Compare commits

..

21 Commits

Author SHA1 Message Date
0e24135d46 Complete Conditional Mutual Information and test 2024-05-15 11:09:23 +02:00
521bfd2a8e Remove unoptimized implementation of conditionalEntropy 2024-05-15 01:24:27 +02:00
e2e0fb0c40 Implement Conditional Mutual Information 2024-05-15 00:48:02 +02:00
56b62a67cc Change BoostAODE tests results because folding upgrade 2024-05-12 20:23:05 +02:00
c0fc107abb Fix catch2 submodule config 2024-05-12 19:05:36 +02:00
d8c44b3b7c Add tests to check the correct version of the mdlp, folding and json libraries 2024-05-12 12:22:44 +02:00
6ab7cd2cbd Remove submodule catch from tests/lib 2024-05-12 11:05:53 +02:00
b578ea8a2d Remove module lib/catch2 2024-05-12 11:04:42 +02:00
9a752d15dc Change build cmake folder names to Debug & Release 2024-05-09 10:51:52 +02:00
4992685e94 Add devcontainer to repository
Fix update_coverage.py with lcov2.1 output
2024-05-08 06:42:19 +00:00
346b693c79 Update pdf coverage report 2024-05-06 18:28:15 +02:00
164c8bd90c Update changelog 2024-05-06 18:02:18 +02:00
ced29a2c2e Refactor coverage report generation
Add some tests to reach 99%
2024-05-06 17:56:00 +02:00
0ec53f405f Fix mistakes in feature selection in SPnDE
Complete the first A2DE test
Update version number
2024-05-05 11:14:01 +02:00
f806015b29 Implement SPnDE and A2DE 2024-05-05 01:35:17 +02:00
8115f25c06 Fix mispell mistake in doc 2024-05-02 10:53:15 +02:00
618a1e539c Return File Library to /lib as it is needed by Local Discretization (factorize) 2024-04-30 20:31:14 +02:00
7aeffba740 Add list of models to README 2024-04-30 18:59:38 +02:00
e79ea63afb Merge pull request 'convergence_best' (#27) from convergence_best into main
Add convergence_best as hyperparameter to allow to take the last or the best accuracy as the accuracy to compare to in convergence

Reviewed-on: #27
2024-04-30 16:22:08 +00:00
3c7382a93a Enhance tests coverage and report output 2024-04-30 14:00:24 +02:00
b4a222b100 Update gcovr configuration 2024-04-30 12:06:32 +02:00
903 changed files with 13171 additions and 203012 deletions

57
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,57 @@
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.22.2"
# Optionally install the cmake for vcpkg
COPY ./reinstall-cmake.sh /tmp/
RUN if [ "${REINSTALL_CMAKE_VERSION_FROM_SOURCE}" != "none" ]; then \
chmod +x /tmp/reinstall-cmake.sh && /tmp/reinstall-cmake.sh ${REINSTALL_CMAKE_VERSION_FROM_SOURCE}; \
fi \
&& rm -f /tmp/reinstall-cmake.sh
# [Optional] Uncomment this section to install additional vcpkg ports.
# RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>"
# [Optional] Uncomment this section to install additional packages.
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
&& apt-get -y install --no-install-recommends wget software-properties-common libdatetime-perl libcapture-tiny-perl libdatetime-format-dateparse-perl libgd-perl
# Add PPA for GCC 13
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
RUN apt-get update
# Install GCC 13.1
RUN apt-get install -y gcc-13 g++-13
# Install lcov 2.1
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
tar -xvf lcov-2.1.tar.gz && \
cd lcov-2.1 && \
make install
RUN rm lcov-2.1.tar.gz
RUN rm -fr lcov-2.1
# Install Miniconda
RUN mkdir -p /opt/conda
RUN wget --quiet "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh" -O /opt/conda/miniconda.sh && \
bash /opt/conda/miniconda.sh -b -p /opt/miniconda
# Add conda to PATH
ENV PATH=/opt/miniconda/bin:$PATH
# add CXX and CC to the environment with gcc 13
ENV CXX=/usr/bin/g++-13
ENV CC=/usr/bin/gcc-13
# link the last gcov version
RUN rm /usr/bin/gcov
RUN ln -s /usr/bin/gcov-13 /usr/bin/gcov
# change ownership of /opt/miniconda to vscode user
RUN chown -R vscode:vscode /opt/miniconda
USER vscode
RUN conda init
RUN conda install -y -c conda-forge yaml pytorch

