Compare commits
33 Commits
block_upda
...
AnDE
Author | SHA1 | Date | |
---|---|---|---|
0e24135d46
|
|||
521bfd2a8e
|
|||
e2e0fb0c40
|
|||
56b62a67cc
|
|||
c0fc107abb
|
|||
d8c44b3b7c
|
|||
6ab7cd2cbd
|
|||
b578ea8a2d
|
|||
9a752d15dc
|
|||
4992685e94
|
|||
346b693c79
|
|||
164c8bd90c
|
|||
ced29a2c2e
|
|||
0ec53f405f
|
|||
f806015b29
|
|||
8115f25c06
|
|||
618a1e539c
|
|||
7aeffba740
|
|||
e79ea63afb | |||
3c7382a93a
|
|||
b4a222b100
|
|||
23ef0cc5f7
|
|||
793b2d3cd5
|
|||
ae469b8146
|
|||
f014928411
|
|||
c4b563a339
|
|||
49bb0582e6
|
|||
b4c5261e01 | |||
b956aa3873
|
|||
1f06631f69
|
|||
6dd589bd61
|
|||
6475f10825
|
|||
7d906b24d1 |
39
.clang-uml
Normal file
@@ -0,0 +1,39 @@
|
||||
compilation_database_dir: build_debug
|
||||
output_directory: diagrams
|
||||
diagrams:
|
||||
BayesNet:
|
||||
type: class
|
||||
glob:
|
||||
- bayesnet/*.h
|
||||
- bayesnet/classifiers/*.h
|
||||
- bayesnet/classifiers/*.cc
|
||||
- bayesnet/ensembles/*.h
|
||||
- bayesnet/ensembles/*.cc
|
||||
- bayesnet/feature_selection/*.h
|
||||
- bayesnet/feature_selection/*.cc
|
||||
- bayesnet/network/*.h
|
||||
- bayesnet/network/*.cc
|
||||
- bayesnet/utils/*.h
|
||||
- bayesnet/utils/*.cc
|
||||
include:
|
||||
# Only include entities from the following namespaces
|
||||
namespaces:
|
||||
- bayesnet
|
||||
exclude:
|
||||
access:
|
||||
- private
|
||||
plantuml:
|
||||
style:
|
||||
# Apply this style to all classes in the diagram
|
||||
class: "#aliceblue;line:blue;line.dotted;text:blue"
|
||||
# Apply this style to all packages in the diagram
|
||||
package: "#back:grey"
|
||||
# Make all template instantiation relations point upwards and draw them
|
||||
# as green and dotted lines
|
||||
instantiation: "up[#green,dotted]"
|
||||
cmd: "/usr/bin/plantuml -tsvg \"diagrams/{}.puml\""
|
||||
before:
|
||||
- 'title clang-uml class diagram model'
|
||||
mermaid:
|
||||
before:
|
||||
- 'classDiagram'
|
57
.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,57 @@
|
||||
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
||||
|
||||
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.22.2"
|
||||
|
||||
# Optionally install the cmake for vcpkg
|
||||
COPY ./reinstall-cmake.sh /tmp/
|
||||
|
||||
RUN if [ "${REINSTALL_CMAKE_VERSION_FROM_SOURCE}" != "none" ]; then \
|
||||
chmod +x /tmp/reinstall-cmake.sh && /tmp/reinstall-cmake.sh ${REINSTALL_CMAKE_VERSION_FROM_SOURCE}; \
|
||||
fi \
|
||||
&& rm -f /tmp/reinstall-cmake.sh
|
||||
|
||||
|
||||
# [Optional] Uncomment this section to install additional vcpkg ports.
|
||||
# RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>"
|
||||
|
||||
# [Optional] Uncomment this section to install additional packages.
|
||||
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||
&& apt-get -y install --no-install-recommends wget software-properties-common libdatetime-perl libcapture-tiny-perl libdatetime-format-dateparse-perl libgd-perl
|
||||
|
||||
# Add PPA for GCC 13
|
||||
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
RUN apt-get update
|
||||
|
||||
# Install GCC 13.1
|
||||
RUN apt-get install -y gcc-13 g++-13
|
||||
|
||||
# Install lcov 2.1
|
||||
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
||||
tar -xvf lcov-2.1.tar.gz && \
|
||||
cd lcov-2.1 && \
|
||||
make install
|
||||
RUN rm lcov-2.1.tar.gz
|
||||
RUN rm -fr lcov-2.1
|
||||
|
||||
# Install Miniconda
|
||||
RUN mkdir -p /opt/conda
|
||||
RUN wget --quiet "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh" -O /opt/conda/miniconda.sh && \
|
||||
bash /opt/conda/miniconda.sh -b -p /opt/miniconda
|
||||
|
||||
# Add conda to PATH
|
||||
ENV PATH=/opt/miniconda/bin:$PATH
|
||||
|
||||
# add CXX and CC to the environment with gcc 13
|
||||
ENV CXX=/usr/bin/g++-13
|
||||
ENV CC=/usr/bin/gcc-13
|
||||
|
||||
# link the last gcov version
|
||||
RUN rm /usr/bin/gcov
|
||||
RUN ln -s /usr/bin/gcov-13 /usr/bin/gcov
|
||||
|
||||
# change ownership of /opt/miniconda to vscode user
|
||||
RUN chown -R vscode:vscode /opt/miniconda
|
||||
|
||||
USER vscode
|
||||
RUN conda init
|
||||
RUN conda install -y -c conda-forge yaml pytorch
|
37
.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,37 @@
|
||||
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||
// README at: https://github.com/devcontainers/templates/tree/main/src/cpp
|
||||
{
|
||||
"name": "C++",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile"
|
||||
},
|
||||
// "features": {
|
||||
// "ghcr.io/devcontainers/features/conda:1": {}
|
||||
// }
|
||||
// Features to add to the dev container. More info: https://containers.dev/features.
|
||||
// "features": {},
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
// Use 'postCreateCommand' to run commands after the container is created.
|
||||
"postCreateCommand": "make release && make debug && echo 'Done!'",
|
||||
// Configure tool-specific properties.
|
||||
// "customizations": {},
|
||||
"customizations": {
|
||||
// Configure properties specific to VS Code.
|
||||
"vscode": {
|
||||
"settings": {},
|
||||
"extensions": [
|
||||
"ms-vscode.cpptools",
|
||||
"ms-vscode.cpptools-extension-pack",
|
||||
"ms-vscode.cpptools-themes",
|
||||
"ms-vscode.cmake-tools",
|
||||
"ms-azuretools.vscode-docker",
|
||||
"jbenden.c-cpp-flylint",
|
||||
"matepek.vscode-catch2-test-adapter",
|
||||
"GitHub.copilot"
|
||||
]
|
||||
}
|
||||
}
|
||||
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||
// "remoteUser": "root"
|
||||
}
|
59
.devcontainer/reinstall-cmake.sh
Normal file
@@ -0,0 +1,59 @@
|
||||
#!/usr/bin/env bash
|
||||
#-------------------------------------------------------------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License. See https://go.microsoft.com/fwlink/?linkid=2090316 for license information.
|
||||
#-------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
set -e
|
||||
|
||||
CMAKE_VERSION=${1:-"none"}
|
||||
|
||||
if [ "${CMAKE_VERSION}" = "none" ]; then
|
||||
echo "No CMake version specified, skipping CMake reinstallation"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Cleanup temporary directory and associated files when exiting the script.
|
||||
cleanup() {
|
||||
EXIT_CODE=$?
|
||||
set +e
|
||||
if [[ -n "${TMP_DIR}" ]]; then
|
||||
echo "Executing cleanup of tmp files"
|
||||
rm -Rf "${TMP_DIR}"
|
||||
fi
|
||||
exit $EXIT_CODE
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
|
||||
echo "Installing CMake..."
|
||||
apt-get -y purge --auto-remove cmake
|
||||
mkdir -p /opt/cmake
|
||||
|
||||
architecture=$(dpkg --print-architecture)
|
||||
case "${architecture}" in
|
||||
arm64)
|
||||
ARCH=aarch64 ;;
|
||||
amd64)
|
||||
ARCH=x86_64 ;;
|
||||
*)
|
||||
echo "Unsupported architecture ${architecture}."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
CMAKE_BINARY_NAME="cmake-${CMAKE_VERSION}-linux-${ARCH}.sh"
|
||||
CMAKE_CHECKSUM_NAME="cmake-${CMAKE_VERSION}-SHA-256.txt"
|
||||
TMP_DIR=$(mktemp -d -t cmake-XXXXXXXXXX)
|
||||
|
||||
echo "${TMP_DIR}"
|
||||
cd "${TMP_DIR}"
|
||||
|
||||
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_BINARY_NAME}" -O
|
||||
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_CHECKSUM_NAME}" -O
|
||||
|
||||
sha256sum -c --ignore-missing "${CMAKE_CHECKSUM_NAME}"
|
||||
sh "${TMP_DIR}/${CMAKE_BINARY_NAME}" --prefix=/opt/cmake --skip-license
|
||||
|
||||
ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
|
||||
ln -s /opt/cmake/bin/ctest /usr/local/bin/ctest
|
12
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
# To get started with Dependabot version updates, you'll need to specify which
|
||||
# package ecosystems to update and where the package manifests are located.
|
||||
# Please see the documentation for more information:
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
# https://containers.dev/guide/dependabot
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "devcontainers"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: weekly
|
1
.gitignore
vendored
@@ -39,4 +39,5 @@ cmake-build*/**
|
||||
puml/**
|
||||
.vscode/settings.json
|
||||
sample/build
|
||||
**/.DS_Store
|
||||
|
||||
|
10
.gitmodules
vendored
@@ -3,11 +3,6 @@
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
@@ -18,3 +13,8 @@
|
||||
url = https://github.com/rmontanana/folding
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "tests/lib/catch2"]
|
||||
path = tests/lib/catch2
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
main = main
|
||||
update = merge
|
||||
|
4
.sonarlint/connectedMode.json
Normal file
@@ -0,0 +1,4 @@
|
||||
{
|
||||
"sonarCloudOrganization": "rmontanana",
|
||||
"projectKey": "rmontanana_BayesNet"
|
||||
}
|
2
.vscode/launch.json
vendored
@@ -16,7 +16,7 @@
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
|
||||
"args": [
|
||||
"Block Update"
|
||||
"[Node]"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build_debug/tests"
|
||||
},
|
||||
|
32
CHANGELOG.md
@@ -5,7 +5,30 @@ All notable changes to this project will be documented in this file.
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [unreleased]
|
||||
## [Unreleased]
|
||||
|
||||
### Added
|
||||
|
||||
- Library logo generated with <https://openart.ai> to README.md
|
||||
- Link to the coverage report in the README.md coverage label.
|
||||
- *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
|
||||
- SPnDE model.
|
||||
- A2DE model.
|
||||
- A2DE & SPnDE tests.
|
||||
- Add tests to reach 99% of coverage.
|
||||
- Add tests to check the correct version of the mdlp, folding and json libraries.
|
||||
|
||||
### Internal
|
||||
|
||||
- Create library ShuffleArffFile to limit the number of samples with a parameter and shuffle them.
|
||||
- Refactor catch2 library location to test/lib
|
||||
- Refactor loadDataset function in tests.
|
||||
- Remove conditionalEdgeWeights method in BayesMetrics.
|
||||
- Refactor Coverage Report generation.
|
||||
- Add devcontainer to work on apple silicon.
|
||||
- Change build cmake folder names to Debug & Release.
|
||||
|
||||
## [1.0.5] 2024-04-20
|
||||
|
||||
### Added
|
||||
|
||||
@@ -16,6 +39,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- Badges of coverage and code quality (codacy) in README.md. Coverage badge is updated with *make viewcoverage*
|
||||
- Tests to reach 97% of coverage.
|
||||
- Copyright header to source files.
|
||||
- Diagrams to README.md: UML class diagram & dependency diagram
|
||||
- Action to create diagrams to Makefile: *make diagrams*
|
||||
|
||||
### Changed
|
||||
|
||||
@@ -23,6 +48,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- The worse model count in BoostAODE is reset to 0 every time a new model produces better accuracy, so the tolerance of the model is meant to be the number of **consecutive** models that produce worse accuracy.
|
||||
- Default hyperparameter values in BoostAODE: bisection is true, maxTolerance is 3, convergence is true
|
||||
|
||||
### Removed
|
||||
|
||||
- The 'predict_single' hyperparameter from the BoostAODE class.
|
||||
- The 'repeatSparent' hyperparameter from the BoostAODE class.
|
||||
|
||||
## [1.0.4] 2024-03-06
|
||||
|
||||
### Added
|
||||
|
5
CMakeGraphVizOptions.cmake
Normal file
@@ -0,0 +1,5 @@
|
||||
# Set the default graph title
|
||||
set(GRAPHVIZ_GRAPH_NAME "BayesNet dependency graph")
|
||||
|
||||
set(GRAPHVIZ_SHARED_LIBS OFF)
|
||||
set(GRAPHVIZ_STATIC_LIBS ON)
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 1.0.4.1
|
||||
VERSION 1.0.5.1
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@@ -25,8 +25,9 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors -fno-default-inline")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
@@ -60,20 +61,20 @@ endif (ENABLE_CLANG_TIDY)
|
||||
# External libraries - dependencies of BayesNet
|
||||
# ---------------------------------------------
|
||||
# include(FetchContent)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_subdirectory("lib/Files")
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(bayesnet)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
MESSAGE("Testing enabled")
|
||||
add_subdirectory(tests/lib/catch2)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
|
64
Makefile
@@ -1,11 +1,17 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: viewcoverage coverage setup help install uninstall buildr buildd test clean debug release sample updatebadge
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
f_release = build_Release
|
||||
f_debug = build_Debug
|
||||
f_diagrams = diagrams
|
||||
app_targets = BayesNet
|
||||
test_targets = TestBayesNet
|
||||
clang-uml = clang-uml
|
||||
plantuml = plantuml
|
||||
lcov = lcov
|
||||
genhtml = genhtml
|
||||
dot = dot
|
||||
n_procs = -j 16
|
||||
|
||||
define ClearTests
|
||||
@@ -31,11 +37,21 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
sudo dnf install lcov;\
|
||||
fi
|
||||
@echo "* You should install plantuml & graphviz for the diagrams"
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/BayesNet.png)
|
||||
@which $(plantuml) || (echo ">>> Please install plantuml"; exit 1)
|
||||
@which $(dot) || (echo ">>> Please install graphviz"; exit 1)
|
||||
@which $(clang-uml) || (echo ">>> Please install clang-uml"; exit 1)
|
||||
@export PLANTUML_LIMIT_SIZE=16384
|
||||
@echo ">>> Creating UML class diagram of the project...";
|
||||
@$(clang-uml) -p
|
||||
@cd $(f_diagrams); \
|
||||
$(plantuml) -tsvg BayesNet.puml
|
||||
@echo ">>> Creating dependency graph diagram of the project...";
|
||||
$(MAKE) debug
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot
|
||||
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
@@ -83,7 +99,7 @@ sample: ## Build sample
|
||||
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet & Platform tests...";
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@for t in $(test_targets); do \
|
||||
@@ -98,27 +114,33 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) test
|
||||
@gcovr $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
viewcoverage: ## Run tests, generate coverage report and upload it to codecov (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) coverage
|
||||
@which $(lcov) || (echo ">>> Please install lcov"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ] ; then $(MAKE) test ; fi
|
||||
@echo ">>> Building report..."
|
||||
@cd $(f_debug)/tests; \
|
||||
lcov --directory . --capture --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'bayesnet/utils/loguru.*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
genhtml coverage.info --output-directory coverage >/dev/null 2>&1;
|
||||
$(lcov) --directory CMakeFiles --capture --demangle-cpp --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/opt/miniconda/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --summary coverage.info
|
||||
@$(MAKE) updatebadge
|
||||
@xdg-open $(f_debug)/tests/coverage/index.html || open $(f_debug)/tests/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
viewcoverage: ## View the html coverage report
|
||||
@which $(genhtml) || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory html --title "BayesNet Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||
@xdg-open html/index.html || open html/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
updatebadge: ## Update the coverage badge in README.md
|
||||
@which python || (echo ">>> Please install python"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@echo ">>> Updating coverage badge..."
