Compare commits

...

26 Commits

Author SHA1 Message Date
65a96851ef Check min number of nested folds 2024-01-04 11:01:59 +01:00
722da7f781 Keep only mpi b_grid compute 2024-01-04 01:21:56 +01:00
b1833a5feb Add reset color to final progress bar 2024-01-03 22:45:16 +01:00
41a0bd4ddd fix dataset name mistakes 2024-01-03 17:15:57 +01:00
9ab4fc7d76 Fix some mistakes in methods 2024-01-03 11:53:46 +01:00
beadb7465f Complete first approach 2023-12-31 12:02:13 +01:00
652e5f623f Add todo comments 2023-12-28 23:32:24 +01:00
b7fef9a99d Remove kk file 2023-12-28 23:24:59 +01:00
343269d48c Fix syntax errors 2023-12-28 23:21:50 +01:00
21c4c6df51 Fix first mistakes in structure 2023-12-25 19:33:52 +01:00
702f086706 Update miniconda instructions 2023-12-23 19:54:00 +01:00
981bc8f98b Fix install message in readme 2023-12-23 01:00:55 +01:00
e0b7b2d316 Set structure & protocol of producer-consumer 2023-12-22 12:47:13 +01:00
9b9e91e856 Merge pull request 'mpi_grid' (#14) from mpi_grid into main
Reviewed-on: #14
2023-12-18 09:05:55 +00:00
18e8e84284 Add openmpi instructions for Oracle Linux 2023-12-17 12:19:50 +01:00
7de11b0e6d Fix format of duration 2023-12-17 01:45:04 +01:00
9b8db37a4b Fix duration of task not set 2023-12-16 19:31:45 +01:00
49b26bd04b fix duration output 2023-12-16 12:53:25 +01:00
b5b5b48864 Update grid progress bar output 2023-12-15 18:09:17 +01:00
19586a3a5a Fix pesky error allocating memory in workers 2023-12-15 01:54:13 +01:00
ffe6d37436 Add messages to control trace 2023-12-14 21:06:43 +01:00
b73f4be146 First try with complete algorithm 2023-12-14 15:55:08 +01:00
dbf2f35502 First compiling version 2023-12-12 18:57:57 +01:00
db9e80a70e Create build tasks 2023-12-12 12:15:22 +01:00
40ae4ad7f9 Include mpi in CMakeLists 2023-12-11 09:06:05 +01:00
234342f2de Add mpi parameter to b_grid 2023-12-10 22:33:17 +01:00
7 changed files with 426 additions and 255 deletions

View File

@@ -25,12 +25,18 @@ set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
option(MPI_ENABLED "Enable MPI options" ON)
if (MPI_ENABLED)
find_package(MPI REQUIRED)
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
endif (MPI_ENABLED)
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)

View File

@@ -8,6 +8,32 @@ Bayesian Network Classifier with libtorch from scratch
Before compiling BayesNet.
### Miniconda
To be able to run Python Classifiers such as STree, ODTE, SVC, etc. it is needed to install Miniconda. To do so, download the installer from [Miniconda](https://docs.conda.io/en/latest/miniconda.html) and run it. It is recommended to install it in the home folder.
In Linux sometimes the library libstdc++ is mistaken from the miniconda installation and produces the next message when running the b_xxxx executables:
```bash
libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by b_xxxx)
```
The solution is to erase the libstdc++ library from the miniconda installation:
### MPI
In Linux just install openmpi & openmpi-devel packages. Only if cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
```bash
export MPI_HOME="/usr/lib64/openmpi"
```
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
```bash
vi /opt/homebrew/bin/mpicx
```
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)

View File

@@ -7,6 +7,7 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
include_directories(${Python3_INCLUDE_DIRS})
include_directories(${MPI_CXX_INCLUDE_DIRS})
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
@@ -15,7 +16,7 @@ add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
target_link_libraries(b_grid BayesNet PyWrap)
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)