View File

@@ -0,0 +1,37 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/cpp
{
"name": "C++",
"build": {
"dockerfile": "Dockerfile"
},
// "features": {
// "ghcr.io/devcontainers/features/conda:1": {}
// }
// Features to add to the dev container. More info: https://containers.dev/features.
// "features": {},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Use 'postCreateCommand' to run commands after the container is created.
"postCreateCommand": "make release && make debug && echo 'Done!'",
// Configure tool-specific properties.
// "customizations": {},
"customizations": {
// Configure properties specific to VS Code.
"vscode": {
"settings": {},
"extensions": [
"ms-vscode.cpptools",
"ms-vscode.cpptools-extension-pack",
"ms-vscode.cpptools-themes",
"ms-vscode.cmake-tools",
"ms-azuretools.vscode-docker",
"jbenden.c-cpp-flylint",
"matepek.vscode-catch2-test-adapter",
"GitHub.copilot"
]
}
}
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "root"
}

View File

@@ -0,0 +1,59 @@
#!/usr/bin/env bash
#-------------------------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See https://go.microsoft.com/fwlink/?linkid=2090316 for license information.
#-------------------------------------------------------------------------------------------------------------
#
set -e
CMAKE_VERSION=${1:-"none"}
if [ "${CMAKE_VERSION}" = "none" ]; then
echo "No CMake version specified, skipping CMake reinstallation"
exit 0
fi
# Cleanup temporary directory and associated files when exiting the script.
cleanup() {
EXIT_CODE=$?
set +e
if [[ -n "${TMP_DIR}" ]]; then
echo "Executing cleanup of tmp files"
rm -Rf "${TMP_DIR}"
fi
exit $EXIT_CODE
}
trap cleanup EXIT
echo "Installing CMake..."
apt-get -y purge --auto-remove cmake
mkdir -p /opt/cmake
architecture=$(dpkg --print-architecture)
case "${architecture}" in
arm64)
ARCH=aarch64 ;;
amd64)
ARCH=x86_64 ;;
*)
echo "Unsupported architecture ${architecture}."
exit 1
;;
esac
CMAKE_BINARY_NAME="cmake-${CMAKE_VERSION}-linux-${ARCH}.sh"
CMAKE_CHECKSUM_NAME="cmake-${CMAKE_VERSION}-SHA-256.txt"
TMP_DIR=$(mktemp -d -t cmake-XXXXXXXXXX)
echo "${TMP_DIR}"
cd "${TMP_DIR}"
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_BINARY_NAME}" -O
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_CHECKSUM_NAME}" -O
sha256sum -c --ignore-missing "${CMAKE_CHECKSUM_NAME}"
sh "${TMP_DIR}/${CMAKE_BINARY_NAME}" --prefix=/opt/cmake --skip-license
ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
ln -s /opt/cmake/bin/ctest /usr/local/bin/ctest

12
.github/dependabot.yml vendored Normal file
View File

@@ -0,0 +1,12 @@
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for more information:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
# https://containers.dev/guide/dependabot
version: 2
updates:
- package-ecosystem: "devcontainers"
directory: "/"
schedule:
interval: weekly

1
.gitignore vendored
View File

@@ -39,4 +39,5 @@ cmake-build*/**
puml/**
.vscode/settings.json
sample/build
**/.DS_Store

5
.gitmodules vendored
View File

@@ -13,3 +13,8 @@
url = https://github.com/rmontanana/folding
main = main
update = merge
[submodule "tests/lib/catch2"]
path = tests/lib/catch2
url = https://github.com/catchorg/Catch2.git
main = main
update = merge

View File

@@ -0,0 +1,4 @@
{
"sonarCloudOrganization": "rmontanana",
"projectKey": "rmontanana_BayesNet"
}

2
.vscode/launch.json vendored
View File

@@ -16,7 +16,7 @@
"name": "test",
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
"args": [
"\"Bisection Best\""
"[Node]"
],
"cwd": "${workspaceFolder}/build_debug/tests"
},