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
52
README.md
@@ -1,11 +1,13 @@
|
||||
# BayesNet
|
||||
# <img src="logo.png" alt="logo" width="50"/> BayesNet
|
||||
|
||||

|
||||
[](<https://opensource.org/licenses/MIT>)
|
||||

|
||||
[](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||

|
||||

|
||||
[](html/index.html)
|
||||
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
@@ -20,6 +22,12 @@ unzip libtorch-shared-with-deps-latest.zips
|
||||
|
||||
## Setup
|
||||
|
||||
### Getting the code
|
||||
|
||||
```bash
|
||||
git clone --recurse-submodules https://github.com/doctorado-ml/bayesnet
|
||||
```
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
@@ -33,7 +41,13 @@ sudo make install
|
||||
```bash
|
||||
make debug
|
||||
make test
|
||||
```
|
||||
|
||||
### Coverage
|
||||
|
||||
```bash
|
||||
make coverage
|
||||
make viewcoverage
|
||||
```
|
||||
|
||||
### Sample app
|
||||
@@ -47,4 +61,36 @@ make sample fname=tests/data/glass.arff
|
||||
|
||||
## Models
|
||||
|
||||
### [BoostAODE](docs/BoostAODE.md)
|
||||
#### - TAN
|
||||
|
||||
#### - KDB
|
||||
|
||||
#### - SPODE
|
||||
|
||||
#### - AODE
|
||||
|
||||
#### - [BoostAODE](docs/BoostAODE.md)
|
||||
|
||||
### With Local Discretization
|
||||
|
||||
#### - TANLd
|
||||
|
||||
#### - KDBLd
|
||||
|
||||
#### - SPODELd
|
||||
|
||||
#### - AODELd
|
||||
|
||||
## Diagrams
|
||||
|
||||
### UML Class Diagram
|
||||
|
||||

|
||||
|
||||
### Dependency Diagram
|
||||
|
||||

|
||||
|
||||
## Coverage report
|
||||
|
||||
### [Coverage report](docs/coverage.pdf)
|
||||
|
38
bayesnet/classifiers/SPnDE.cc
Normal file
@@ -0,0 +1,38 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "SPnDE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPnDE::SPnDE(std::vector<int> parents) : Classifier(Network()), parents(parents) {}
|
||||
|
||||
void SPnDE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
std::vector<int> attributes;
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
if (std::find(parents.begin(), parents.end(), i) == parents.end()) {
|
||||
attributes.push_back(i);
|
||||
}
|
||||
}
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the parents nodes to all other nodes
|
||||
for (const auto& attribute : attributes) {
|
||||
model.addEdge(className, features[attribute]);
|
||||
for (const auto& root : parents) {
|
||||
|
||||
model.addEdge(features[root], features[attribute]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<std::string> SPnDE::graph(const std::string& name) const
|
||||
{
|
||||
return model.graph(name);
|
||||
}
|
||||
|
||||
}
|
26
bayesnet/classifiers/SPnDE.h
Normal file
@@ -0,0 +1,26 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef SPnDE_H
|
||||
#define SPnDE_H
|
||||
#include <vector>
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class SPnDE : public Classifier {
|
||||
public:
|
||||
explicit SPnDE(std::vector<int> parents);
|
||||
virtual ~SPnDE() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "SPnDE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
std::vector<int> parents;
|
||||
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
40
bayesnet/ensembles/A2DE.cc
Normal file
@@ -0,0 +1,40 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "A2DE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
A2DE::A2DE(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "predict_voting" };
|
||||
}
|
||||
void A2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void A2DE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
for (int i = 0; i < features.size() - 1; ++i) {
|
||||
for (int j = i + 1; j < features.size(); ++j) {
|
||||
auto model = std::make_unique<SPnDE>(std::vector<int>({ i, j }));
|
||||
models.push_back(std::move(model));
|
||||
}
|
||||
}
|
||||
n_models = static_cast<unsigned>(models.size());
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
std::vector<std::string> A2DE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
22
bayesnet/ensembles/A2DE.h
Normal file
@@ -0,0 +1,22 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef A2DE_H
|
||||
#define A2DE_H
|
||||
#include "bayesnet/classifiers/SPnDE.h"
|
||||
#include "Ensemble.h"
|
||||
namespace bayesnet {
|
||||
class A2DE : public Ensemble {
|
||||
public:
|
||||
A2DE(bool predict_voting = false);
|
||||
virtual ~A2DE() {};
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -13,15 +13,14 @@
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "BoostAODE.h"
|
||||
|
||||
#include "bayesnet/utils/loguru.cpp"
|
||||
#include "lib/log/loguru.cpp"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = {
|
||||
"maxModels", "bisection", "order", "convergence", "threshold",
|
||||
"maxModels", "bisection", "order", "convergence", "convergence_best", "threshold",
|
||||
"select_features", "maxTolerance", "predict_voting", "block_update"
|
||||
};
|
||||
|
||||
@@ -72,6 +71,10 @@ namespace bayesnet {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("convergence_best")) {
|
||||
convergence_best = hyperparameters["convergence_best"];
|
||||
hyperparameters.erase("convergence_best");
|
||||
}
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
@@ -186,7 +189,6 @@ namespace bayesnet {
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
VLOG_SCOPE_F(1, "upd_weights_block n_models=%d k=%d", n_models, k);
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
@@ -251,9 +253,6 @@ namespace bayesnet {
|
||||
featureSelector->fit();
|
||||
auto cfsFeatures = featureSelector->getFeatures();
|
||||
auto scores = featureSelector->getScores();
|
||||
for (int i = 0; i < cfsFeatures.size(); ++i) {
|
||||
LOG_F(INFO, "Feature: %d Score: %f", cfsFeatures[i], scores[i]);
|
||||
}
|
||||
for (const int& feature : cfsFeatures) {
|
||||
featuresUsed.push_back(feature);
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
@@ -272,8 +271,9 @@ namespace bayesnet {
|
||||
// Logging setup
|
||||
//
|
||||
loguru::set_thread_name("BoostAODE");
|
||||
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;;
|
||||
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
fitted = true;
|
||||
@@ -292,11 +292,6 @@ namespace bayesnet {
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
LOG_F(INFO, "Initial models: %d", n_models);
|
||||
LOG_F(INFO, "Significances: ");
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
LOG_F(INFO, "i=%d significance=%f", i, significanceModels[i]);
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
@@ -313,7 +308,6 @@ namespace bayesnet {
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
VLOG_SCOPE_F(1, "featureSelection.size: %zu featuresUsed.size: %zu", featureSelection.size(), featuresUsed.size());
|
||||
if (order_algorithm == Orders.RAND) {
|
||||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||
}
|
||||
@@ -322,7 +316,7 @@ namespace bayesnet {
|
||||
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||||
end(featureSelection)
|
||||
);
|
||||
int k = pow(2, tolerance);
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
@@ -336,10 +330,6 @@ namespace bayesnet {
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
if (finished) {
|
||||
VLOG_SCOPE_F(2, "** epsilon_t > 0.5 **");
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
@@ -357,21 +347,24 @@ namespace bayesnet {
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
VLOG_SCOPE_F(3, "First accuracy: %f", priorAccuracy);
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
VLOG_SCOPE_F(3, "(improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
VLOG_SCOPE_F(3, "*(improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
// priorAccuracy = accuracy;
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
@@ -386,8 +379,8 @@ namespace bayesnet {
|
||||
n_models--;
|
||||
}
|
||||
} else {
|
||||
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
|
@@ -11,19 +11,19 @@
|
||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||
#include "Ensemble.h"
|
||||
namespace bayesnet {
|
||||
struct {
|
||||
const struct {
|
||||
std::string CFS = "CFS";
|
||||
std::string FCBF = "FCBF";
|
||||
std::string IWSS = "IWSS";
|
||||
}SelectFeatures;
|
||||
struct {
|
||||
const struct {
|
||||
std::string ASC = "asc";
|
||||
std::string DESC = "desc";
|
||||
std::string RAND = "rand";
|
||||
}Orders;
|
||||
class BoostAODE : public Ensemble {
|
||||
public:
|
||||
BoostAODE(bool predict_voting = false);
|
||||
explicit BoostAODE(bool predict_voting = false);
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
@@ -39,6 +39,7 @@ namespace bayesnet {
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
|
@@ -410,11 +410,7 @@ namespace bayesnet {
|
||||
result.insert(it2, fatherName);
|
||||
ending = false;
|
||||
}
|
||||
} else {
|
||||
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
}
|
||||
} else {
|
||||
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -9,7 +9,7 @@
|
||||
namespace bayesnet {
|
||||
|
||||
Node::Node(const std::string& name)
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
|
||||
: name(name)
|
||||
{
|
||||
}
|
||||
void Node::clear()
|
||||
@@ -96,7 +96,6 @@ namespace bayesnet {
|
||||
// Get dimensions of the CPT
|
||||
dimensions.push_back(numStates);
|
||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
|
||||
// Create a tensor of zeros with the dimensions of the CPT
|
||||
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
||||
// Fill table with counts
|
||||
|
@@ -12,14 +12,6 @@
|
||||
#include <torch/torch.h>
|
||||
namespace bayesnet {
|
||||
class Node {
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
public:
|
||||
explicit Node(const std::string&);
|
||||
void clear();
|
||||
@@ -37,6 +29,14 @@ namespace bayesnet {
|
||||
unsigned minFill();
|
||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
float getFactorValue(std::map<std::string, int>&);
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates = 0; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -4,23 +4,26 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
#include "Mst.h"
|
||||
#include "BayesMetrics.h"
|
||||
namespace bayesnet {
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, features(features)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
}
|
||||
//samples is n+1xm std::vector used to fit the model
|
||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: features(features)
|
||||
: samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||
, className(className)
|
||||
, features(features)
|
||||
, classNumStates(classNumStates)
|
||||
, samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||
{
|
||||
for (int i = 0; i < vsamples.size(); ++i) {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
||||
@@ -105,14 +108,8 @@ namespace bayesnet {
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
// Measured in nats (natural logarithm (log) base e)
|
||||
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
@@ -151,11 +148,64 @@ namespace bayesnet {
|
||||
}
|
||||
return entropyValue;
|
||||
}
|
||||
// H(Y|X,C) = sum_{x in X, c in C} p(x,c) H(Y|X=x,C=c)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||
{
|
||||
// Ensure the tensors are of the same length
|
||||
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
|
||||
|
||||
// Convert tensors to vectors for easier processing
|
||||
auto firstFeatureData = firstFeature.accessor<int, 1>();
|
||||
auto secondFeatureData = secondFeature.accessor<int, 1>();
|
||||
auto labelsData = labels.accessor<int, 1>();
|
||||
auto weightsData = weights.accessor<double, 1>();
|
||||
|
||||
int numSamples = firstFeature.size(0);
|
||||
|
||||
// Maps for joint and marginal probabilities
|
||||
std::map<std::tuple<int, int, int>, double> jointCount;
|
||||
std::map<std::tuple<int, int>, double> marginalCount;
|
||||
|
||||
// Compute joint and marginal counts
|
||||
for (int i = 0; i < numSamples; ++i) {
|
||||
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
|
||||
auto keyMarginal = std::make_tuple(firstFeatureData[i], labelsData[i]);
|
||||
|
||||
jointCount[keyJoint] += weightsData[i];
|
||||
marginalCount[keyMarginal] += weightsData[i];
|
||||
}
|
||||
|
||||
// Total weight sum
|
||||
double totalWeight = torch::sum(weights).item<double>();
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
|
||||
// Compute the conditional entropy
|
||||
double conditionalEntropy = 0.0;
|
||||
|
||||
for (const auto& [keyJoint, jointFreq] : jointCount) {
|
||||
auto [x, c, y] = keyJoint;
|
||||
auto keyMarginal = std::make_tuple(x, c);
|
||||
|
||||
double p_xc = marginalCount[keyMarginal] / totalWeight;
|
||||
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
|
||||
|
||||
if (p_y_given_xc > 0) {
|
||||
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
|
||||
}
|
||||
}
|
||||
return conditionalEntropy;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
}
|
||||
// I(X;Y|C) = H(Y|C) - H(Y|X,C)
|
||||
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||
{
|
||||
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
and the indices of the weights as nodes of this square matrix using
|
||||
|
@@ -18,13 +18,16 @@ namespace bayesnet {
|
||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
|
||||
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
// Measured in nats (natural logarithm (log) base e)
|
||||
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
protected:
|
||||
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
||||
std::string className;
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
std::vector<std::string> features;
|
||||
template <class T>
|
||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||
|
412
diagrams/BayesNet.puml
Normal file
@@ -0,0 +1,412 @@
|
||||
@startuml
|
||||
title clang-uml class diagram model
|
||||
class "bayesnet::Metrics" as C_0000736965376885623323
|
||||
class C_0000736965376885623323 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Metrics() = default : void
|
||||
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
..
|
||||
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||
+conditionalEdgeWeights(std::vector<float> & weights) : std::vector<float>
|
||||
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||
#entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||
+getScoresKBest() const : std::vector<double>
|
||||
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||
#pop_first<T>(std::vector<T> & v) : T
|
||||
__
|
||||
#className : std::string
|
||||
#features : std::vector<std::string>
|
||||
#samples : torch::Tensor
|
||||
}
|
||||
class "bayesnet::Node" as C_0001303524929067080934
|
||||
class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Node(const std::string &) : void
|
||||
..
|
||||
+addChild(Node *) : void
|
||||
+addParent(Node *) : void
|
||||
+clear() : void
|
||||
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double laplaceSmoothing, const torch::Tensor & weights) : void
|
||||
+getCPT() : torch::Tensor &
|
||||
+getChildren() : std::vector<Node *> &
|
||||
+getFactorValue(std::map<std::string,int> &) : float
|
||||
+getName() const : std::string
|
||||
+getNumStates() const : int
|
||||
+getParents() : std::vector<Node *> &
|
||||
+graph(const std::string & clasName) : std::vector<std::string>
|
||||
+minFill() : unsigned int
|
||||
+removeChild(Node *) : void
|
||||
+removeParent(Node *) : void
|
||||
+setNumStates(int) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::Network" as C_0001186707649890429575
|
||||
class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Network() : void
|
||||
+Network(float) : void
|
||||
+Network(const Network &) : void
|
||||
+~Network() = default : void
|
||||
..
|
||||
+addEdge(const std::string &, const std::string &) : void
|
||||
+addNode(const std::string &) : void
|
||||
+dump_cpt() const : std::string
|
||||
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+getClassName() const : std::string
|
||||
+getClassNumStates() const : int
|
||||
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
||||
+getFeatures() const : std::vector<std::string>
|
||||
+getMaxThreads() const : float
|
||||
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
||||
+getNumEdges() const : int
|
||||
+getSamples() : torch::Tensor &
|
||||
+getStates() const : int
|
||||
+graph(const std::string & title) const : std::vector<std::string>
|
||||
+initialize() : void
|
||||
+predict(const std::vector<std::vector<int>> &) : std::vector<int>
|
||||
+predict(const torch::Tensor &) : torch::Tensor
|
||||
+predict_proba(const std::vector<std::vector<int>> &) : std::vector<std::vector<double>>
|
||||
+predict_proba(const torch::Tensor &) : torch::Tensor
|
||||
+predict_tensor(const torch::Tensor & samples, const bool proba) : torch::Tensor
|
||||
+score(const std::vector<std::vector<int>> &, const std::vector<int> &) : double
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_sort() : std::vector<std::string>
|
||||
+version() : std::string
|
||||
__
|
||||
}
|
||||
enum "bayesnet::status_t" as C_0000738420730783851375
|
||||
enum C_0000738420730783851375 {
|
||||
NORMAL
|
||||
WARNING
|
||||
ERROR
|
||||
}
|
||||
abstract "bayesnet::BaseClassifier" as C_0000327135989451974539
|
||||
abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+~BaseClassifier() = default : void
|
||||
..