View File

@@ -1,4 +1,5 @@
#include <iostream>
#include <cstddef>
#include <torch/torch.h>
#include "GridSearch.h"
#include "Models.h"
@@ -27,10 +28,15 @@ namespace platform {
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
}
json GridSearch::getResults()
json GridSearch::loadResults()
{
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
@@ -38,240 +44,7 @@ namespace platform {
}
return json();
}
void showProgressComb(const int num, const int n_folds, const int total, const std::string& color)
{
int spaces = int(log(total) / log(10)) + 1;
int magic = n_folds * 3 + 22 + 2 * spaces;
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
}
void showProgressFold(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
void GridSearch::go()
{
timer.start();
auto grid_type = config.nested == 0 ? "Single" : "Nested";
auto datasets = Datasets(config.discretize, Paths::datasets());
auto datasets_names = processDatasets(datasets);
json results = initializeResults();
std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
auto grid = GridData(Paths::grid_input(config.model));
Timer timer_dataset;
double bestScore = 0;
json bestHyperparameters;
for (const auto& dataset : datasets_names) {
if (!config.quiet)
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
auto combinations = grid.getGrid(dataset);
timer_dataset.start();
if (config.nested == 0)
// for dataset // for hyperparameters // for seed // for fold
tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
else
// for dataset // for seed // for fold // for hyperparameters // for nested fold
tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
if (!config.quiet) {
std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
<< bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
<< Colors::RESET() << ::endl;
}
json result = {
{ "score", bestScore },
{ "hyperparameters", bestHyperparameters },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer_dataset.getDurationString() }
};
results[dataset] = result;
// Save partial results
save(results);
}
// Save final results
save(results);
std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
}
pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
{
int num = 0;
double bestScore = 0.0;
json bestHyperparameters;
auto totalComb = combinations.size();
for (const auto& hyperparam_line : combinations) {
if (!config.quiet)
showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto className = datasets.getClassName(fileName);
double totalScore = 0.0;
int numItems = 0;
for (const auto& seed : config.seeds) {
if (!config.quiet)
std::cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
for (int nfold = 0; nfold < config.n_folds; nfold++) {
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
// Train model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_train, y_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
totalScore += clf->score(X_test, y_test);
numItems++;
if (!config.quiet)
std::cout << "\b\b\b, \b" << flush;
}
delete fold;
}
double score = numItems == 0 ? 0.0 : totalScore / numItems;
if (score > bestScore) {
bestScore = score;
bestHyperparameters = hyperparam_line;
}
}
return { bestScore, bestHyperparameters };
}
pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
{
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto className = datasets.getClassName(fileName);
int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
double goatScore = 0.0;
json goatHyperparameters;
// for dataset // for seed // for fold // for hyperparameters // for nested fold
for (const auto& seed : config.seeds) {
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
double bestScore = 0.0;
json bestHyperparameters;
std::cout << "(" << seed << ") doing Fold: " << flush;
for (int nfold = 0; nfold < config.n_folds; nfold++) {
if (!config.quiet)
std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
// First level fold
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto num = 0;
json result_fold;
double hypScore = 0.0;
double bestHypScore = 0.0;
json bestHypHyperparameters;
for (const auto& hyperparam_line : combinations) {
std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
<< combinations.size() << "] " << std::flush;
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nexted_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
// Train model
if (!config.quiet)
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_nexted_train, y_nested_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
hypScore += clf->score(X_nested_test, y_nested_test);
if (!config.quiet)
std::cout << "\b\b\b, \b" << flush;
}
int magic = 3 * config.nested + 2 * spcs_combinations + 4;
std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
delete nested_fold;
hypScore /= config.nested;
if (hypScore > bestHypScore) {
bestHypScore = hypScore;
bestHypHyperparameters = hyperparam_line;
}
}
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
clf->setHyperparameters(bestHypHyperparameters);
// Train model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_train, y_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
double score = clf->score(X_test, y_test);
if (!config.quiet)
std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
if (score > bestScore) {
bestScore = score;
bestHyperparameters = bestHypHyperparameters;
}
}
if (bestScore > goatScore) {
goatScore = bestScore;
goatHyperparameters = bestHyperparameters;
}
delete fold;
}
return { goatScore, goatHyperparameters };
}
vector<std::string> GridSearch::processDatasets(Datasets& datasets)
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
{
// Load datasets
auto datasets_names = datasets.getNames();
@@ -281,7 +54,7 @@ namespace platform {
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
}
// Remove datasets already processed
vector< string >::iterator it = datasets_names.begin();
std::vector<string>::iterator it = datasets_names.begin();
while (it != datasets_names.end()) {
if (*it != config.continue_from) {
it = datasets_names.erase(it);
@@ -304,9 +77,329 @@ namespace platform {
}
return datasets_names;
}
json GridSearch::build_tasks_mpi(int rank)
{
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto all_datasets = datasets.getNames();
auto datasets_names = filterDatasets(datasets);
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
auto dataset = datasets_names[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold},
};
tasks.push_back(task);
}
}
}
// Shuffle the array so heavy datasets are spread across the workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
std::cout << "|";
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << "|" << std::endl << "|" << std::flush;
return tasks;
}
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
// initialize
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
Fold* fold;
if (stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
double best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
// Update progress bar
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
//
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
//
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
//
// 2a.2 Producer will send the end message to all the consumers
//
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void select_best_results_folds(json& results, json& all_results, std::string& model)
{
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
}
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
//
// 2b.1 Consumers announce to the producer that they are ready to receive a task
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
//
// 2b.2 Consumers receive the task from the producer and process it
//
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
//
// 2b.3 Consumers send the result to the producer
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
}
void GridSearch::go(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
* // this index is relative to the used datasets in the actual run not to the whole datasets
* "seed": # of seed to use,
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 0. Create the MPI result type & tasks
* 0.1 Create the MPI result type
* 0.2 Manager creates the tasks
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2a. Producer delivers the tasks to the consumers
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
* 2a.2 Producer will send the end message to all the consumers
* 2b. Consumers process the tasks and send the results to the producer
* 2b.1 Consumers announce to the producer that they are ready to receive a task
* 2b.2 Consumers receive the task from the producer and process it
* 2b.3 Consumers send the result to the producer
* 3. Manager select the bests sccores for each dataset
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
* 3.2 Save the results
*/
//
// 0.1 Create the MPI result type
//
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
int blocklen[5] = { 1, 1, 1, 1, 1 };
MPI_Aint disp[5];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, n_fold);
disp[3] = offsetof(Task_Result, score);
disp[4] = offsetof(Task_Result, time);
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
tasks = build_tasks_mpi(config_mpi.rank);
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
auto datasets = Datasets(config.discretize, Paths::datasets());
if (config_mpi.rank == config_mpi.manager) {
//
// 2a. Producer delivers the tasks to the consumers
//
auto datasets_names = filterDatasets(datasets);
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
//
// 3. Manager select the bests sccores for each dataset
//
auto results = initializeResults();
select_best_results_folds(results, all_results, config.model);
//
// 3.2 Save the results
//
save(results);
} else {
//
// 2b. Consumers process the tasks and send the results to the producer
//
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
json GridSearch::initializeResults()
{
// Load previous results
// Load previous results if continue is set
json results;
if (config.continue_from != NO_CONTINUE()) {
if (!config.quiet)