View File

@@ -9,16 +9,24 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Added
- Add the Library logo generated with <https://openart.ai> to README.md
- Add link to the coverage report in the README.md coverage label.
- Add the *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
- Library logo generated with <https://openart.ai> to README.md
- Link to the coverage report in the README.md coverage label.
- *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
- SPnDE model.
- A2DE model.
- A2DE & SPnDE tests.
- Add tests to reach 99% of coverage.
- Add tests to check the correct version of the mdlp, folding and json libraries.
### Internal
- Refactor library ArffFile to limit the number of samples with a parameter.
- Refactor tests libraries location to test/lib
- Create library ShuffleArffFile to limit the number of samples with a parameter and shuffle them.
- Refactor catch2 library location to test/lib
- Refactor loadDataset function in tests.
- Remove conditionalEdgeWeights method in BayesMetrics.
- Refactor Coverage Report generation.
- Add devcontainer to work on apple silicon.
- Change build cmake folder names to Debug & Release.
## [1.0.5] 2024-04-20

View File

@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20)
project(BayesNet
VERSION 1.0.5
VERSION 1.0.5.1
DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX
@@ -25,8 +25,9 @@ set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -O0 -g")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors -fno-default-inline")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
@@ -60,8 +61,9 @@ endif (ENABLE_CLANG_TIDY)
# External libraries - dependencies of BayesNet
# ---------------------------------------------
# include(FetchContent)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/json")
add_git_submodule("lib/mdlp")
add_subdirectory("lib/Files")
# Subdirectories
# --------------
@@ -72,8 +74,7 @@ add_subdirectory(bayesnet)
# -------
if (ENABLE_TESTING)
MESSAGE("Testing enabled")
add_subdirectory("tests/lib/catch2")
add_subdirectory(tests/lib/Files)
add_subdirectory(tests/lib/catch2)
include(CTest)
add_subdirectory(tests)
endif (ENABLE_TESTING)

View File

@@ -2,14 +2,13 @@ SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge
f_release = build_release
f_debug = build_debug
f_release = build_Release
f_debug = build_Debug
f_diagrams = diagrams
app_targets = BayesNet
test_targets = TestBayesNet
clang-uml = clang-uml
plantuml = plantuml
gcovr = gcovr
lcov = lcov
genhtml = genhtml
dot = dot
@@ -115,24 +114,24 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
coverage: ## Run tests and generate coverage report (build/index.html)
@echo ">>> Building tests with coverage..."
@which $(gcovr) || (echo ">>> Please install gcovr"; exit 1)
@which $(lcov) || (echo ">>> Please install lcov"; exit 1)
@which $(genhtml) || (echo ">>> Please install lcov"; exit 1)
@$(MAKE) test
@$(gcovr) $(f_debug)/tests
@if [ ! -f $(f_debug)/tests/coverage.info ] ; then $(MAKE) test ; fi
@echo ">>> Building report..."
@cd $(f_debug)/tests; \
$(lcov) --directory . --capture --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --directory CMakeFiles --capture --demangle-cpp --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1
@$(genhtml) $(f_debug)/tests/coverage.info --output-directory html >/dev/null 2>&1;
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '/opt/miniconda/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --summary coverage.info
@$(MAKE) updatebadge
@echo ">>> Done";
viewcoverage: ## View the html coverage report
@which $(genhtml) || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory html --title "BayesNet Coverage Report" -s -k -f --legend >/dev/null 2>&1;
@xdg-open html/index.html || open html/index.html 2>/dev/null
@echo ">>> Done";

View File

@@ -7,7 +7,7 @@
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
[![Coverage Badge](https://img.shields.io/badge/Coverage-97,1%25-green)](html/index.html)
[![Coverage Badge](https://img.shields.io/badge/Coverage-99,0%25-green)](html/index.html)
Bayesian Network Classifiers using libtorch from scratch
@@ -61,7 +61,25 @@ make sample fname=tests/data/glass.arff
## Models
### [BoostAODE](docs/BoostAODE.md)
#### - TAN
#### - KDB
#### - SPODE
#### - AODE
#### - [BoostAODE](docs/BoostAODE.md)
### With Local Discretization
#### - TANLd
#### - KDBLd
#### - SPODELd
#### - AODELd
## Diagrams

