : {</span>
<span id="L81"><span class="lineNum"> 81</span> : // Discretize the continuous input data and build pDataset (Classifier::dataset)</span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 116 : int m = Xf.size(1);</span></span>
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 116 : int n = Xf.size(0);</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 116 : map&lt;std::string, std::vector&lt;int&gt;&gt; states;</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 116 : pDataset = torch::zeros({ n + 1, m }, torch::kInt32);</span></span>
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 116 : auto yv = std::vector&lt;int&gt;(y.data_ptr&lt;int&gt;(), y.data_ptr&lt;int&gt;() + y.size(0));</span></span>
<span id="L87"><span class="lineNum"> 87</span> : // discretize input data by feature(row)</span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 972 : for (auto i = 0; i &lt; pFeatures.size(); ++i) {</span></span>
<span id="L89"><span class="lineNum"> 89</span> <span class="tlaGNC"> 856 : auto* discretizer = new mdlp::CPPFImdlp();</span></span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 1712 : auto Xt_ptr = Xf.index({ i }).data_ptr&lt;float&gt;();</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 856 : auto Xt = std::vector&lt;float&gt;(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 856 : discretizer-&gt;fit(Xt, yv);</span></span>
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaGNC"> 3424 : pDataset.index_put_({ i, &quot;...&quot; }, torch::tensor(discretizer-&gt;transform(Xt)));</span></span>
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 856 : auto xStates = std::vector&lt;int&gt;(discretizer-&gt;getCutPoints().size() + 1);</span></span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 856 : iota(xStates.begin(), xStates.end(), 0);</span></span>
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 856 : states[pFeatures[i]] = xStates;</span></span>
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC"> 856 : discretizers[pFeatures[i]] = discretizer;</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 856 : }</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 116 : int n_classes = torch::max(y).item&lt;int&gt;() + 1;</span></span>
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 116 : auto yStates = std::vector&lt;int&gt;(n_classes);</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 116 : iota(yStates.begin(), yStates.end(), 0);</span></span>
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 116 : states[pClassName] = yStates;</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 348 : pDataset.index_put_({ n, &quot;...&quot; }, y);</span></span>
<span id="L104"><span class="lineNum"> 104</span> <span class="tlaGNC"> 232 : return states;</span></span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 1944 : }</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 84 : torch::Tensor Proposal::prepareX(torch::Tensor&amp; X)</span></span>
<span id="L107"><span class="lineNum"> 107</span> : {</span>
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 84 : auto Xtd = torch::zeros_like(X, torch::kInt32);</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 688 : for (int i = 0; i &lt; X.size(0); ++i) {</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 604 : auto Xt = std::vector&lt;float&gt;(X[i].data_ptr&lt;float&gt;(), X[i].data_ptr&lt;float&gt;() + X.size(1));</span></span>
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 604 : auto Xd = discretizers[pFeatures[i]]-&gt;transform(Xt);</span></span>
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 1812 : Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));</span></span>
<span id="L113"><span class="lineNum"> 113</span> <span class="tlaGNC"> 604 : }</span></span>
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 84 : return Xtd;</span></span>
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 604 : }</span></span>
<span id="L116"><span class="lineNum"> 116</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODE.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">10</td>
<td class="headerCovTableEntry">10</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPODE.cc.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">_ZNK8bayesnet5SPODE5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">34</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">_ZN8bayesnet5SPODE10buildModelERKN2at6TensorE</a></td>
<td class="coverFnHi">508</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">_ZN8bayesnet5SPODEC2Ei</a></td>
<td class="coverFnHi">562</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODE.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">10</td>
<td class="headerCovTableEntry">10</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="SPODE.cc.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">_ZN8bayesnet5SPODE10buildModelERKN2at6TensorE</a></td>
<td class="coverFnHi">508</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">_ZN8bayesnet5SPODEC2Ei</a></td>
<td class="coverFnHi">562</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">_ZNK8bayesnet5SPODE5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">34</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,107 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODE.cc</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (source / <a href="SPODE.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">10</td>