View File

@@ -2,6 +2,7 @@
#define GRIDSEARCH_H
#include <string>
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "Datasets.h"
#include "HyperParameters.h"
@@ -24,20 +25,35 @@ namespace platform {
json excluded;
std::vector<int> seeds;
};
struct ConfigMPI {
int rank;
int n_procs;
int manager;
};
typedef struct {
uint idx_dataset;
uint idx_combination;
int n_fold;
double score;
double time;
} Task_Result;
const int TAG_QUERY = 1;
const int TAG_RESULT = 2;
const int TAG_TASK = 3;
const int TAG_END = 4;
class GridSearch {
public:
explicit GridSearch(struct ConfigGrid& config);
void go();
void go(struct ConfigMPI& config_mpi);
~GridSearch() = default;
json getResults();
json loadResults();
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
private:
void save(json& results);
json initializeResults();
vector<std::string> processDatasets(Datasets& datasets);
pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
std::vector<std::string> filterDatasets(Datasets& datasets) const;
struct ConfigGrid config;
json build_tasks_mpi(int rank);
Timer timer; // used to measure the time of the whole process
};
} /* namespace platform */

View File

@@ -28,10 +28,14 @@ namespace platform {
std::string getDurationString(bool lapse = false)
{
double duration = lapse ? getLapse() : getDuration();
return translate2String(duration);
}
std::string translate2String(double duration)
{
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
std::stringstream ss;
ss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
return ss.str();
}
};

View File

@@ -2,6 +2,7 @@
#include <argparse/argparse.hpp>
#include <map>
#include <nlohmann/json.hpp>
#include <mpi.h>
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
@@ -36,7 +37,20 @@ void manageArguments(argparse::ArgumentParser& program)
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
program.add_argument("--nested").help("Do a double/nested cross validation with n folds").default_value(0).scan<'i', int>();
program.add_argument("--nested").help("Set the double/nested cross validation number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of nested folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of nested folds must be an integer");
}});
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
@@ -106,8 +120,8 @@ void list_results(json& results, std::string& model)
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
);
std::cout << std::string(MAXL, '*') << std::endl;
int spaces = 0;
int hyperparameters_spaces = 0;
int spaces = 7;
int hyperparameters_spaces = 15;
for (const auto& item : results["results"].items()) {
auto key = item.key();
auto value = item.value();
@@ -126,19 +140,17 @@ void list_results(json& results, std::string& model)
int index = 0;
for (const auto& item : results["results"].items()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
auto key = item.key();
auto value = item.value();
std::cout << color;
std::cout << std::setw(3) << std::right << index++ << " ";
std::cout << left << setw(spaces) << key << " " << value["date"].get<string>()
<< " " << setw(8) << value["duration"] << " " << setw(8) << setprecision(6)
std::cout << left << setw(spaces) << item.key() << " " << value["date"].get<string>()
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
}
/*
* Main
*/
@@ -189,11 +201,24 @@ int main(int argc, char** argv)
list_dump(config.model);
} else {
if (compute) {
grid_search.go();
struct platform::ConfigMPI mpi_config;
mpi_config.manager = 0; // which process is the manager
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
if (mpi_config.n_procs < 2) {
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
}
grid_search.go(mpi_config);
if (mpi_config.rank == mpi_config.manager) {
auto results = grid_search.loadResults();
list_results(results, config.model);
std::cout << "Process took " << timer.getDurationString() << std::endl;
}
MPI_Finalize();
} else {
// List results
auto results = grid_search.getResults();
auto results = grid_search.loadResults();
if (results.empty()) {
std::cout << "** No results found" << std::endl;
} else {