View File

@@ -0,0 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "SPnDE.h"
namespace bayesnet {
SPnDE::SPnDE(std::vector<int> parents) : Classifier(Network()), parents(parents) {}
void SPnDE::buildModel(const torch::Tensor& weights)
{
// 0. Add all nodes to the model
addNodes();
std::vector<int> attributes;
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
if (std::find(parents.begin(), parents.end(), i) == parents.end()) {
attributes.push_back(i);
}
}
// 1. Add edges from the class node to all other nodes
// 2. Add edges from the parents nodes to all other nodes
for (const auto& attribute : attributes) {
model.addEdge(className, features[attribute]);
for (const auto& root : parents) {
model.addEdge(features[root], features[attribute]);
}
}
}
std::vector<std::string> SPnDE::graph(const std::string& name) const
{
return model.graph(name);
}
}

View File

@@ -0,0 +1,26 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef SPnDE_H
#define SPnDE_H
#include <vector>
#include "Classifier.h"
namespace bayesnet {
class SPnDE : public Classifier {
public:
explicit SPnDE(std::vector<int> parents);
virtual ~SPnDE() = default;
std::vector<std::string> graph(const std::string& name = "SPnDE") const override;
protected:
void buildModel(const torch::Tensor& weights) override;
private:
std::vector<int> parents;
};
}
#endif

View File

@@ -0,0 +1,40 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "A2DE.h"
namespace bayesnet {
A2DE::A2DE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = { "predict_voting" };
}
void A2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
Classifier::setHyperparameters(hyperparameters);
}
void A2DE::buildModel(const torch::Tensor& weights)
{
models.clear();
significanceModels.clear();
for (int i = 0; i < features.size() - 1; ++i) {
for (int j = i + 1; j < features.size(); ++j) {
auto model = std::make_unique<SPnDE>(std::vector<int>({ i, j }));
models.push_back(std::move(model));
}
}
n_models = static_cast<unsigned>(models.size());
significanceModels = std::vector<double>(n_models, 1.0);
}
std::vector<std::string> A2DE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

22
bayesnet/ensembles/A2DE.h Normal file
View File

@@ -0,0 +1,22 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef A2DE_H
#define A2DE_H
#include "bayesnet/classifiers/SPnDE.h"
#include "Ensemble.h"
namespace bayesnet {
class A2DE : public Ensemble {
public:
A2DE(bool predict_voting = false);
virtual ~A2DE() {};
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
protected:
void buildModel(const torch::Tensor& weights) override;
};
}
#endif

View File

@@ -410,11 +410,7 @@ namespace bayesnet {
result.insert(it2, fatherName);
ending = false;
}
} else {
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}

View File

@@ -9,7 +9,7 @@
namespace bayesnet {
Node::Node(const std::string& name)
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
: name(name)
{
}
void Node::clear()
@@ -96,7 +96,6 @@ namespace bayesnet {
// Get dimensions of the CPT
dimensions.push_back(numStates);
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
// Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts

View File

@@ -12,14 +12,6 @@
#include <torch/torch.h>
namespace bayesnet {
class Node {
private:
std::string name;
std::vector<Node*> parents;
std::vector<Node*> children;
int numStates; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
std::vector<int64_t> dimensions; // dimensions of the cpTable
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
public:
explicit Node(const std::string&);
void clear();
@@ -37,6 +29,14 @@ namespace bayesnet {
unsigned minFill();
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
float getFactorValue(std::map<std::string, int>&);
private:
std::string name;
std::vector<Node*> parents;
std::vector<Node*> children;
int numStates = 0; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
std::vector<int64_t> dimensions; // dimensions of the cpTable
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
};
}
#endif