<td class="headerCovTableEntry">10</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;SPODE.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> : </span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 562 : SPODE::SPODE(int root) : Classifier(Network()), root(root) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> : </span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 508 : void SPODE::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L14"><span class="lineNum"> 14</span> : {</span>
<span id="L15"><span class="lineNum"> 15</span> : // 0. Add all nodes to the model</span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 508 : addNodes();</span></span>
<span id="L17"><span class="lineNum"> 17</span> : // 1. Add edges from the class node to all other nodes</span>
<span id="L18"><span class="lineNum"> 18</span> : // 2. Add edges from the root node to all other nodes</span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 12840 : for (int i = 0; i &lt; static_cast&lt;int&gt;(features.size()); ++i) {</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 12332 : model.addEdge(className, features[i]);</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 12332 : if (i != root) {</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 11824 : model.addEdge(features[root], features[i]);</span></span>
<span id="L23"><span class="lineNum"> 23</span> : }</span>
<span id="L24"><span class="lineNum"> 24</span> : }</span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 508 : }</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 34 : std::vector&lt;std::string&gt; SPODE::graph(const std::string&amp; name) const</span></span>
<span id="L27"><span class="lineNum"> 27</span> : {</span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 34 : return model.graph(name);</span></span>
<span id="L29"><span class="lineNum"> 29</span> : }</span>
<span id="L30"><span class="lineNum"> 30</span> : </span>
<span id="L31"><span class="lineNum"> 31</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODE.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPODE.h.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFnHi">918</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFnAliasHi">418</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED2Ev</a></td>
<td class="coverFnAliasHi">500</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,96 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODE.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="SPODE.h.func-c.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFnHi">918</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFnAliasHi">418</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED2Ev</a></td>
<td class="coverFnAliasHi">500</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,99 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODE.h</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (source / <a href="SPODE.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #ifndef SPODE_H</span>
<span id="L8"><span class="lineNum"> 8</span> : #define SPODE_H</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &quot;Classifier.h&quot;</span>
<span id="L10"><span class="lineNum"> 10</span> : </span>
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
<span id="L12"><span class="lineNum"> 12</span> : class SPODE : public Classifier {</span>
<span id="L13"><span class="lineNum"> 13</span> : private:</span>
<span id="L14"><span class="lineNum"> 14</span> : int root;</span>
<span id="L15"><span class="lineNum"> 15</span> : protected:</span>
<span id="L16"><span class="lineNum"> 16</span> : void buildModel(const torch::Tensor&amp; weights) override;</span>
<span id="L17"><span class="lineNum"> 17</span> : public:</span>
<span id="L18"><span class="lineNum"> 18</span> : explicit SPODE(int root);</span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC tlaBgGNC"> 918 : virtual ~SPODE() = default;</span></span>
<span id="L20"><span class="lineNum"> 20</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; name = &quot;SPODE&quot;) const override;</span>
<span id="L21"><span class="lineNum"> 21</span> : };</span>
<span id="L22"><span class="lineNum"> 22</span> : }</span>
<span id="L23"><span class="lineNum"> 23</span> : #endif</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,117 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - BayesNet/bayesnet/classifiers/SPODELd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../../index.html">top level</a> - <a href="index.html">BayesNet/bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">26</td>
<td class="headerCovTableEntry">26</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:17:26</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">6</td>
<td class="headerCovTableEntry">6</td>
</tr>
<tr><td><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPODELd.cc.func.html"><img src="../../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">_ZN8bayesnet7SPODELd3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">_ZNK8bayesnet7SPODELd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFnHi">18</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">_ZN8bayesnet7SPODELd7predictERN2at6TensorE</a></td>
<td class="coverFnHi">68</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">_ZN8bayesnet7SPODELd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFnHi">84</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">_ZN8bayesnet7SPODELd9commonFitERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEE</a></td>
<td class="coverFnHi">86</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">_ZN8bayesnet7SPODELdC2Ei</a></td>
<td class="coverFnHi">110</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

Some files were not shown because too many files have changed in this diff Show More