|
||||
{abstract} +dump_cpt() const = 0 : std::string
|
||||
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) = 0 : BaseClassifier &
|
||||
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +getClassNumStates() const = 0 : int
|
||||
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
||||
{abstract} +getNumberOfEdges() const = 0 : int
|
||||
{abstract} +getNumberOfNodes() const = 0 : int
|
||||
{abstract} +getNumberOfStates() const = 0 : int
|
||||
{abstract} +getStatus() const = 0 : status_t
|
||||
+getValidHyperparameters() : std::vector<std::string> &
|
||||
{abstract} +getVersion() = 0 : std::string
|
||||
{abstract} +graph(const std::string & title = "") const = 0 : std::vector<std::string>
|
||||
{abstract} +predict(std::vector<std::vector<int>> & X) = 0 : std::vector<int>
|
||||
{abstract} +predict(torch::Tensor & X) = 0 : torch::Tensor
|
||||
{abstract} +predict_proba(std::vector<std::vector<int>> & X) = 0 : std::vector<std::vector<double>>
|
||||
{abstract} +predict_proba(torch::Tensor & X) = 0 : torch::Tensor
|
||||
{abstract} +score(std::vector<std::vector<int>> & X, std::vector<int> & y) = 0 : float
|
||||
{abstract} +score(torch::Tensor & X, torch::Tensor & y) = 0 : float
|
||||
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
||||
{abstract} +show() const = 0 : std::vector<std::string>
|
||||
{abstract} +topological_order() = 0 : std::vector<std::string>
|
||||
{abstract} #trainModel(const torch::Tensor & weights) = 0 : void
|
||||
__
|
||||
#validHyperparameters : std::vector<std::string>
|
||||
}
|
||||
abstract "bayesnet::Classifier" as C_0002043996622900301644
|
||||
abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Classifier(Network model) : void
|
||||
+~Classifier() = default : void
|
||||
..
|
||||
+addNodes() : void
|
||||
#buildDataset(torch::Tensor & y) : void
|
||||
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
||||
#checkFitParameters() : void
|
||||
+dump_cpt() const : std::string
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) : Classifier &
|
||||
+getClassNumStates() const : int
|
||||
+getNotes() const : std::vector<std::string>
|
||||
+getNumberOfEdges() const : int
|
||||
+getNumberOfNodes() const : int
|
||||
+getNumberOfStates() const : int
|
||||
+getStatus() const : status_t
|
||||
+getVersion() : std::string
|
||||
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_order() : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
#className : std::string
|
||||
#dataset : torch::Tensor
|
||||
#features : std::vector<std::string>
|
||||
#fitted : bool
|
||||
#m : unsigned int
|
||||
#metrics : Metrics
|
||||
#model : Network
|
||||
#n : unsigned int
|
||||
#notes : std::vector<std::string>
|
||||
#states : std::map<std::string,std::vector<int>>
|
||||
#status : status_t
|
||||
}
|
||||
class "bayesnet::KDB" as C_0001112865019015250005
|
||||
class C_0001112865019015250005 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDB(int k, float theta = 0.03) : void
|
||||
+~KDB() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TAN" as C_0001760994424884323017
|
||||
class C_0001760994424884323017 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TAN() : void
|
||||
+~TAN() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Proposal" as C_0002219995589162262979
|
||||
class C_0002219995589162262979 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
||||
+~Proposal() : void
|
||||
..
|
||||
#checkInput(const torch::Tensor & X, const torch::Tensor & y) : void
|
||||
#fit_local_discretization(const torch::Tensor & y) : std::map<std::string,std::vector<int>>
|
||||
#localDiscretizationProposal(const std::map<std::string,std::vector<int>> & states, Network & model) : std::map<std::string,std::vector<int>>
|
||||
#prepareX(torch::Tensor & X) : torch::Tensor
|
||||
__
|
||||
#Xf : torch::Tensor
|
||||
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
||||
#y : torch::Tensor
|
||||
}
|
||||
class "bayesnet::TANLd" as C_0001668829096702037834
|
||||
class C_0001668829096702037834 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TANLd() : void
|
||||
+~TANLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : TANLd &
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
abstract "bayesnet::FeatureSelect" as C_0001695326193250580823
|
||||
abstract C_0001695326193250580823 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~FeatureSelect() : void
|
||||
..
|
||||
#computeMeritCFS() : double
|
||||
#computeSuFeatures(const int a, const int b) : double
|
||||
#computeSuLabels() : void
|
||||
{abstract} +fit() = 0 : void
|
||||
+getFeatures() const : std::vector<int>
|
||||
+getScores() const : std::vector<double>
|
||||
#initialize() : void
|
||||
#symmetricalUncertainty(int a, int b) : double
|
||||
__
|
||||
#fitted : bool
|
||||
#maxFeatures : int
|
||||
#selectedFeatures : std::vector<int>
|
||||
#selectedScores : std::vector<double>
|
||||
#suFeatures : std::map<std::pair<int,int>,double>
|
||||
#suLabels : std::vector<double>
|
||||
#weights : const torch::Tensor &
|
||||
}
|
||||
class "bayesnet::CFS" as C_0000011627355691342494
|
||||
class C_0000011627355691342494 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~CFS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::FCBF" as C_0000144682015341746929
|
||||
class C_0000144682015341746929 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~FCBF() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::IWSS" as C_0000008268514674428553
|
||||
class C_0000008268514674428553 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~IWSS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODE" as C_0000512022813807538451
|
||||
class C_0000512022813807538451 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODE(int root) : void
|
||||
+~SPODE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Ensemble" as C_0001985241386355360576
|
||||
class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Ensemble(bool predict_voting = true) : void
|
||||
+~Ensemble() = default : void
|
||||
..
|
||||
#compute_arg_max(std::vector<std::vector<double>> & X) : std::vector<int>
|
||||
#compute_arg_max(torch::Tensor & X) : torch::Tensor
|
||||
+dump_cpt() const : std::string
|
||||
+getNumberOfEdges() const : int
|
||||
+getNumberOfNodes() const : int
|
||||
+getNumberOfStates() const : int
|
||||
+graph(const std::string & title) const : std::vector<std::string>
|
||||
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
#predict_average_proba(torch::Tensor & X) : torch::Tensor
|
||||
#predict_average_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||
#predict_average_voting(torch::Tensor & X) : torch::Tensor
|
||||
#predict_average_voting(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_order() : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
#voting(torch::Tensor & votes) : torch::Tensor
|
||||
__
|
||||
#models : std::vector<std::unique_ptr<Classifier>>
|
||||
#n_models : unsigned int
|
||||
#predict_voting : bool
|
||||
#significanceModels : std::vector<double>
|
||||
}
|
||||
class "bayesnet::(anonymous_45089536)" as C_0001186398587753535158
|
||||
class C_0001186398587753535158 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_45090163)" as C_0000602764946063116717
|
||||
class C_0000602764946063116717 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::BoostAODE" as C_0000358471592399852382
|
||||
class C_0000358471592399852382 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+BoostAODE(bool predict_voting = false) : void
|
||||
+~BoostAODE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::MST" as C_0000131858426172291700
|
||||
class C_0000131858426172291700 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+MST() = default : void
|
||||
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
||||
..
|
||||
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Graph" as C_0001197041682001898467
|
||||
class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Graph(int V) : void
|
||||
..
|
||||
+addEdge(int u, int v, float wt) : void
|
||||
+find_set(int i) : int
|
||||
+get_mst() : std::vector<std::pair<float,std::pair<int,int>>>
|
||||
+kruskal_algorithm() : void
|
||||
+union_set(int u, int v) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::KDBLd" as C_0000344502277874806837
|
||||
class C_0000344502277874806837 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDBLd(int k) : void
|
||||
+~KDBLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : KDBLd &
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODE" as C_0000786111576121788282
|
||||
class C_0000786111576121788282 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODE(bool predict_voting = false) : void
|
||||
+~AODE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODELd" as C_0001369655639257755354
|
||||
class C_0001369655639257755354 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODELd(int root) : void
|
||||
+~SPODELd() = default : void
|
||||
..
|
||||
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODELd" as C_0000487273479333793647
|
||||
class C_0000487273479333793647 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODELd(bool predict_voting = true) : void
|
||||
+~AODELd() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_) : AODELd &
|
||||
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
}
|
||||
C_0001303524929067080934 --> C_0001303524929067080934 : -parents
|
||||
C_0001303524929067080934 --> C_0001303524929067080934 : -children
|
||||
C_0001186707649890429575 o-- C_0001303524929067080934 : -nodes
|
||||
C_0000327135989451974539 ..> C_0000738420730783851375
|
||||
C_0002043996622900301644 o-- C_0001186707649890429575 : #model
|
||||
C_0002043996622900301644 o-- C_0000736965376885623323 : #metrics
|
||||
C_0002043996622900301644 o-- C_0000738420730783851375 : #status
|
||||
C_0000327135989451974539 <|-- C_0002043996622900301644
|
||||
C_0002043996622900301644 <|-- C_0001112865019015250005
|
||||
C_0002043996622900301644 <|-- C_0001760994424884323017
|
||||
C_0002219995589162262979 ..> C_0001186707649890429575
|
||||
C_0001760994424884323017 <|-- C_0001668829096702037834
|
||||
C_0002219995589162262979 <|-- C_0001668829096702037834
|
||||
C_0000736965376885623323 <|-- C_0001695326193250580823
|
||||
C_0001695326193250580823 <|-- C_0000011627355691342494
|
||||
C_0001695326193250580823 <|-- C_0000144682015341746929
|
||||
C_0001695326193250580823 <|-- C_0000008268514674428553
|
||||
C_0002043996622900301644 <|-- C_0000512022813807538451
|
||||
C_0001985241386355360576 o-- C_0002043996622900301644 : #models
|
||||
C_0002043996622900301644 <|-- C_0001985241386355360576
|
||||
C_0000358471592399852382 --> C_0001695326193250580823 : -featureSelector
|
||||
C_0001985241386355360576 <|-- C_0000358471592399852382
|
||||
C_0001112865019015250005 <|-- C_0000344502277874806837
|
||||
C_0002219995589162262979 <|-- C_0000344502277874806837
|
||||
C_0001985241386355360576 <|-- C_0000786111576121788282
|
||||
C_0000512022813807538451 <|-- C_0001369655639257755354
|
||||
C_0002219995589162262979 <|-- C_0001369655639257755354
|
||||
C_0001985241386355360576 <|-- C_0000487273479333793647
|
||||
C_0002219995589162262979 <|-- C_0000487273479333793647
|
||||
|
||||
'Generated with clang-uml, version 0.5.1
|
||||
'LLVM version clang version 17.0.6 (Fedora 17.0.6-2.fc39)
|
||||
@enduml
|
1
diagrams/BayesNet.svg
Normal file
After Width: | Height: | Size: 139 KiB |
128
diagrams/dependency.svg
Normal file
@@ -0,0 +1,128 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<!-- Generated by graphviz version 8.1.0 (20230707.0739)
|
||||
-->
|
||||
<!-- Title: BayesNet Pages: 1 -->
|
||||
<svg width="1632pt" height="288pt"
|
||||
viewBox="0.00 0.00 1631.95 287.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 283.8)">
|
||||
<title>BayesNet</title>
|
||||
<polygon fill="white" stroke="none" points="-4,4 -4,-283.8 1627.95,-283.8 1627.95,4 -4,4"/>
|
||||
<!-- node1 -->
|
||||
<g id="node1" class="node">
|
||||
<title>node1</title>
|
||||
<polygon fill="none" stroke="black" points="826.43,-254.35 826.43,-269.26 796.69,-279.8 754.63,-279.8 724.89,-269.26 724.89,-254.35 754.63,-243.8 796.69,-243.8 826.43,-254.35"/>
|
||||
<text text-anchor="middle" x="775.66" y="-257.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||
</g>
|
||||
<!-- node2 -->
|
||||
<g id="node2" class="node">
|
||||
<title>node2</title>
|
||||
<polygon fill="none" stroke="black" points="413.32,-185.8 372.39,-201.03 206.66,-207.8 40.93,-201.03 0,-185.8 114.69,-173.59 298.64,-173.59 413.32,-185.8"/>
|
||||
<text text-anchor="middle" x="206.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||
</g>
|
||||
<!-- node1->node2 -->
|
||||
<g id="edge1" class="edge">
|
||||
<title>node1->node2</title>
|
||||
<path fill="none" stroke="black" d="M724.41,-254.5C634.7,-243.46 447.04,-220.38 324.01,-205.24"/>
|
||||
<polygon fill="black" stroke="black" points="324.77,-201.69 314.42,-203.94 323.92,-208.63 324.77,-201.69"/>
|
||||
</g>
|
||||
<!-- node3 -->
|
||||
<g id="node3" class="node">
|
||||
<title>node3</title>
|
||||
<polygon fill="none" stroke="black" points="857.68,-185.8 815.49,-201.03 644.66,-207.8 473.84,-201.03 431.65,-185.8 549.86,-173.59 739.46,-173.59 857.68,-185.8"/>
|
||||
<text text-anchor="middle" x="644.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||
</g>
|
||||
<!-- node1->node3 -->
|
||||
<g id="edge2" class="edge">
|
||||
<title>node1->node3</title>
|
||||
<path fill="none" stroke="black" d="M747.56,-245.79C729.21,-235.98 704.97,-223.03 684.63,-212.16"/>
|
||||
<polygon fill="black" stroke="black" points="686.47,-208.64 676,-207.02 683.17,-214.82 686.47,-208.64"/>
|
||||
</g>
|
||||
<!-- node4 -->
|
||||
<g id="node4" class="node">
|
||||
<title>node4</title>
|
||||
<polygon fill="none" stroke="black" points="939.33,-182.35 939.33,-197.26 920.78,-207.8 894.54,-207.8 875.99,-197.26 875.99,-182.35 894.54,-171.8 920.78,-171.8 939.33,-182.35"/>
|
||||
<text text-anchor="middle" x="907.66" y="-185.53" font-family="Times,serif" font-size="12.00">mdlp</text>
|
||||
</g>
|
||||
<!-- node1->node4 -->
|
||||
<g id="edge3" class="edge">
|
||||
<title>node1->node4</title>
|
||||
<path fill="none" stroke="black" d="M803.66,-245.96C824.66,-234.82 853.45,-219.56 875.41,-207.91"/>
|
||||
<polygon fill="black" stroke="black" points="876.78,-210.61 883.97,-202.84 873.5,-204.43 876.78,-210.61"/>
|
||||
</g>
|
||||
<!-- node9 -->
|
||||
<g id="node5" class="node">
|
||||
<title>node9</title>
|
||||
<polygon fill="none" stroke="black" points="1107.74,-195.37 1032.66,-207.8 957.58,-195.37 986.26,-175.24 1079.06,-175.24 1107.74,-195.37"/>
|
||||
<text text-anchor="middle" x="1032.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||
</g>
|
||||
<!-- node1->node9 -->
|
||||
<g id="edge4" class="edge">
|
||||
<title>node1->node9</title>
|
||||
<path fill="none" stroke="black" d="M815.25,-250.02C860.25,-237.77 933.77,-217.74 982.68,-204.42"/>
|
||||
<polygon fill="black" stroke="black" points="983.3,-207.61 992.02,-201.6 981.46,-200.85 983.3,-207.61"/>
|
||||
</g>
|
||||
<!-- node10 -->
|
||||
<g id="node6" class="node">
|
||||
<title>node10</title>
|
||||
<polygon fill="none" stroke="black" points="1159.81,-113.8 1086.89,-129.03 791.66,-135.8 496.43,-129.03 423.52,-113.8 627.82,-101.59 955.5,-101.59 1159.81,-113.8"/>
|
||||
<text text-anchor="middle" x="791.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node9->node10 -->
|
||||
<g id="edge5" class="edge">
|
||||
<title>node9->node10</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M985.62,-175.14C949.2,-164.56 898.31,-149.78 857.79,-138.01"/>
|
||||
<polygon fill="black" stroke="black" points="859.04,-134.44 848.46,-135.01 857.09,-141.16 859.04,-134.44"/>
|
||||
</g>
|
||||
<!-- node5 -->
|
||||
<g id="node7" class="node">
|
||||
<title>node5</title>
|
||||
<polygon fill="none" stroke="black" points="1371.56,-123.37 1274.66,-135.8 1177.77,-123.37 1214.78,-103.24 1334.55,-103.24 1371.56,-123.37"/>
|
||||
<text text-anchor="middle" x="1274.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||
</g>
|
||||
<!-- node9->node5 -->
|
||||
<g id="edge6" class="edge">
|
||||
<title>node9->node5</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1079.61,-175.22C1120.66,-163.35 1180.2,-146.13 1222.68,-133.84"/>
|
||||
<polygon fill="black" stroke="black" points="1223.46,-136.97 1232.09,-130.83 1221.51,-130.24 1223.46,-136.97"/>
|
||||
</g>
|
||||
<!-- node6 -->
|
||||
<g id="node8" class="node">
|
||||
<title>node6</title>
|
||||
<polygon fill="none" stroke="black" points="1191.4,-27.9 1114.6,-43.12 803.66,-49.9 492.72,-43.12 415.93,-27.9 631.1,-15.68 976.22,-15.68 1191.4,-27.9"/>
|
||||
<text text-anchor="middle" x="803.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node5->node6 -->
|
||||
<g id="edge7" class="edge">
|
||||
<title>node5->node6</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1210.16,-105.31C1130.55,-91.13 994.37,-66.87 901.77,-50.38"/>
|
||||
<polygon fill="black" stroke="black" points="902.44,-46.77 891.98,-48.46 901.22,-53.66 902.44,-46.77"/>
|
||||
</g>
|
||||
<!-- node7 -->
|
||||
<g id="node9" class="node">
|
||||
<title>node7</title>
|
||||
<polygon fill="none" stroke="black" points="1339.72,-37.46 1274.66,-49.9 1209.61,-37.46 1234.46,-17.34 1314.87,-17.34 1339.72,-37.46"/>
|
||||
<text text-anchor="middle" x="1274.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||
</g>
|
||||
<!-- node5->node7 -->
|
||||
<g id="edge8" class="edge">
|
||||
<title>node5->node7</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1274.66,-102.95C1274.66,-91.56 1274.66,-75.07 1274.66,-60.95"/>
|
||||
<polygon fill="black" stroke="black" points="1278.16,-61.27 1274.66,-51.27 1271.16,-61.27 1278.16,-61.27"/>
|
||||
</g>
|
||||
<!-- node8 -->
|
||||
<g id="node10" class="node">
|
||||
<title>node8</title>
|
||||
<polygon fill="none" stroke="black" points="1623.95,-41.76 1490.66,-63.8 1357.37,-41.76 1408.28,-6.09 1573.04,-6.09 1623.95,-41.76"/>
|
||||
<text text-anchor="middle" x="1490.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||
<text text-anchor="middle" x="1490.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||
</g>
|
||||
<!-- node5->node8 -->
|
||||
<g id="edge9" class="edge">
|
||||
<title>node5->node8</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1310.82,-102.76C1341.68,-90.77 1386.88,-73.21 1424.25,-58.7"/>
|
||||
<polygon fill="black" stroke="black" points="1425.01,-61.77 1433.06,-54.89 1422.47,-55.25 1425.01,-61.77"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 7.1 KiB |
@@ -5,6 +5,7 @@
|
||||
The hyperparameters defined in the algorithm are:
|
||||
|
||||
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
|
||||
- ***bisection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
|
||||
|
||||
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
|
||||
|
||||
|
@@ -105,8 +105,7 @@
|
||||
|
||||
2. $numItemsPack \leftarrow 0$
|
||||
|
||||
10. If
|
||||
$(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
10. If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
|
||||
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||
|
||||
|
BIN
docs/coverage.pdf
Normal file
@@ -1,5 +0,0 @@
|
||||
filter = bayesnet/
|
||||
exclude-directories = build_debug/lib/
|
||||
exclude = bayesnet/utils/loguru.*
|
||||
print-summary = yes
|
||||
sort = uncovered-percent
|
BIN
html/amber.png
Normal file
After Width: | Height: | Size: 141 B |
90
html/bayesnet/BaseClassifier.h.func-c.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="BaseClassifier.h.func.html"><img src="../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">bayesnet::BaseClassifier::~BaseClassifier()</a></td>
|
||||
|
||||
<td class="coverFnHi">1680</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
90
html/bayesnet/BaseClassifier.h.func.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="BaseClassifier.h.func-c.html"><img src="../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">bayesnet::BaseClassifier::~BaseClassifier()</a></td>
|
||||
|
||||
<td class="coverFnHi">1680</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/BaseClassifier.h.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="BaseClassifier.h.gcov.overview.html" name="overview">
|
||||
<frame src="BaseClassifier.h.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
129
html/bayesnet/BaseClassifier.h.gcov.html
Normal file
@@ -0,0 +1,129 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (source / <a href="BaseClassifier.h.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #pragma once</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #include <vector></span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : #include <torch/torch.h></span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : #include <nlohmann/json.hpp></span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : enum status_t { NORMAL, WARNING, ERROR };</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : class BaseClassifier {</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : public:</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : // X is nxm std::vector, y is nx1 std::vector</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : // X is nxm tensor, y is nx1 tensor</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;</span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> : virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;</span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC tlaBgGNC"> 1680 : virtual ~BaseClassifier() = default;</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> : torch::Tensor virtual predict(torch::Tensor& X) = 0;</span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;</span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> : torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;</span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> : std::vector<std::vector<double>> virtual predict_proba(std::vector<std::vector<int >>& X) = 0;</span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> : status_t virtual getStatus() const = 0;</span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> : float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;</span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> : float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;</span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : int virtual getNumberOfNodes()const = 0;</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> : int virtual getNumberOfEdges()const = 0;</span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> : int virtual getNumberOfStates() const = 0;</span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> : int virtual getClassNumStates() const = 0;</span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> : std::vector<std::string> virtual show() const = 0;</span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> : std::vector<std::string> virtual graph(const std::string& title = "") const = 0;</span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> : virtual std::string getVersion() = 0;</span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> : std::vector<std::string> virtual topological_order() = 0;</span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> : std::vector<std::string> virtual getNotes() const = 0;</span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> : std::string virtual dump_cpt()const = 0;</span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> : virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;</span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> : std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }</span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> : protected:</span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> : virtual void trainModel(const torch::Tensor& weights) = 0;</span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> : std::vector<std::string> validHyperparameters;</span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> : };</span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