View File

@@ -4,6 +4,9 @@
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <map>
#include <unordered_map>
#include <tuple>
#include "Mst.h"
#include "BayesMetrics.h"
namespace bayesnet {
@@ -105,6 +108,8 @@ namespace bayesnet {
}
return matrix;
}
// Measured in nats (natural logarithm (log) base e)
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{
torch::Tensor counts = feature.bincount(weights);
@@ -143,11 +148,64 @@ namespace bayesnet {
}
return entropyValue;
}
// H(Y|X,C) = sum_{x in X, c in C} p(x,c) H(Y|X=x,C=c)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
{
// Ensure the tensors are of the same length
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
// Convert tensors to vectors for easier processing
auto firstFeatureData = firstFeature.accessor<int, 1>();
auto secondFeatureData = secondFeature.accessor<int, 1>();
auto labelsData = labels.accessor<int, 1>();
auto weightsData = weights.accessor<double, 1>();
int numSamples = firstFeature.size(0);
// Maps for joint and marginal probabilities
std::map<std::tuple<int, int, int>, double> jointCount;
std::map<std::tuple<int, int>, double> marginalCount;
// Compute joint and marginal counts
for (int i = 0; i < numSamples; ++i) {
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
auto keyMarginal = std::make_tuple(firstFeatureData[i], labelsData[i]);
jointCount[keyJoint] += weightsData[i];
marginalCount[keyMarginal] += weightsData[i];
}
// Total weight sum
double totalWeight = torch::sum(weights).item<double>();
if (totalWeight == 0)
return 0;
// Compute the conditional entropy
double conditionalEntropy = 0.0;
for (const auto& [keyJoint, jointFreq] : jointCount) {
auto [x, c, y] = keyJoint;
auto keyMarginal = std::make_tuple(x, c);
double p_xc = marginalCount[keyMarginal] / totalWeight;
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
if (p_y_given_xc > 0) {
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
}
}
return conditionalEntropy;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
}
// I(X;Y|C) = H(Y|C) - H(Y|X,C)
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
{
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using

View File

@@ -18,12 +18,16 @@ namespace bayesnet {
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
// Measured in nats (natural logarithm (log) base e)
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className;
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
std::vector<std::string> features;
template <class T>
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)

View File

@@ -5,7 +5,7 @@
The hyperparameters defined in the algorithm are:
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
- ***biesection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
- ***bisection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.

Binary file not shown.

View File

@@ -1,5 +0,0 @@
filter = bayesnet/
exclude-directories = build_debug/lib/
exclude = bayesnet/utils/loguru.*
print-summary = yes
sort = uncovered-percent

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/BaseClassifier.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../index.html">top level</a> - <a href="index.html">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryLo">50.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">bayesnet::BaseClassifier::~BaseClassifier()</a></td>
<td class="coverFnHi">241</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD2Ev</a></td>
<td class="coverFnAliasHi">241</td>
<td class="coverFnHi">1680</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/BaseClassifier.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../index.html">top level</a> - <a href="index.html">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (<a href="BaseClassifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryLo">50.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFn"><a href="BaseClassifier.h.gcov.html#L19">bayesnet::BaseClassifier::~BaseClassifier()</a></td>
<td class="coverFnHi">241</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="BaseClassifier.h.gcov.html#L19">_ZN8bayesnet14BaseClassifierD2Ev</a></td>
<td class="coverFnAliasHi">241</td>
<td class="coverFnHi">1680</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h</title>
<link rel="stylesheet" type="text/css" href="../gcov.css">
</head>
<frameset cols="120,*">
<frame src="BaseClassifier.h.gcov.overview.html" name="overview">
<frame src="BaseClassifier.h.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/BaseClassifier.h</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h</title>
<link rel="stylesheet" type="text/css" href="../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../index.html">top level</a> - <a href="index.html">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (source / <a href="BaseClassifier.h.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet</a> - BaseClassifier.h<span style="font-size: 80%;"> (source / <a href="BaseClassifier.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryLo">50.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -80,7 +88,7 @@
<span id="L18"><span class="lineNum"> 18</span> : virtual BaseClassifier&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) = 0;</span>
<span id="L19"><span class="lineNum"> 19</span> : virtual BaseClassifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) = 0;</span>
<span id="L20"><span class="lineNum"> 20</span> : virtual BaseClassifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights) = 0;</span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC tlaBgGNC"> 241 : virtual ~BaseClassifier() = default;</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC tlaBgGNC"> 1680 : virtual ~BaseClassifier() = default;</span></span>
<span id="L22"><span class="lineNum"> 22</span> : torch::Tensor virtual predict(torch::Tensor&amp; X) = 0;</span>
<span id="L23"><span class="lineNum"> 23</span> : std::vector&lt;int&gt; virtual predict(std::vector&lt;std::vector&lt;int &gt;&gt;&amp; X) = 0;</span>
<span id="L24"><span class="lineNum"> 24</span> : torch::Tensor virtual predict_proba(torch::Tensor&amp; X) = 0;</span>

View File

@@ -0,0 +1,32 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/BaseClassifier.h</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="BaseClassifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="BaseClassifier.h.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="BaseClassifier.h.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="BaseClassifier.h.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="BaseClassifier.h.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="BaseClassifier.h.gcov.html#L21" target="source" alt="overview">
<area shape="rect" coords="0,36,79,39" href="BaseClassifier.h.gcov.html#L25" target="source" alt="overview">
<area shape="rect" coords="0,40,79,43" href="BaseClassifier.h.gcov.html#L29" target="source" alt="overview">
<area shape="rect" coords="0,44,79,47" href="BaseClassifier.h.gcov.html#L33" target="source" alt="overview">
</map>
<center>
<a href="BaseClassifier.h.gcov.html#top" target="source">Top</a><br><br>
<img src="BaseClassifier.h.gcov.png" width=80 height=44 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 372 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Classifier.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">24</td>
<td class="headerCovTableEntry">24</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,170 +71,170 @@
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">_ZN8bayesnet10Classifier17topological_orderB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">bayesnet::Classifier::dump_cpt[abi:cxx11]() const</a></td>
<td class="coverFnHi">11</td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">_ZNK8bayesnet10Classifier8dump_cptB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">bayesnet::Classifier::topological_order[abi:cxx11]()</a></td>
<td class="coverFnHi">11</td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">_ZN8bayesnet10Classifier5scoreERSt6vectorIS1_IiSaIiEESaIS3_EERS3_</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">bayesnet::Classifier::predict(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">44</td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">_ZN8bayesnet10Classifier7predictERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">bayesnet::Classifier::score(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;&amp;)</a></td>
<td class="coverFnHi">44</td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">_ZNK8bayesnet10Classifier17getNumberOfStatesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">bayesnet::Classifier::getNumberOfStates() const</a></td>
<td class="coverFnHi">66</td>
<td class="coverFnHi">24</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">_ZNK8bayesnet10Classifier4showB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">bayesnet::Classifier::show[abi:cxx11]() const</a></td>
<td class="coverFnHi">66</td>
<td class="coverFnHi">24</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">_ZN8bayesnet10Classifier18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">bayesnet::Classifier::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json&lt;std::map, std::vector, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector&lt;unsigned char, std::allocator&lt;unsigned char&gt; &gt;, void&gt; const&amp;)</a></td>
<td class="coverFnHi">231</td>
<td class="coverFnHi">92</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">_ZN8bayesnet10Classifier5scoreERN2at6TensorES3_</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">bayesnet::Classifier::score(at::Tensor&amp;, at::Tensor&amp;)</a></td>
<td class="coverFnHi">308</td>
<td class="coverFnHi">112</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">_ZN8bayesnet10Classifier3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">bayesnet::Classifier::fit(at::Tensor&amp;, at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">322</td>
<td class="coverFnHi">128</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">_ZN8bayesnet10Classifier3fitERSt6vectorIS1_IiSaIiEESaIS3_EERS3_RKS1_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISD_EERKSD_RSt3mapISD_S3_St4lessISD_ESaISt4pairISI_S3_EEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">bayesnet::Classifier::fit(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">360</td>
<td class="coverFnHi">136</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">_ZNK8bayesnet10Classifier16getNumberOfEdgesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">bayesnet::Classifier::getNumberOfEdges() const</a></td>
<td class="coverFnHi">475</td>
<td class="coverFnHi">332</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">_ZNK8bayesnet10Classifier16getNumberOfNodesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">bayesnet::Classifier::getNumberOfNodes() const</a></td>
<td class="coverFnHi">475</td>
<td class="coverFnHi">332</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">_ZN8bayesnet10Classifier13predict_probaERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">bayesnet::Classifier::buildDataset(at::Tensor&amp;)</a></td>
<td class="coverFnHi">766</td>
<td class="coverFnHi">340</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">_ZNK8bayesnet10Classifier17getClassNumStatesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">bayesnet::Classifier::getClassNumStates() const</a></td>
<td class="coverFnHi">877</td>
<td class="coverFnHi">348</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">_ZN8bayesnet10Classifier12buildDatasetERN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">bayesnet::Classifier::predict_proba(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">888</td>
<td class="coverFnHi">548</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">bayesnet::Classifier::fit(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;, at::Tensor const&amp;)</a></td>
<td class="coverFnHi">1089</td>
<td class="coverFnHi">660</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEERKS2_</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">bayesnet::Classifier::fit(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">1686</td>