32
html/bayesnet/BaseClassifier.h.gcov.overview.html
Normal file
@@ -0,0 +1,32 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="BaseClassifier.h.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="BaseClassifier.h.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="BaseClassifier.h.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="BaseClassifier.h.gcov.html#L17" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,32,79,35" href="BaseClassifier.h.gcov.html#L21" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,36,79,39" href="BaseClassifier.h.gcov.html#L25" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,40,79,43" href="BaseClassifier.h.gcov.html#L29" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,44,79,47" href="BaseClassifier.h.gcov.html#L33" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="BaseClassifier.h.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="BaseClassifier.h.gcov.png" width=80 height=44 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/BaseClassifier.h.gcov.png
Normal file
After Width: | Height: | Size: 372 B |
251
html/bayesnet/classifiers/Classifier.cc.func-c.html
Normal file
@@ -0,0 +1,251 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">126</td>
|
||||
<td class="headerCovTableEntry">126</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">24</td>
|
||||
<td class="headerCovTableEntry">24</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="Classifier.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">bayesnet::Classifier::dump_cpt[abi:cxx11]() const</a></td>
|
||||
|
||||
<td class="coverFnHi">4</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">bayesnet::Classifier::topological_order[abi:cxx11]()</a></td>
|
||||
|
||||
<td class="coverFnHi">4</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">bayesnet::Classifier::predict(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">16</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">bayesnet::Classifier::score(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&, std::vector<int, std::allocator<int> >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">16</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">bayesnet::Classifier::getNumberOfStates() const</a></td>
|
||||
|
||||
<td class="coverFnHi">24</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">bayesnet::Classifier::show[abi:cxx11]() const</a></td>
|
||||
|
||||
<td class="coverFnHi">24</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">bayesnet::Classifier::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">92</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">bayesnet::Classifier::score(at::Tensor&, at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">112</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">bayesnet::Classifier::fit(at::Tensor&, at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">128</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">bayesnet::Classifier::fit(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&, std::vector<int, std::allocator<int> >&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">136</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">bayesnet::Classifier::getNumberOfEdges() const</a></td>
|
||||
|
||||
<td class="coverFnHi">332</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">bayesnet::Classifier::getNumberOfNodes() const</a></td>
|
||||
|
||||
<td class="coverFnHi">332</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">bayesnet::Classifier::buildDataset(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">340</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">bayesnet::Classifier::getClassNumStates() const</a></td>
|
||||
|
||||
<td class="coverFnHi">348</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">bayesnet::Classifier::predict_proba(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">548</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">bayesnet::Classifier::fit(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&, at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">660</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">bayesnet::Classifier::fit(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">852</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">bayesnet::Classifier::predict_proba(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1484</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">bayesnet::Classifier::addNodes()</a></td>
|
||||
|
||||
<td class="coverFnHi">1576</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">bayesnet::Classifier::trainModel(at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1576</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">bayesnet::Classifier::build(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&, at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1760</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">bayesnet::Classifier::checkFitParameters()</a></td>
|
||||
|
||||
<td class="coverFnHi">1760</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">bayesnet::Classifier::predict(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1844</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">bayesnet::Classifier::Classifier(bayesnet::Network)</a></td>
|
||||
|
||||
<td class="coverFnHi">2240</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
251
html/bayesnet/classifiers/Classifier.cc.func.html
Normal file
@@ -0,0 +1,251 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">126</td>
|
||||
<td class="headerCovTableEntry">126</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">24</td>
|
||||
<td class="headerCovTableEntry">24</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="Classifier.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">bayesnet::Classifier::Classifier(bayesnet::Network)</a></td>
|
||||
|
||||
<td class="coverFnHi">2240</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">bayesnet::Classifier::addNodes()</a></td>
|
||||
|
||||
<td class="coverFnHi">1576</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">bayesnet::Classifier::build(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&, at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1760</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">bayesnet::Classifier::buildDataset(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">340</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">bayesnet::Classifier::checkFitParameters()</a></td>
|
||||
|
||||
<td class="coverFnHi">1760</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">bayesnet::Classifier::dump_cpt[abi:cxx11]() const</a></td>
|
||||
|
||||
<td class="coverFnHi">4</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">bayesnet::Classifier::fit(at::Tensor&, at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">128</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">bayesnet::Classifier::fit(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">852</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">bayesnet::Classifier::fit(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&, at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">660</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">bayesnet::Classifier::fit(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&, std::vector<int, std::allocator<int> >&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">136</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">bayesnet::Classifier::getClassNumStates() const</a></td>
|
||||
|
||||
<td class="coverFnHi">348</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">bayesnet::Classifier::getNumberOfEdges() const</a></td>
|
||||
|
||||
<td class="coverFnHi">332</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">bayesnet::Classifier::getNumberOfNodes() const</a></td>
|
||||
|
||||
<td class="coverFnHi">332</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">bayesnet::Classifier::getNumberOfStates() const</a></td>
|
||||
|
||||
<td class="coverFnHi">24</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">bayesnet::Classifier::predict(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1844</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">bayesnet::Classifier::predict(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">16</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">bayesnet::Classifier::predict_proba(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1484</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">bayesnet::Classifier::predict_proba(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">548</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">bayesnet::Classifier::score(at::Tensor&, at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">112</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">bayesnet::Classifier::score(std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >&, std::vector<int, std::allocator<int> >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">16</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">bayesnet::Classifier::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">92</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">bayesnet::Classifier::show[abi:cxx11]() const</a></td>
|
||||
|
||||
<td class="coverFnHi">24</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">bayesnet::Classifier::topological_order[abi:cxx11]()</a></td>
|
||||
|
||||
<td class="coverFnHi">4</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">bayesnet::Classifier::trainModel(at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1576</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/Classifier.cc.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="Classifier.cc.gcov.overview.html" name="overview">
|
||||
<frame src="Classifier.cc.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
278
html/bayesnet/classifiers/Classifier.cc.gcov.html
Normal file
@@ -0,0 +1,278 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (source / <a href="Classifier.cc.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">126</td>
|
||||
<td class="headerCovTableEntry">126</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">24</td>
|
||||
<td class="headerCovTableEntry">24</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include <sstream></span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #include "bayesnet/utils/bayesnetUtils.h"</span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : #include "Classifier.h"</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : </span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC tlaBgGNC"> 2240 : Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}</span></span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 1760 : Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)</span></span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : {</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 1760 : this->features = features;</span></span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 1760 : this->className = className;</span></span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 1760 : this->states = states;</span></span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 1760 : m = dataset.size(1);</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 1760 : n = features.size();</span></span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 1760 : checkFitParameters();</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 1728 : auto n_classes = states.at(className).size();</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 1728 : metrics = Metrics(dataset, features, className, n_classes);</span></span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 1728 : model.initialize();</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 1728 : buildModel(weights);</span></span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 1728 : trainModel(weights);</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 1712 : fitted = true;</span></span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 1712 : return *this;</span></span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : }</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 340 : void Classifier::buildDataset(torch::Tensor& ytmp)</span></span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> : {</span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> : try {</span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 340 : auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);</span></span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 1052 : dataset = torch::cat({ dataset, yresized }, 0);</span></span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 340 : }</span></span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 16 : catch (const std::exception& e) {</span></span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 16 : std::stringstream oss;</span></span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 16 : oss << "* Error in X and y dimensions *\n";</span></span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 16 : oss << "X dimensions: " << dataset.sizes() << "\n";</span></span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 16 : oss << "y dimensions: " << ytmp.sizes();</span></span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 16 : throw std::runtime_error(oss.str());</span></span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 32 : }</span></span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 680 : }</span></span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 1576 : void Classifier::trainModel(const torch::Tensor& weights)</span></span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> : {</span>
|
||||
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 1576 : model.fit(dataset, weights, features, className, states);</span></span>
|
||||
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 1576 : }</span></span>
|
||||
<span id="L48"><span class="lineNum"> 48</span> : // X is nxm where n is the number of features and m the number of samples</span>
|
||||
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 128 : Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)</span></span>
|
||||
<span id="L50"><span class="lineNum"> 50</span> : {</span>
|
||||
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 128 : dataset = X;</span></span>
|
||||
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 128 : buildDataset(y);</span></span>
|
||||
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 120 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
|
||||
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 208 : return build(features, className, states, weights);</span></span>
|
||||
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 120 : }</span></span>
|
||||
<span id="L56"><span class="lineNum"> 56</span> : // X is nxm where n is the number of features and m the number of samples</span>
|
||||
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 136 : Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)</span></span>
|
||||
<span id="L58"><span class="lineNum"> 58</span> : {</span>
|
||||
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 136 : dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);</span></span>
|
||||
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 976 : for (int i = 0; i < X.size(); ++i) {</span></span>
|
||||
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 3360 : dataset.index_put_({ i, "..." }, torch::tensor(X[i], torch::kInt32));</span></span>
|
||||
<span id="L62"><span class="lineNum"> 62</span> : }</span>
|
||||
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 136 : auto ytmp = torch::tensor(y, torch::kInt32);</span></span>
|
||||
<span id="L64"><span class="lineNum"> 64</span> <span class="tlaGNC"> 136 : buildDataset(ytmp);</span></span>
|
||||
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 128 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
|
||||
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 240 : return build(features, className, states, weights);</span></span>
|
||||
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 992 : }</span></span>
|
||||
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 852 : Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)</span></span>
|
||||
<span id="L69"><span class="lineNum"> 69</span> : {</span>
|
||||
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 852 : this->dataset = dataset;</span></span>
|
||||
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 852 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
|
||||
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 1704 : return build(features, className, states, weights);</span></span>
|
||||
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 852 : }</span></span>
|
||||
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 660 : Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)</span></span>
|
||||
<span id="L75"><span class="lineNum"> 75</span> : {</span>
|
||||
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 660 : this->dataset = dataset;</span></span>
|
||||
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 660 : return build(features, className, states, weights);</span></span>
|
||||
<span id="L78"><span class="lineNum"> 78</span> : }</span>
|
||||
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 1760 : void Classifier::checkFitParameters()</span></span>
|
||||
<span id="L80"><span class="lineNum"> 80</span> : {</span>
|
||||
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 1760 : if (torch::is_floating_point(dataset)) {</span></span>
|
||||
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 8 : throw std::invalid_argument("dataset (X, y) must be of type Integer");</span></span>
|
||||
<span id="L83"><span class="lineNum"> 83</span> : }</span>
|
||||
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 1752 : if (dataset.size(0) - 1 != features.size()) {</span></span>
|
||||
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 8 : throw std::invalid_argument("Classifier: X " + std::to_string(dataset.size(0) - 1) + " and features " + std::to_string(features.size()) + " must have the same number of features");</span></span>
|
||||
<span id="L86"><span class="lineNum"> 86</span> : }</span>
|
||||
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 1744 : if (states.find(className) == states.end()) {</span></span>
|
||||
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 8 : throw std::invalid_argument("class name not found in states");</span></span>
|
||||
<span id="L89"><span class="lineNum"> 89</span> : }</span>
|
||||
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 32996 : for (auto feature : features) {</span></span>
|
||||
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 31268 : if (states.find(feature) == states.end()) {</span></span>
|
||||
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 8 : throw std::invalid_argument("feature [" + feature + "] not found in states");</span></span>
|
||||
<span id="L93"><span class="lineNum"> 93</span> : }</span>
|
||||
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 31268 : }</span></span>
|
||||
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 1728 : }</span></span>
|
||||
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 1844 : torch::Tensor Classifier::predict(torch::Tensor& X)</span></span>
|
||||
<span id="L97"><span class="lineNum"> 97</span> : {</span>
|
||||
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 1844 : if (!fitted) {</span></span>
|
||||
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 16 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
|
||||
<span id="L100"><span class="lineNum"> 100</span> : }</span>
|
||||
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 1828 : return model.predict(X);</span></span>
|
||||
<span id="L102"><span class="lineNum"> 102</span> : }</span>
|
||||
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 16 : std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)</span></span>
|
||||
<span id="L104"><span class="lineNum"> 104</span> : {</span>
|
||||
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 16 : if (!fitted) {</span></span>
|
||||
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
|
||||
<span id="L107"><span class="lineNum"> 107</span> : }</span>
|
||||
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 8 : auto m_ = X[0].size();</span></span>
|
||||
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 8 : auto n_ = X.size();</span></span>
|
||||
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 8 : std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));</span></span>
|
||||
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 40 : for (auto i = 0; i < n_; i++) {</span></span>
|
||||
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 64 : Xd[i] = std::vector<int>(X[i].begin(), X[i].end());</span></span>
|
||||
<span id="L113"><span class="lineNum"> 113</span> : }</span>
|
||||
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 8 : auto yp = model.predict(Xd);</span></span>
|
||||
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 16 : return yp;</span></span>
|
||||
<span id="L116"><span class="lineNum"> 116</span> <span class="tlaGNC"> 8 : }</span></span>
|
||||
<span id="L117"><span class="lineNum"> 117</span> <span class="tlaGNC"> 1484 : torch::Tensor Classifier::predict_proba(torch::Tensor& X)</span></span>
|
||||
<span id="L118"><span class="lineNum"> 118</span> : {</span>
|
||||
<span id="L119"><span class="lineNum"> 119</span> <span class="tlaGNC"> 1484 : if (!fitted) {</span></span>
|
||||
<span id="L120"><span class="lineNum"> 120</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
|
||||
<span id="L121"><span class="lineNum"> 121</span> : }</span>
|
||||
<span id="L122"><span class="lineNum"> 122</span> <span class="tlaGNC"> 1476 : return model.predict_proba(X);</span></span>
|
||||
<span id="L123"><span class="lineNum"> 123</span> : }</span>
|
||||
<span id="L124"><span class="lineNum"> 124</span> <span class="tlaGNC"> 548 : std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)</span></span>
|
||||
<span id="L125"><span class="lineNum"> 125</span> : {</span>
|
||||
<span id="L126"><span class="lineNum"> 126</span> <span class="tlaGNC"> 548 : if (!fitted) {</span></span>
|
||||
<span id="L127"><span class="lineNum"> 127</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
|
||||
<span id="L128"><span class="lineNum"> 128</span> : }</span>
|
||||
<span id="L129"><span class="lineNum"> 129</span> <span class="tlaGNC"> 540 : auto m_ = X[0].size();</span></span>
|
||||
<span id="L130"><span class="lineNum"> 130</span> <span class="tlaGNC"> 540 : auto n_ = X.size();</span></span>
|
||||
<span id="L131"><span class="lineNum"> 131</span> <span class="tlaGNC"> 540 : std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));</span></span>
|
||||
<span id="L132"><span class="lineNum"> 132</span> : // Convert to nxm vector</span>
|
||||
<span id="L133"><span class="lineNum"> 133</span> <span class="tlaGNC"> 5040 : for (auto i = 0; i < n_; i++) {</span></span>
|
||||
<span id="L134"><span class="lineNum"> 134</span> <span class="tlaGNC"> 9000 : Xd[i] = std::vector<int>(X[i].begin(), X[i].end());</span></span>
|
||||
<span id="L135"><span class="lineNum"> 135</span> : }</span>
|
||||
<span id="L136"><span class="lineNum"> 136</span> <span class="tlaGNC"> 540 : auto yp = model.predict_proba(Xd);</span></span>
|
||||
<span id="L137"><span class="lineNum"> 137</span> <span class="tlaGNC"> 1080 : return yp;</span></span>
|
||||
<span id="L138"><span class="lineNum"> 138</span> <span class="tlaGNC"> 540 : }</span></span>
|
||||
<span id="L139"><span class="lineNum"> 139</span> <span class="tlaGNC"> 112 : float Classifier::score(torch::Tensor& X, torch::Tensor& y)</span></span>
|
||||
<span id="L140"><span class="lineNum"> 140</span> : {</span>
|
||||
<span id="L141"><span class="lineNum"> 141</span> <span class="tlaGNC"> 112 : torch::Tensor y_pred = predict(X);</span></span>
|
||||
<span id="L142"><span class="lineNum"> 142</span> <span class="tlaGNC"> 208 : return (y_pred == y).sum().item<float>() / y.size(0);</span></span>
|
||||
<span id="L143"><span class="lineNum"> 143</span> <span class="tlaGNC"> 104 : }</span></span>
|
||||
<span id="L144"><span class="lineNum"> 144</span> <span class="tlaGNC"> 16 : float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)</span></span>
|
||||
<span id="L145"><span class="lineNum"> 145</span> : {</span>
|
||||
<span id="L146"><span class="lineNum"> 146</span> <span class="tlaGNC"> 16 : if (!fitted) {</span></span>
|
||||
<span id="L147"><span class="lineNum"> 147</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
|
||||
<span id="L148"><span class="lineNum"> 148</span> : }</span>
|
||||
<span id="L149"><span class="lineNum"> 149</span> <span class="tlaGNC"> 8 : return model.score(X, y);</span></span>
|
||||
<span id="L150"><span class="lineNum"> 150</span> : }</span>
|
||||
<span id="L151"><span class="lineNum"> 151</span> <span class="tlaGNC"> 24 : std::vector<std::string> Classifier::show() const</span></span>
|
||||
<span id="L152"><span class="lineNum"> 152</span> : {</span>
|
||||
<span id="L153"><span class="lineNum"> 153</span> <span class="tlaGNC"> 24 : return model.show();</span></span>
|
||||
<span id="L154"><span class="lineNum"> 154</span> : }</span>
|
||||
<span id="L155"><span class="lineNum"> 155</span> <span class="tlaGNC"> 1576 : void Classifier::addNodes()</span></span>
|
||||
<span id="L156"><span class="lineNum"> 156</span> : {</span>
|
||||
<span id="L157"><span class="lineNum"> 157</span> : // Add all nodes to the network</span>
|
||||
<span id="L158"><span class="lineNum"> 158</span> <span class="tlaGNC"> 30872 : for (const auto& feature : features) {</span></span>
|
||||
<span id="L159"><span class="lineNum"> 159</span> <span class="tlaGNC"> 29296 : model.addNode(feature);</span></span>
|
||||
<span id="L160"><span class="lineNum"> 160</span> : }</span>
|
||||
<span id="L161"><span class="lineNum"> 161</span> <span class="tlaGNC"> 1576 : model.addNode(className);</span></span>
|
||||
<span id="L162"><span class="lineNum"> 162</span> <span class="tlaGNC"> 1576 : }</span></span>
|
||||
<span id="L163"><span class="lineNum"> 163</span> <span class="tlaGNC"> 332 : int Classifier::getNumberOfNodes() const</span></span>
|
||||
<span id="L164"><span class="lineNum"> 164</span> : {</span>
|
||||
<span id="L165"><span class="lineNum"> 165</span> : // Features does not include class</span>
|
||||
<span id="L166"><span class="lineNum"> 166</span> <span class="tlaGNC"> 332 : return fitted ? model.getFeatures().size() : 0;</span></span>
|
||||
<span id="L167"><span class="lineNum"> 167</span> : }</span>
|
||||
<span id="L168"><span class="lineNum"> 168</span> <span class="tlaGNC"> 332 : int Classifier::getNumberOfEdges() const</span></span>
|
||||
<span id="L169"><span class="lineNum"> 169</span> : {</span>
|
||||
<span id="L170"><span class="lineNum"> 170</span> <span class="tlaGNC"> 332 : return fitted ? model.getNumEdges() : 0;</span></span>
|
||||
<span id="L171"><span class="lineNum"> 171</span> : }</span>
|
||||
<span id="L172"><span class="lineNum"> 172</span> <span class="tlaGNC"> 24 : int Classifier::getNumberOfStates() const</span></span>
|
||||
<span id="L173"><span class="lineNum"> 173</span> : {</span>
|
||||
<span id="L174"><span class="lineNum"> 174</span> <span class="tlaGNC"> 24 : return fitted ? model.getStates() : 0;</span></span>
|
||||
<span id="L175"><span class="lineNum"> 175</span> : }</span>
|
||||
<span id="L176"><span class="lineNum"> 176</span> <span class="tlaGNC"> 348 : int Classifier::getClassNumStates() const</span></span>
|
||||
<span id="L177"><span class="lineNum"> 177</span> : {</span>
|
||||
<span id="L178"><span class="lineNum"> 178</span> <span class="tlaGNC"> 348 : return fitted ? model.getClassNumStates() : 0;</span></span>
|
||||
<span id="L179"><span class="lineNum"> 179</span> : }</span>
|
||||
<span id="L180"><span class="lineNum"> 180</span> <span class="tlaGNC"> 4 : std::vector<std::string> Classifier::topological_order()</span></span>
|
||||
<span id="L181"><span class="lineNum"> 181</span> : {</span>
|
||||
<span id="L182"><span class="lineNum"> 182</span> <span class="tlaGNC"> 4 : return model.topological_sort();</span></span>
|
||||
<span id="L183"><span class="lineNum"> 183</span> : }</span>
|
||||
<span id="L184"><span class="lineNum"> 184</span> <span class="tlaGNC"> 4 : std::string Classifier::dump_cpt() const</span></span>
|
||||
<span id="L185"><span class="lineNum"> 185</span> : {</span>
|
||||
<span id="L186"><span class="lineNum"> 186</span> <span class="tlaGNC"> 4 : return model.dump_cpt();</span></span>
|
||||
<span id="L187"><span class="lineNum"> 187</span> : }</span>
|
||||
<span id="L188"><span class="lineNum"> 188</span> <span class="tlaGNC"> 92 : void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)</span></span>
|
||||
<span id="L189"><span class="lineNum"> 189</span> : {</span>
|
||||
<span id="L190"><span class="lineNum"> 190</span> <span class="tlaGNC"> 92 : if (!hyperparameters.empty()) {</span></span>
|
||||
<span id="L191"><span class="lineNum"> 191</span> <span class="tlaGNC"> 8 : throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());</span></span>
|
||||
<span id="L192"><span class="lineNum"> 192</span> : }</span>
|
||||
<span id="L193"><span class="lineNum"> 193</span> <span class="tlaGNC"> 84 : }</span></span>
|
||||
<span id="L194"><span class="lineNum"> 194</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
69
html/bayesnet/classifiers/Classifier.cc.gcov.overview.html
Normal file
@@ -0,0 +1,69 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="Classifier.cc.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="Classifier.cc.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="Classifier.cc.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="Classifier.cc.gcov.html#L17" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,32,79,35" href="Classifier.cc.gcov.html#L21" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,36,79,39" href="Classifier.cc.gcov.html#L25" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,40,79,43" href="Classifier.cc.gcov.html#L29" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,44,79,47" href="Classifier.cc.gcov.html#L33" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,48,79,51" href="Classifier.cc.gcov.html#L37" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,52,79,55" href="Classifier.cc.gcov.html#L41" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,56,79,59" href="Classifier.cc.gcov.html#L45" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,60,79,63" href="Classifier.cc.gcov.html#L49" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,64,79,67" href="Classifier.cc.gcov.html#L53" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,68,79,71" href="Classifier.cc.gcov.html#L57" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,72,79,75" href="Classifier.cc.gcov.html#L61" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,76,79,79" href="Classifier.cc.gcov.html#L65" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,80,79,83" href="Classifier.cc.gcov.html#L69" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,84,79,87" href="Classifier.cc.gcov.html#L73" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,88,79,91" href="Classifier.cc.gcov.html#L77" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,92,79,95" href="Classifier.cc.gcov.html#L81" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,96,79,99" href="Classifier.cc.gcov.html#L85" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,100,79,103" href="Classifier.cc.gcov.html#L89" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,104,79,107" href="Classifier.cc.gcov.html#L93" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,108,79,111" href="Classifier.cc.gcov.html#L97" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,112,79,115" href="Classifier.cc.gcov.html#L101" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,116,79,119" href="Classifier.cc.gcov.html#L105" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,120,79,123" href="Classifier.cc.gcov.html#L109" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,124,79,127" href="Classifier.cc.gcov.html#L113" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,128,79,131" href="Classifier.cc.gcov.html#L117" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,132,79,135" href="Classifier.cc.gcov.html#L121" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,136,79,139" href="Classifier.cc.gcov.html#L125" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,140,79,143" href="Classifier.cc.gcov.html#L129" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,144,79,147" href="Classifier.cc.gcov.html#L133" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,148,79,151" href="Classifier.cc.gcov.html#L137" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,152,79,155" href="Classifier.cc.gcov.html#L141" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,156,79,159" href="Classifier.cc.gcov.html#L145" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,160,79,163" href="Classifier.cc.gcov.html#L149" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,164,79,167" href="Classifier.cc.gcov.html#L153" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,168,79,171" href="Classifier.cc.gcov.html#L157" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,172,79,175" href="Classifier.cc.gcov.html#L161" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,176,79,179" href="Classifier.cc.gcov.html#L165" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,180,79,183" href="Classifier.cc.gcov.html#L169" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,184,79,187" href="Classifier.cc.gcov.html#L173" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,188,79,191" href="Classifier.cc.gcov.html#L177" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,192,79,195" href="Classifier.cc.gcov.html#L181" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="Classifier.cc.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="Classifier.cc.gcov.png" width=80 height=193 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/Classifier.cc.gcov.png
Normal file
After Width: | Height: | Size: 852 B |
111
html/bayesnet/classifiers/Classifier.h.func-c.html
Normal file
@@ -0,0 +1,111 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="Classifier.h.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">bayesnet::Classifier::getVersion[abi:cxx11]()</a></td>
|
||||
|
||||
<td class="coverFnHi">32</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">bayesnet::Classifier::getNotes[abi:cxx11]() const</a></td>
|
||||
|
||||
<td class="coverFnHi">80</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">bayesnet::Classifier::getStatus() const</a></td>
|
||||
|
||||
<td class="coverFnHi">128</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">bayesnet::Classifier::~Classifier()</a></td>
|
||||
|
||||
<td class="coverFnHi">1680</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
111
html/bayesnet/classifiers/Classifier.h.func.html
Normal file
@@ -0,0 +1,111 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="Classifier.h.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">bayesnet::Classifier::getNotes[abi:cxx11]() const</a></td>
|
||||
|
||||
<td class="coverFnHi">80</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">bayesnet::Classifier::getStatus() const</a></td>
|
||||
|
||||
<td class="coverFnHi">128</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">bayesnet::Classifier::getVersion[abi:cxx11]()</a></td>
|
||||
|
||||
<td class="coverFnHi">32</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">bayesnet::Classifier::~Classifier()</a></td>
|
||||
|
||||
<td class="coverFnHi">1680</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/Classifier.h.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="Classifier.h.gcov.overview.html" name="overview">
|
||||
<frame src="Classifier.h.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
149
html/bayesnet/classifiers/Classifier.h.gcov.html
Normal file
@@ -0,0 +1,149 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (source / <a href="Classifier.h.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #ifndef CLASSIFIER_H</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #define CLASSIFIER_H</span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : #include <torch/torch.h></span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : #include "bayesnet/utils/BayesMetrics.h"</span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : #include "bayesnet/network/Network.h"</span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : #include "bayesnet/BaseClassifier.h"</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : </span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : namespace bayesnet {</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : class Classifier : public BaseClassifier {</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : public:</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : Classifier(Network model);</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC tlaBgGNC"> 1680 : virtual ~Classifier() = default;</span></span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> : Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;</span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> : Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;</span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> : Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;</span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : void addNodes();</span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> : int getNumberOfNodes() const override;</span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> : int getNumberOfEdges() const override;</span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> : int getNumberOfStates() const override;</span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> : int getClassNumStates() const override;</span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> : torch::Tensor predict(torch::Tensor& X) override;</span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : std::vector<int> predict(std::vector<std::vector<int>>& X) override;</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> : torch::Tensor predict_proba(torch::Tensor& X) override;</span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> : std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;</span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 128 : status_t getStatus() const override { return status; }</span></span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 96 : std::string getVersion() override { return { project_version.begin(), project_version.end() }; };</span></span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> : float score(torch::Tensor& X, torch::Tensor& y) override;</span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> : float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;</span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> : std::vector<std::string> show() const override;</span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> : std::vector<std::string> topological_order() override;</span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 80 : std::vector<std::string> getNotes() const override { return notes; }</span></span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> : std::string dump_cpt() const override;</span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> : void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters</span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> : protected:</span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> : bool fitted;</span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> : unsigned int m, n; // m: number of samples, n: number of features</span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> : Network model;</span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> : Metrics metrics;</span>
|
||||
<span id="L46"><span class="lineNum"> 46</span> : std::vector<std::string> features;</span>
|
||||
<span id="L47"><span class="lineNum"> 47</span> : std::string className;</span>
|
||||
<span id="L48"><span class="lineNum"> 48</span> : std::map<std::string, std::vector<int>> states;</span>
|
||||
<span id="L49"><span class="lineNum"> 49</span> : torch::Tensor dataset; // (n+1)xm tensor</span>
|
||||
<span id="L50"><span class="lineNum"> 50</span> : status_t status = NORMAL;</span>
|
||||
<span id="L51"><span class="lineNum"> 51</span> : std::vector<std::string> notes; // Used to store messages occurred during the fit process</span>
|
||||
<span id="L52"><span class="lineNum"> 52</span> : void checkFitParameters();</span>
|
||||
<span id="L53"><span class="lineNum"> 53</span> : virtual void buildModel(const torch::Tensor& weights) = 0;</span>
|
||||
<span id="L54"><span class="lineNum"> 54</span> : void trainModel(const torch::Tensor& weights) override;</span>
|
||||
<span id="L55"><span class="lineNum"> 55</span> : void buildDataset(torch::Tensor& y);</span>
|
||||
<span id="L56"><span class="lineNum"> 56</span> : private:</span>
|
||||
<span id="L57"><span class="lineNum"> 57</span> : Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);</span>
|
||||
<span id="L58"><span class="lineNum"> 58</span> : };</span>
|
||||
<span id="L59"><span class="lineNum"> 59</span> : }</span>
|
||||
<span id="L60"><span class="lineNum"> 60</span> : #endif</span>
|
||||
<span id="L61"><span class="lineNum"> 61</span> : </span>
|
||||
<span id="L62"><span class="lineNum"> 62</span> : </span>
|
||||
<span id="L63"><span class="lineNum"> 63</span> : </span>
|
||||
<span id="L64"><span class="lineNum"> 64</span> : </span>
|
||||
<span id="L65"><span class="lineNum"> 65</span> : </span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
37
html/bayesnet/classifiers/Classifier.h.gcov.overview.html
Normal file
@@ -0,0 +1,37 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="Classifier.h.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="Classifier.h.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="Classifier.h.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="Classifier.h.gcov.html#L17" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,32,79,35" href="Classifier.h.gcov.html#L21" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,36,79,39" href="Classifier.h.gcov.html#L25" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,40,79,43" href="Classifier.h.gcov.html#L29" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,44,79,47" href="Classifier.h.gcov.html#L33" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,48,79,51" href="Classifier.h.gcov.html#L37" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,52,79,55" href="Classifier.h.gcov.html#L41" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,56,79,59" href="Classifier.h.gcov.html#L45" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,60,79,63" href="Classifier.h.gcov.html#L49" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,64,79,67" href="Classifier.h.gcov.html#L53" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="Classifier.h.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="Classifier.h.gcov.png" width=80 height=64 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/Classifier.h.gcov.png
Normal file
After Width: | Height: | Size: 453 B |
118
html/bayesnet/classifiers/KDB.cc.func-c.html
Normal file
@@ -0,0 +1,118 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">96.3 %</td>
|
||||
<td class="headerCovTableEntry">54</td>
|
||||
<td class="headerCovTableEntry">52</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">5</td>
|
||||
<td class="headerCovTableEntry">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDB.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">bayesnet::KDB::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">8</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">bayesnet::KDB::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">12</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">bayesnet::KDB::buildModel(at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">52</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">bayesnet::KDB::KDB(int, float)</a></td>
|
||||
|
||||
<td class="coverFnHi">148</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">bayesnet::KDB::add_m_edges(int, std::vector<int, std::allocator<int> >&, at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">344</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
118
html/bayesnet/classifiers/KDB.cc.func.html
Normal file
@@ -0,0 +1,118 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">96.3 %</td>
|
||||
<td class="headerCovTableEntry">54</td>
|
||||
<td class="headerCovTableEntry">52</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">5</td>
|
||||
<td class="headerCovTableEntry">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDB.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">bayesnet::KDB::KDB(int, float)</a></td>
|
||||
|
||||
<td class="coverFnHi">148</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">bayesnet::KDB::add_m_edges(int, std::vector<int, std::allocator<int> >&, at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">344</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">bayesnet::KDB::buildModel(at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">52</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">bayesnet::KDB::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">8</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">bayesnet::KDB::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">12</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/KDB.cc.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="KDB.cc.gcov.overview.html" name="overview">
|
||||
<frame src="KDB.cc.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
195
html/bayesnet/classifiers/KDB.cc.gcov.html
Normal file
@@ -0,0 +1,195 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (source / <a href="KDB.cc.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">96.3 %</td>
|
||||
<td class="headerCovTableEntry">54</td>
|
||||
<td class="headerCovTableEntry">52</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">5</td>
|
||||
<td class="headerCovTableEntry">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include "KDB.h"</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : </span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 148 : KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)</span></span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : {</span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 444 : validHyperparameters = { "k", "theta" };</span></span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : </span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 444 : }</span></span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 12 : void KDB::setHyperparameters(const nlohmann::json& hyperparameters_)</span></span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : {</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 12 : auto hyperparameters = hyperparameters_;</span></span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 12 : if (hyperparameters.contains("k")) {</span></span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 4 : k = hyperparameters["k"];</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 4 : hyperparameters.erase("k");</span></span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> : }</span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 12 : if (hyperparameters.contains("theta")) {</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 4 : theta = hyperparameters["theta"];</span></span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 4 : hyperparameters.erase("theta");</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> : }</span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 12 : Classifier::setHyperparameters(hyperparameters);</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 12 : }</span></span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 52 : void KDB::buildModel(const torch::Tensor& weights)</span></span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : {</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> : /*</span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> : 1. For each feature Xi, compute mutual information, I(X;C),</span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> : where C is the class.</span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> : 2. Compute class conditional mutual information I(Xi;XjIC), f or each</span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> : pair of features Xi and Xj, where i#j.</span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> : 3. Let the used variable list, S, be empty.</span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> : 4. Let the DAG network being constructed, BN, begin with a single</span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> : class node, C.</span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> : 5. Repeat until S includes all domain features</span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> : 5.1. Select feature Xmax which is not in S and has the largest value</span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> : I(Xmax;C).</span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> : 5.2. Add a node to BN representing Xmax.</span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> : 5.3. Add an arc from C to Xmax in BN.</span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> : 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with</span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> : the highest value for I(Xmax;X,jC).</span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> : 5.5. Add Xmax to S.</span>
|
||||
<span id="L46"><span class="lineNum"> 46</span> : Compute the conditional probabilility infered by the structure of BN by</span>
|
||||
<span id="L47"><span class="lineNum"> 47</span> : using counts from DB, and output BN.</span>
|
||||
<span id="L48"><span class="lineNum"> 48</span> : */</span>
|
||||
<span id="L49"><span class="lineNum"> 49</span> : // 1. For each feature Xi, compute mutual information, I(X;C),</span>
|
||||
<span id="L50"><span class="lineNum"> 50</span> : // where C is the class.</span>
|
||||
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 52 : addNodes();</span></span>
|
||||
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 156 : const torch::Tensor& y = dataset.index({ -1, "..." });</span></span>
|
||||
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 52 : std::vector<double> mi;</span></span>
|
||||
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 396 : for (auto i = 0; i < features.size(); i++) {</span></span>
|
||||
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 1032 : torch::Tensor firstFeature = dataset.index({ i, "..." });</span></span>
|
||||
<span id="L56"><span class="lineNum"> 56</span> <span class="tlaGNC"> 344 : mi.push_back(metrics.mutualInformation(firstFeature, y, weights));</span></span>
|
||||
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 344 : }</span></span>
|
||||
<span id="L58"><span class="lineNum"> 58</span> : // 2. Compute class conditional mutual information I(Xi;XjIC), f or each</span>
|
||||
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 52 : auto conditionalEdgeWeights = metrics.conditionalEdge(weights);</span></span>
|
||||
<span id="L60"><span class="lineNum"> 60</span> : // 3. Let the used variable list, S, be empty.</span>
|
||||
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 52 : std::vector<int> S;</span></span>
|
||||
<span id="L62"><span class="lineNum"> 62</span> : // 4. Let the DAG network being constructed, BN, begin with a single</span>
|
||||
<span id="L63"><span class="lineNum"> 63</span> : // class node, C.</span>
|
||||
<span id="L64"><span class="lineNum"> 64</span> : // 5. Repeat until S includes all domain features</span>
|
||||
<span id="L65"><span class="lineNum"> 65</span> : // 5.1. Select feature Xmax which is not in S and has the largest value</span>
|
||||
<span id="L66"><span class="lineNum"> 66</span> : // I(Xmax;C).</span>
|
||||
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 52 : auto order = argsort(mi);</span></span>
|
||||
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 396 : for (auto idx : order) {</span></span>
|
||||
<span id="L69"><span class="lineNum"> 69</span> : // 5.2. Add a node to BN representing Xmax.</span>
|
||||
<span id="L70"><span class="lineNum"> 70</span> : // 5.3. Add an arc from C to Xmax in BN.</span>
|
||||
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 344 : model.addEdge(className, features[idx]);</span></span>
|
||||
<span id="L72"><span class="lineNum"> 72</span> : // 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with</span>
|
||||
<span id="L73"><span class="lineNum"> 73</span> : // the highest value for I(Xmax;X,jC).</span>
|
||||
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 344 : add_m_edges(idx, S, conditionalEdgeWeights);</span></span>
|
||||
<span id="L75"><span class="lineNum"> 75</span> : // 5.5. Add Xmax to S.</span>
|
||||
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 344 : S.push_back(idx);</span></span>
|
||||
<span id="L77"><span class="lineNum"> 77</span> : }</span>
|
||||
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 448 : }</span></span>
|
||||
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 344 : void KDB::add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights)</span></span>
|
||||
<span id="L80"><span class="lineNum"> 80</span> : {</span>
|
||||
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 344 : auto n_edges = std::min(k, static_cast<int>(S.size()));</span></span>
|
||||
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 344 : auto cond_w = clone(weights);</span></span>
|
||||
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 344 : bool exit_cond = k == 0;</span></span>
|
||||
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 344 : int num = 0;</span></span>
|
||||
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 1004 : while (!exit_cond) {</span></span>
|
||||
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 2640 : auto max_minfo = argmax(cond_w.index({ idx, "..." })).item<int>();</span></span>
|
||||
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 660 : auto belongs = find(S.begin(), S.end(), max_minfo) != S.end();</span></span>
|
||||
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 1764 : if (belongs && cond_w.index({ idx, max_minfo }).item<float>() > theta) {</span></span>
|
||||
<span id="L89"><span class="lineNum"> 89</span> : try {</span>
|
||||
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 320 : model.addEdge(features[max_minfo], features[idx]);</span></span>
|
||||
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 320 : num++;</span></span>
|
||||
<span id="L92"><span class="lineNum"> 92</span> : }</span>
|
||||
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaUNC tlaBgUNC"> 0 : catch (const std::invalid_argument& e) {</span></span>
|
||||
<span id="L94"><span class="lineNum"> 94</span> : // Loops are not allowed</span>
|
||||
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaUNC"> 0 : }</span></span>
|
||||
<span id="L96"><span class="lineNum"> 96</span> : }</span>
|
||||
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC tlaBgGNC"> 2640 : cond_w.index_put_({ idx, max_minfo }, -1);</span></span>
|
||||
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 1980 : auto candidates_mask = cond_w.index({ idx, "..." }).gt(theta);</span></span>
|
||||
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 660 : auto candidates = candidates_mask.nonzero();</span></span>
|
||||
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 660 : exit_cond = num == n_edges || candidates.size(0) == 0;</span></span>
|
||||
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 660 : }</span></span>
|
||||
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 2692 : }</span></span>
|
||||
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 8 : std::vector<std::string> KDB::graph(const std::string& title) const</span></span>
|
||||
<span id="L104"><span class="lineNum"> 104</span> : {</span>
|
||||
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 8 : std::string header{ title };</span></span>
|
||||
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 8 : if (title == "KDB") {</span></span>
|
||||
<span id="L107"><span class="lineNum"> 107</span> <span class="tlaGNC"> 8 : header += " (k=" + std::to_string(k) + ", theta=" + std::to_string(theta) + ")";</span></span>
|
||||
<span id="L108"><span class="lineNum"> 108</span> : }</span>
|
||||
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 16 : return model.graph(header);</span></span>
|
||||
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 8 : }</span></span>
|
||||
<span id="L111"><span class="lineNum"> 111</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
48
html/bayesnet/classifiers/KDB.cc.gcov.overview.html
Normal file
@@ -0,0 +1,48 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="KDB.cc.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="KDB.cc.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="KDB.cc.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="KDB.cc.gcov.html#L17" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,32,79,35" href="KDB.cc.gcov.html#L21" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,36,79,39" href="KDB.cc.gcov.html#L25" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,40,79,43" href="KDB.cc.gcov.html#L29" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,44,79,47" href="KDB.cc.gcov.html#L33" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,48,79,51" href="KDB.cc.gcov.html#L37" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,52,79,55" href="KDB.cc.gcov.html#L41" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,56,79,59" href="KDB.cc.gcov.html#L45" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,60,79,63" href="KDB.cc.gcov.html#L49" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,64,79,67" href="KDB.cc.gcov.html#L53" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,68,79,71" href="KDB.cc.gcov.html#L57" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,72,79,75" href="KDB.cc.gcov.html#L61" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,76,79,79" href="KDB.cc.gcov.html#L65" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,80,79,83" href="KDB.cc.gcov.html#L69" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,84,79,87" href="KDB.cc.gcov.html#L73" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,88,79,91" href="KDB.cc.gcov.html#L77" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,92,79,95" href="KDB.cc.gcov.html#L81" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,96,79,99" href="KDB.cc.gcov.html#L85" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,100,79,103" href="KDB.cc.gcov.html#L89" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,104,79,107" href="KDB.cc.gcov.html#L93" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,108,79,111" href="KDB.cc.gcov.html#L97" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="KDB.cc.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="KDB.cc.gcov.png" width=80 height=110 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/KDB.cc.gcov.png
Normal file
After Width: | Height: | Size: 814 B |
90
html/bayesnet/classifiers/KDB.h.func-c.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDB.h.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.h.gcov.html#L20">bayesnet::KDB::~KDB()</a></td>
|
||||
|
||||
<td class="coverFnHi">44</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
90
html/bayesnet/classifiers/KDB.h.func.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDB.h.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDB.h.gcov.html#L20">bayesnet::KDB::~KDB()</a></td>
|
||||
|
||||
<td class="coverFnHi">44</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/KDB.h.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="KDB.h.gcov.overview.html" name="overview">
|
||||
<frame src="KDB.h.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
111
html/bayesnet/classifiers/KDB.h.gcov.html
Normal file
@@ -0,0 +1,111 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (source / <a href="KDB.h.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #ifndef KDB_H</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #define KDB_H</span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : #include <torch/torch.h></span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : #include "bayesnet/utils/bayesnetUtils.h"</span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : #include "Classifier.h"</span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : namespace bayesnet {</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : class KDB : public Classifier {</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : private:</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : int k;</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : float theta;</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : protected:</span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> : void buildModel(const torch::Tensor& weights) override;</span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : public:</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> : explicit KDB(int k, float theta = 0.03);</span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC tlaBgGNC"> 44 : virtual ~KDB() = default;</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : void setHyperparameters(const nlohmann::json& hyperparameters_) override;</span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> : std::vector<std::string> graph(const std::string& name = "KDB") const override;</span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> : };</span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> : }</span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> : #endif</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
27
html/bayesnet/classifiers/KDB.h.gcov.overview.html
Normal file
@@ -0,0 +1,27 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="KDB.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="KDB.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="KDB.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="KDB.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="KDB.h.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="KDB.h.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="KDB.h.gcov.html#L13" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="KDB.h.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="KDB.h.gcov.png" width=80 height=26 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/KDB.h.gcov.png
Normal file
After Width: | Height: | Size: 279 B |
111
html/bayesnet/classifiers/KDBLd.cc.func-c.html
Normal file
@@ -0,0 +1,111 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">17</td>
|
||||
<td class="headerCovTableEntry">17</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDBLd.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">bayesnet::KDBLd::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">4</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">bayesnet::KDBLd::predict(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">16</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">bayesnet::KDBLd::fit(at::Tensor&, at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">20</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">bayesnet::KDBLd::KDBLd(int)</a></td>
|
||||
|
||||
<td class="coverFnHi">68</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
111
html/bayesnet/classifiers/KDBLd.cc.func.html
Normal file
@@ -0,0 +1,111 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">17</td>
|
||||
<td class="headerCovTableEntry">17</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDBLd.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">bayesnet::KDBLd::KDBLd(int)</a></td>
|
||||
|
||||
<td class="coverFnHi">68</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">bayesnet::KDBLd::fit(at::Tensor&, at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">20</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">bayesnet::KDBLd::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">4</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">bayesnet::KDBLd::predict(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">16</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/KDBLd.cc.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="KDBLd.cc.gcov.overview.html" name="overview">
|
||||
<frame src="KDBLd.cc.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
119
html/bayesnet/classifiers/KDBLd.cc.gcov.html
Normal file
@@ -0,0 +1,119 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (source / <a href="KDBLd.cc.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">17</td>
|
||||
<td class="headerCovTableEntry">17</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
<td class="headerCovTableEntry">4</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include "KDBLd.h"</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : </span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 68 : KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}</span></span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 20 : KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)</span></span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : {</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 20 : checkInput(X_, y_);</span></span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 20 : features = features_;</span></span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 20 : className = className_;</span></span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 20 : Xf = X_;</span></span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 20 : y = y_;</span></span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y</span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 20 : states = fit_local_discretization(y);</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : // We have discretized the input data</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> : // 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network</span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 20 : KDB::fit(dataset, features, className, states);</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 20 : states = localDiscretizationProposal(states, model);</span></span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 20 : return *this;</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> : }</span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 16 : torch::Tensor KDBLd::predict(torch::Tensor& X)</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> : {</span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 16 : auto Xt = prepareX(X);</span></span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 32 : return KDB::predict(Xt);</span></span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 16 : }</span></span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 4 : std::vector<std::string> KDBLd::graph(const std::string& name) const</span></span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> : {</span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 4 : return KDB::graph(name);</span></span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> : }</span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
29
html/bayesnet/classifiers/KDBLd.cc.gcov.overview.html
Normal file
@@ -0,0 +1,29 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="KDBLd.cc.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="KDBLd.cc.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="KDBLd.cc.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="KDBLd.cc.gcov.html#L17" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,32,79,35" href="KDBLd.cc.gcov.html#L21" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="KDBLd.cc.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="KDBLd.cc.gcov.png" width=80 height=34 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/KDBLd.cc.gcov.png
Normal file
After Width: | Height: | Size: 333 B |
90
html/bayesnet/classifiers/KDBLd.h.func-c.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="KDBLd.h.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">bayesnet::KDBLd::~KDBLd()</a></td>
|
||||
|
||||
<td class="coverFnHi">20</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
90
html/bayesnet/classifiers/KDBLd.h.func.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="KDBLd.h.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">bayesnet::KDBLd::~KDBLd()</a></td>
|
||||
|
||||
<td class="coverFnHi">20</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/KDBLd.h.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="KDBLd.h.gcov.overview.html" name="overview">
|
||||
<frame src="KDBLd.h.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
108
html/bayesnet/classifiers/KDBLd.h.gcov.html
Normal file
@@ -0,0 +1,108 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (source / <a href="KDBLd.h.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #ifndef KDBLD_H</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #define KDBLD_H</span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : #include "Proposal.h"</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : #include "KDB.h"</span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : </span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : namespace bayesnet {</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : class KDBLd : public KDB, public Proposal {</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : private:</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : public:</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : explicit KDBLd(int k);</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC tlaBgGNC"> 20 : virtual ~KDBLd() = default;</span></span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;</span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> : std::vector<std::string> graph(const std::string& name = "KDB") const override;</span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : torch::Tensor predict(torch::Tensor& X) override;</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> : static inline std::string version() { return "0.0.1"; };</span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> : };</span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : }</span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> : #endif // !KDBLD_H</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
26
html/bayesnet/classifiers/KDBLd.h.gcov.overview.html
Normal file
@@ -0,0 +1,26 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="KDBLd.h.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="KDBLd.h.gcov.html#L9" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="KDBLd.h.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="KDBLd.h.gcov.png" width=80 height=23 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/KDBLd.h.gcov.png
Normal file
After Width: | Height: | Size: 265 B |
139
html/bayesnet/classifiers/Proposal.cc.func-c.html
Normal file
@@ -0,0 +1,139 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">97.7 %</td>
|
||||
<td class="headerCovTableEntry">86</td>
|
||||
<td class="headerCovTableEntry">84</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">8</td>
|
||||
<td class="headerCovTableEntry">8</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="Proposal.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">bayesnet::Proposal::prepareX(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">168</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">bayesnet::Proposal::~Proposal()</a></td>
|
||||
|
||||
<td class="coverFnHi">200</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">bayesnet::Proposal::localDiscretizationProposal(std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > > const&, bayesnet::Network&)</a></td>
|
||||
|
||||
<td class="coverFnHi">212</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">bayesnet::Proposal::checkInput(at::Tensor const&, at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">228</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">bayesnet::Proposal::fit_local_discretization[abi:cxx11](at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">232</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">bayesnet::Proposal::Proposal(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > >&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">424</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">auto bayesnet::Proposal::localDiscretizationProposal(std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > > const&, bayesnet::Network&)::{lambda(auto:1 const&)#2}::operator()<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">1372</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">auto bayesnet::Proposal::localDiscretizationProposal(std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > > const&, bayesnet::Network&)::{lambda(auto:1 const&)#1}::operator()<bayesnet::Node*>(bayesnet::Node* const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">2696</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
139
html/bayesnet/classifiers/Proposal.cc.func.html
Normal file
@@ -0,0 +1,139 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">97.7 %</td>
|
||||
<td class="headerCovTableEntry">86</td>
|
||||
<td class="headerCovTableEntry">84</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">8</td>
|
||||
<td class="headerCovTableEntry">8</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="Proposal.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">auto bayesnet::Proposal::localDiscretizationProposal(std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > > const&, bayesnet::Network&)::{lambda(auto:1 const&)#1}::operator()<bayesnet::Node*>(bayesnet::Node* const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">2696</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">auto bayesnet::Proposal::localDiscretizationProposal(std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > > const&, bayesnet::Network&)::{lambda(auto:1 const&)#2}::operator()<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">1372</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">bayesnet::Proposal::Proposal(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > >&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">424</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">bayesnet::Proposal::checkInput(at::Tensor const&, at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">228</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">bayesnet::Proposal::fit_local_discretization[abi:cxx11](at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">232</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">bayesnet::Proposal::localDiscretizationProposal(std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > > const&, bayesnet::Network&)</a></td>
|
||||
|
||||
<td class="coverFnHi">212</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">bayesnet::Proposal::prepareX(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">168</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">bayesnet::Proposal::~Proposal()</a></td>
|
||||
|
||||
<td class="coverFnHi">200</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/Proposal.cc.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="Proposal.cc.gcov.overview.html" name="overview">
|
||||
<frame src="Proposal.cc.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
200
html/bayesnet/classifiers/Proposal.cc.gcov.html
Normal file
@@ -0,0 +1,200 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (source / <a href="Proposal.cc.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">97.7 %</td>
|
||||
<td class="headerCovTableEntry">86</td>
|
||||
<td class="headerCovTableEntry">84</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">8</td>
|
||||
<td class="headerCovTableEntry">8</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include <ArffFiles.h></span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #include "Proposal.h"</span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : </span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : namespace bayesnet {</span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 424 : Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}</span></span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 200 : Proposal::~Proposal()</span></span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : {</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 1896 : for (auto& [key, value] : discretizers) {</span></span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 1696 : delete value;</span></span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : }</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 200 : }</span></span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 228 : void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)</span></span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> : {</span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 228 : if (!torch::is_floating_point(X)) {</span></span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaUNC tlaBgUNC"> 0 : throw std::invalid_argument("X must be a floating point tensor");</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> : }</span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC tlaBgGNC"> 228 : if (torch::is_floating_point(y)) {</span></span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaUNC tlaBgUNC"> 0 : throw std::invalid_argument("y must be an integer tensor");</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> : }</span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC tlaBgGNC"> 228 : }</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 212 : map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)</span></span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> : {</span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : // order of local discretization is important. no good 0, 1, 2...</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> : // although we rediscretize features after the local discretization of every feature</span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 212 : auto order = model.topological_sort();</span></span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 212 : auto& nodes = model.getNodes();</span></span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 212 : map<std::string, std::vector<int>> states = oldStates;</span></span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 212 : std::vector<int> indicesToReDiscretize;</span></span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 212 : bool upgrade = false; // Flag to check if we need to upgrade the model</span></span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 1776 : for (auto feature : order) {</span></span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 1564 : auto nodeParents = nodes[feature]->getParents();</span></span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 1564 : if (nodeParents.size() < 2) continue; // Only has class as parent</span></span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 1324 : upgrade = true;</span></span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 1324 : int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();</span></span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 1324 : indicesToReDiscretize.push_back(index); // We need to re-discretize this feature</span></span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 1324 : std::vector<std::string> parents;</span></span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 4020 : transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });</span></span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> : // Remove class as parent as it will be added later</span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 1324 : parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());</span></span>
|
||||
<span id="L46"><span class="lineNum"> 46</span> : // Get the indices of the parents</span>
|
||||
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 1324 : std::vector<int> indices;</span></span>
|
||||
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 1324 : indices.push_back(-1); // Add class index</span></span>
|
||||
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 2696 : transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });</span></span>
|
||||
<span id="L50"><span class="lineNum"> 50</span> : // Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)</span>
|
||||
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 1324 : std::vector<std::string> yJoinParents(Xf.size(1));</span></span>
|
||||
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 4020 : for (auto idx : indices) {</span></span>
|
||||
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 958640 : for (int i = 0; i < Xf.size(1); ++i) {</span></span>
|
||||
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 2867832 : yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());</span></span>
|
||||
<span id="L55"><span class="lineNum"> 55</span> : }</span>
|
||||
<span id="L56"><span class="lineNum"> 56</span> : }</span>
|
||||
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 1324 : auto arff = ArffFiles();</span></span>
|
||||
<span id="L58"><span class="lineNum"> 58</span> <span class="tlaGNC"> 1324 : auto yxv = arff.factorize(yJoinParents);</span></span>
|
||||
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 2648 : auto xvf_ptr = Xf.index({ index }).data_ptr<float>();</span></span>
|
||||
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 1324 : auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));</span></span>
|
||||
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 1324 : discretizers[feature]->fit(xvf, yxv);</span></span>
|
||||
<span id="L62"><span class="lineNum"> 62</span> <span class="tlaGNC"> 1804 : }</span></span>
|
||||
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 212 : if (upgrade) {</span></span>
|
||||
<span id="L64"><span class="lineNum"> 64</span> : // Discretize again X (only the affected indices) with the new fitted discretizers</span>
|
||||
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 1536 : for (auto index : indicesToReDiscretize) {</span></span>
|
||||
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 2648 : auto Xt_ptr = Xf.index({ index }).data_ptr<float>();</span></span>
|
||||
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 1324 : auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
|
||||
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 5296 : pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));</span></span>
|
||||
<span id="L69"><span class="lineNum"> 69</span> <span class="tlaGNC"> 1324 : auto xStates = std::vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);</span></span>
|
||||
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 1324 : iota(xStates.begin(), xStates.end(), 0);</span></span>
|
||||
<span id="L71"><span class="lineNum"> 71</span> : //Update new states of the feature/node</span>
|
||||
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 1324 : states[pFeatures[index]] = xStates;</span></span>
|
||||
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 1324 : }</span></span>
|
||||
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 212 : const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);</span></span>
|
||||
<span id="L75"><span class="lineNum"> 75</span> <span class="tlaGNC"> 212 : model.fit(pDataset, weights, pFeatures, pClassName, states);</span></span>
|
||||
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 212 : }</span></span>
|
||||
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 424 : return states;</span></span>
|
||||
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 960128 : }</span></span>
|
||||
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 232 : map<std::string, std::vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)</span></span>
|
||||
<span id="L80"><span class="lineNum"> 80</span> : {</span>
|
||||
<span id="L81"><span class="lineNum"> 81</span> : // Discretize the continuous input data and build pDataset (Classifier::dataset)</span>
|
||||
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 232 : int m = Xf.size(1);</span></span>
|
||||
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 232 : int n = Xf.size(0);</span></span>
|
||||
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 232 : map<std::string, std::vector<int>> states;</span></span>
|
||||
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 232 : pDataset = torch::zeros({ n + 1, m }, torch::kInt32);</span></span>
|
||||
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 232 : auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));</span></span>
|
||||
<span id="L87"><span class="lineNum"> 87</span> : // discretize input data by feature(row)</span>
|
||||
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 1944 : for (auto i = 0; i < pFeatures.size(); ++i) {</span></span>
|
||||
<span id="L89"><span class="lineNum"> 89</span> <span class="tlaGNC"> 1712 : auto* discretizer = new mdlp::CPPFImdlp();</span></span>
|
||||
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 3424 : auto Xt_ptr = Xf.index({ i }).data_ptr<float>();</span></span>
|
||||
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 1712 : auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
|
||||
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 1712 : discretizer->fit(Xt, yv);</span></span>
|
||||
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaGNC"> 6848 : pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));</span></span>
|
||||
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 1712 : auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);</span></span>
|
||||
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 1712 : iota(xStates.begin(), xStates.end(), 0);</span></span>
|
||||
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 1712 : states[pFeatures[i]] = xStates;</span></span>
|
||||
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC"> 1712 : discretizers[pFeatures[i]] = discretizer;</span></span>
|
||||
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 1712 : }</span></span>
|
||||
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 232 : int n_classes = torch::max(y).item<int>() + 1;</span></span>
|
||||
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 232 : auto yStates = std::vector<int>(n_classes);</span></span>
|
||||
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 232 : iota(yStates.begin(), yStates.end(), 0);</span></span>
|
||||
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 232 : states[pClassName] = yStates;</span></span>
|
||||
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 696 : pDataset.index_put_({ n, "..." }, y);</span></span>
|
||||
<span id="L104"><span class="lineNum"> 104</span> <span class="tlaGNC"> 464 : return states;</span></span>
|
||||
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 3888 : }</span></span>
|
||||
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 168 : torch::Tensor Proposal::prepareX(torch::Tensor& X)</span></span>
|
||||
<span id="L107"><span class="lineNum"> 107</span> : {</span>
|
||||
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 168 : auto Xtd = torch::zeros_like(X, torch::kInt32);</span></span>
|
||||
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 1376 : for (int i = 0; i < X.size(0); ++i) {</span></span>
|
||||
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 1208 : auto Xt = std::vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));</span></span>
|
||||
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 1208 : auto Xd = discretizers[pFeatures[i]]->transform(Xt);</span></span>
|
||||
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 3624 : Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));</span></span>
|
||||
<span id="L113"><span class="lineNum"> 113</span> <span class="tlaGNC"> 1208 : }</span></span>
|
||||
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 336 : return Xtd;</span></span>
|
||||
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 1376 : }</span></span>
|
||||
<span id="L116"><span class="lineNum"> 116</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
49
html/bayesnet/classifiers/Proposal.cc.gcov.overview.html
Normal file
@@ -0,0 +1,49 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="Proposal.cc.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="Proposal.cc.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="Proposal.cc.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="Proposal.cc.gcov.html#L17" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,32,79,35" href="Proposal.cc.gcov.html#L21" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,36,79,39" href="Proposal.cc.gcov.html#L25" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,40,79,43" href="Proposal.cc.gcov.html#L29" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,44,79,47" href="Proposal.cc.gcov.html#L33" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,48,79,51" href="Proposal.cc.gcov.html#L37" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,52,79,55" href="Proposal.cc.gcov.html#L41" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,56,79,59" href="Proposal.cc.gcov.html#L45" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,60,79,63" href="Proposal.cc.gcov.html#L49" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,64,79,67" href="Proposal.cc.gcov.html#L53" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,68,79,71" href="Proposal.cc.gcov.html#L57" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,72,79,75" href="Proposal.cc.gcov.html#L61" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,76,79,79" href="Proposal.cc.gcov.html#L65" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,80,79,83" href="Proposal.cc.gcov.html#L69" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,84,79,87" href="Proposal.cc.gcov.html#L73" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,88,79,91" href="Proposal.cc.gcov.html#L77" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,92,79,95" href="Proposal.cc.gcov.html#L81" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,96,79,99" href="Proposal.cc.gcov.html#L85" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,100,79,103" href="Proposal.cc.gcov.html#L89" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,104,79,107" href="Proposal.cc.gcov.html#L93" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,108,79,111" href="Proposal.cc.gcov.html#L97" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,112,79,115" href="Proposal.cc.gcov.html#L101" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="Proposal.cc.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="Proposal.cc.gcov.png" width=80 height=115 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/Proposal.cc.gcov.png
Normal file
After Width: | Height: | Size: 796 B |
104
html/bayesnet/classifiers/SPODE.cc.func-c.html
Normal file
@@ -0,0 +1,104 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">10</td>
|
||||
<td class="headerCovTableEntry">10</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">3</td>
|
||||
<td class="headerCovTableEntry">3</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPODE.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">bayesnet::SPODE::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">68</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">bayesnet::SPODE::buildModel(at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1016</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">bayesnet::SPODE::SPODE(int)</a></td>
|
||||
|
||||
<td class="coverFnHi">1124</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
104
html/bayesnet/classifiers/SPODE.cc.func.html
Normal file
@@ -0,0 +1,104 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">10</td>
|
||||
<td class="headerCovTableEntry">10</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">3</td>
|
||||
<td class="headerCovTableEntry">3</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="SPODE.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">bayesnet::SPODE::SPODE(int)</a></td>
|
||||
|
||||
<td class="coverFnHi">1124</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">bayesnet::SPODE::buildModel(at::Tensor const&)</a></td>
|
||||
|
||||
<td class="coverFnHi">1016</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">bayesnet::SPODE::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">68</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/SPODE.cc.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="SPODE.cc.gcov.overview.html" name="overview">
|
||||
<frame src="SPODE.cc.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
115
html/bayesnet/classifiers/SPODE.cc.gcov.html
Normal file
@@ -0,0 +1,115 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (source / <a href="SPODE.cc.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">10</td>
|
||||
<td class="headerCovTableEntry">10</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">3</td>
|
||||
<td class="headerCovTableEntry">3</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include "SPODE.h"</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : </span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : </span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 1124 : SPODE::SPODE(int root) : Classifier(Network()), root(root) {}</span></span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : </span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 1016 : void SPODE::buildModel(const torch::Tensor& weights)</span></span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : {</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : // 0. Add all nodes to the model</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 1016 : addNodes();</span></span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : // 1. Add edges from the class node to all other nodes</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : // 2. Add edges from the root node to all other nodes</span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 25680 : for (int i = 0; i < static_cast<int>(features.size()); ++i) {</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 24664 : model.addEdge(className, features[i]);</span></span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 24664 : if (i != root) {</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 23648 : model.addEdge(features[root], features[i]);</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : }</span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> : }</span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 1016 : }</span></span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 68 : std::vector<std::string> SPODE::graph(const std::string& name) const</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> : {</span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 68 : return model.graph(name);</span></span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> : }</span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> : </span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
28
html/bayesnet/classifiers/SPODE.cc.gcov.overview.html
Normal file
@@ -0,0 +1,28 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="SPODE.cc.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="SPODE.cc.gcov.html#L9" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,24,79,27" href="SPODE.cc.gcov.html#L13" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,28,79,31" href="SPODE.cc.gcov.html#L17" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="SPODE.cc.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="SPODE.cc.gcov.png" width=80 height=30 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/SPODE.cc.gcov.png
Normal file
After Width: | Height: | Size: 310 B |
90
html/bayesnet/classifiers/SPODE.h.func-c.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPODE.h.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">bayesnet::SPODE::~SPODE()</a></td>
|
||||
|
||||
<td class="coverFnHi">1836</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
90
html/bayesnet/classifiers/SPODE.h.func.html
Normal file
@@ -0,0 +1,90 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="SPODE.h.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">bayesnet::SPODE::~SPODE()</a></td>
|
||||
|
||||
<td class="coverFnHi">1836</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/SPODE.h.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="SPODE.h.gcov.overview.html" name="overview">
|
||||
<frame src="SPODE.h.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
107
html/bayesnet/classifiers/SPODE.h.gcov.html
Normal file
@@ -0,0 +1,107 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (source / <a href="SPODE.h.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
<td class="headerCovTableEntry">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #ifndef SPODE_H</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : #define SPODE_H</span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : #include "Classifier.h"</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> : </span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : class SPODE : public Classifier {</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> : private:</span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> : int root;</span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> : protected:</span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> : void buildModel(const torch::Tensor& weights) override;</span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : public:</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : explicit SPODE(int root);</span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC tlaBgGNC"> 1836 : virtual ~SPODE() = default;</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : std::vector<std::string> graph(const std::string& name = "SPODE") const override;</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> : };</span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> : }</span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : #endif</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
26
html/bayesnet/classifiers/SPODE.h.gcov.overview.html
Normal file
@@ -0,0 +1,26 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h</title>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<map name="overview">
|
||||
<area shape="rect" coords="0,0,79,3" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,4,79,7" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,8,79,11" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,12,79,15" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,16,79,19" href="SPODE.h.gcov.html#L5" target="source" alt="overview">
|
||||
<area shape="rect" coords="0,20,79,23" href="SPODE.h.gcov.html#L9" target="source" alt="overview">
|
||||
</map>
|
||||
|
||||
<center>
|
||||
<a href="SPODE.h.gcov.html#top" target="source">Top</a><br><br>
|
||||
<img src="SPODE.h.gcov.png" width=80 height=22 alt="Overview" border=0 usemap="#overview">
|
||||
</center>
|
||||
</body>
|
||||
</html>
|
BIN
html/bayesnet/classifiers/SPODE.h.gcov.png
Normal file
After Width: | Height: | Size: 245 B |
125
html/bayesnet/classifiers/SPODELd.cc.func-c.html
Normal file
@@ -0,0 +1,125 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">26</td>
|
||||
<td class="headerCovTableEntry">26</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">6</td>
|
||||
<td class="headerCovTableEntry">6</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPODELd.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">bayesnet::SPODELd::fit(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">8</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">bayesnet::SPODELd::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">36</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">bayesnet::SPODELd::predict(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">136</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">bayesnet::SPODELd::fit(at::Tensor&, at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">168</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">bayesnet::SPODELd::commonFit(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">172</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">bayesnet::SPODELd::SPODELd(int)</a></td>
|
||||
|
||||
<td class="coverFnHi">220</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
125
html/bayesnet/classifiers/SPODELd.cc.func.html
Normal file
@@ -0,0 +1,125 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc - functions</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">26</td>
|
||||
<td class="headerCovTableEntry">26</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">6</td>
|
||||
<td class="headerCovTableEntry">6</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<center>
|
||||
<table cellpadding=1 cellspacing=1 border=0>
|
||||
<tr><td><br></td></tr>
|
||||
<tr>
|
||||
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
|
||||
|
||||
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="SPODELd.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">bayesnet::SPODELd::SPODELd(int)</a></td>
|
||||
|
||||
<td class="coverFnHi">220</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">bayesnet::SPODELd::commonFit(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">172</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">bayesnet::SPODELd::fit(at::Tensor&, at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">168</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">bayesnet::SPODELd::fit(at::Tensor&, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<int, std::allocator<int> >, std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::vector<int, std::allocator<int> > > > >&)</a></td>
|
||||
|
||||
<td class="coverFnHi">8</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">bayesnet::SPODELd::graph(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const</a></td>
|
||||
|
||||
<td class="coverFnHi">36</td>
|
||||
|
||||
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">bayesnet::SPODELd::predict(at::Tensor&)</a></td>
|
||||
|
||||
<td class="coverFnHi">136</td>
|
||||
|
||||
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
</center>
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|
19
html/bayesnet/classifiers/SPODELd.cc.gcov.frameset.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<frameset cols="120,*">
|
||||
<frame src="SPODELd.cc.gcov.overview.html" name="overview">
|
||||
<frame src="SPODELd.cc.gcov.html" name="source">
|
||||
<noframes>
|
||||
<center>Frames not supported by your browser!<br></center>
|
||||
</noframes>
|
||||
</frameset>
|
||||
|
||||
</html>
|
134
html/bayesnet/classifiers/SPODELd.cc.gcov.html
Normal file
@@ -0,0 +1,134 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||||
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc</title>
|
||||
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="title">LCOV - code coverage report</td></tr>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
|
||||
<tr>
|
||||
<td width="100%">
|
||||
<table cellpadding=1 border=0 width="100%">
|
||||
<tr>
|
||||
<td width="10%" class="headerItem">Current view:</td>
|
||||
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (source / <a href="SPODELd.cc.func-c.html">functions</a>)</span></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%"></td>
|
||||
<td width="5%" class="headerCovTableHead">Coverage</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
||||
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test:</td>
|
||||
<td class="headerValue">BayesNet Coverage Report</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Lines:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">26</td>
|
||||
<td class="headerCovTableEntry">26</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Test Date:</td>
|
||||
<td class="headerValue">2024-05-06 17:54:04</td>
|
||||
<td></td>
|
||||
<td class="headerItem">Functions:</td>
|
||||
<td class="headerCovTableEntryHi">100.0 %</td>
|
||||
<td class="headerCovTableEntry">6</td>
|
||||
<td class="headerCovTableEntry">6</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="headerItem">Legend:</td>
|
||||
<td class="headerValueLeg"> Lines:
|
||||
<span class="coverLegendCov">hit</span>
|
||||
<span class="coverLegendNoCov">not hit</span>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
</td>
|
||||
</tr>
|
||||
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
</table>
|
||||
|
||||
<table cellpadding=0 cellspacing=0 border=0>
|
||||
<tr>
|
||||
<td><br></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<pre class="sourceHeading"> Line data Source code</pre>
|
||||
<pre class="source">
|
||||
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
||||
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
||||
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
||||
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
||||
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
||||
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
||||
<span id="L7"><span class="lineNum"> 7</span> : #include "SPODELd.h"</span>
|
||||
<span id="L8"><span class="lineNum"> 8</span> : </span>
|
||||
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
|
||||
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 220 : SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}</span></span>
|
||||
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 168 : SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)</span></span>
|
||||
<span id="L12"><span class="lineNum"> 12</span> : {</span>
|
||||
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 168 : checkInput(X_, y_);</span></span>
|
||||
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 168 : Xf = X_;</span></span>
|
||||
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 168 : y = y_;</span></span>
|
||||
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 168 : return commonFit(features_, className_, states_);</span></span>
|
||||
<span id="L17"><span class="lineNum"> 17</span> : }</span>
|
||||
<span id="L18"><span class="lineNum"> 18</span> : </span>
|
||||
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 8 : SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)</span></span>
|
||||
<span id="L20"><span class="lineNum"> 20</span> : {</span>
|
||||
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 8 : if (!torch::is_floating_point(dataset)) {</span></span>
|
||||
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 4 : throw std::runtime_error("Dataset must be a floating point tensor");</span></span>
|
||||
<span id="L23"><span class="lineNum"> 23</span> : }</span>
|
||||
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 16 : Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();</span></span>
|
||||
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 12 : y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);</span></span>
|
||||
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 4 : return commonFit(features_, className_, states_);</span></span>
|
||||
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 12 : }</span></span>
|
||||
<span id="L28"><span class="lineNum"> 28</span> : </span>
|
||||
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 172 : SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)</span></span>
|
||||
<span id="L30"><span class="lineNum"> 30</span> : {</span>
|
||||
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 172 : features = features_;</span></span>
|
||||
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 172 : className = className_;</span></span>
|
||||
<span id="L33"><span class="lineNum"> 33</span> : // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y</span>
|
||||
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 172 : states = fit_local_discretization(y);</span></span>
|
||||
<span id="L35"><span class="lineNum"> 35</span> : // We have discretized the input data</span>
|
||||
<span id="L36"><span class="lineNum"> 36</span> : // 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network</span>
|
||||
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 172 : SPODE::fit(dataset, features, className, states);</span></span>
|
||||
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 172 : states = localDiscretizationProposal(states, model);</span></span>
|
||||
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 172 : return *this;</span></span>
|
||||
<span id="L40"><span class="lineNum"> 40</span> : }</span>
|
||||
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 136 : torch::Tensor SPODELd::predict(torch::Tensor& X)</span></span>
|
||||
<span id="L42"><span class="lineNum"> 42</span> : {</span>
|
||||
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 136 : auto Xt = prepareX(X);</span></span>
|
||||
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 272 : return SPODE::predict(Xt);</span></span>
|
||||
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 136 : }</span></span>
|
||||
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 36 : std::vector<std::string> SPODELd::graph(const std::string& name) const</span></span>
|
||||
<span id="L47"><span class="lineNum"> 47</span> : {</span>
|
||||
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 36 : return SPODE::graph(name);</span></span>
|
||||
<span id="L49"><span class="lineNum"> 49</span> : }</span>
|
||||
<span id="L50"><span class="lineNum"> 50</span> : }</span>
|
||||
</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
||||
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
||||
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
||||
</table>
|
||||
<br>
|
||||
|
||||
</body>
|
||||
</html>
|