<td class="coverFnHi">852</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">_ZN8bayesnet10Classifier10trainModelERKN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">bayesnet::Classifier::predict_proba(at::Tensor&amp;)</a></td>
<td class="coverFnHi">2951</td>
<td class="coverFnHi">1484</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">_ZN8bayesnet10Classifier8addNodesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">bayesnet::Classifier::addNodes()</a></td>
<td class="coverFnHi">2951</td>
<td class="coverFnHi">1576</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">_ZN8bayesnet10Classifier7predictERN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">bayesnet::Classifier::trainModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">3262</td>
<td class="coverFnHi">1576</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">_ZN8bayesnet10Classifier18checkFitParametersEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">bayesnet::Classifier::build(std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;, at::Tensor const&amp;)</a></td>
<td class="coverFnHi">3413</td>
<td class="coverFnHi">1760</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">_ZN8bayesnet10Classifier5buildERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEERKN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">bayesnet::Classifier::checkFitParameters()</a></td>
<td class="coverFnHi">3413</td>
<td class="coverFnHi">1760</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">_ZN8bayesnet10Classifier13predict_probaERN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">bayesnet::Classifier::predict(at::Tensor&amp;)</a></td>
<td class="coverFnHi">3562</td>
<td class="coverFnHi">1844</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">_ZN8bayesnet10ClassifierC2ENS_7NetworkE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">bayesnet::Classifier::Classifier(bayesnet::Network)</a></td>
<td class="coverFnHi">4750</td>
<td class="coverFnHi">2240</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Classifier.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (<a href="Classifier.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">24</td>
<td class="headerCovTableEntry">24</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,170 +71,170 @@
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">_ZN8bayesnet10Classifier10trainModelERKN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">bayesnet::Classifier::Classifier(bayesnet::Network)</a></td>
<td class="coverFnHi">2951</td>
<td class="coverFnHi">2240</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">_ZN8bayesnet10Classifier12buildDatasetERN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">bayesnet::Classifier::addNodes()</a></td>
<td class="coverFnHi">888</td>
<td class="coverFnHi">1576</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">_ZN8bayesnet10Classifier13predict_probaERN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">bayesnet::Classifier::build(std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;, at::Tensor const&amp;)</a></td>
<td class="coverFnHi">3562</td>
<td class="coverFnHi">1760</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">_ZN8bayesnet10Classifier13predict_probaERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L28">bayesnet::Classifier::buildDataset(at::Tensor&amp;)</a></td>
<td class="coverFnHi">766</td>
<td class="coverFnHi">340</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">_ZN8bayesnet10Classifier17topological_orderB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">bayesnet::Classifier::checkFitParameters()</a></td>
<td class="coverFnHi">11</td>
<td class="coverFnHi">1760</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L77">_ZN8bayesnet10Classifier18checkFitParametersEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">bayesnet::Classifier::dump_cpt[abi:cxx11]() const</a></td>
<td class="coverFnHi">3413</td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">_ZN8bayesnet10Classifier18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">bayesnet::Classifier::fit(at::Tensor&amp;, at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">231</td>
<td class="coverFnHi">128</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L66">bayesnet::Classifier::fit(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">1089</td>
<td class="coverFnHi">852</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">_ZN8bayesnet10Classifier3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEERKS2_</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L72">bayesnet::Classifier::fit(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;, at::Tensor const&amp;)</a></td>
<td class="coverFnHi">1686</td>
<td class="coverFnHi">660</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L47">_ZN8bayesnet10Classifier3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">bayesnet::Classifier::fit(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">322</td>
<td class="coverFnHi">136</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L55">_ZN8bayesnet10Classifier3fitERSt6vectorIS1_IiSaIiEESaIS3_EERS3_RKS1_INSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISD_EERKSD_RSt3mapISD_S3_St4lessISD_ESaISt4pairISI_S3_EEE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">bayesnet::Classifier::getClassNumStates() const</a></td>
<td class="coverFnHi">360</td>
<td class="coverFnHi">348</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L12">_ZN8bayesnet10Classifier5buildERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEERKN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">bayesnet::Classifier::getNumberOfEdges() const</a></td>
<td class="coverFnHi">3413</td>
<td class="coverFnHi">332</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">_ZN8bayesnet10Classifier5scoreERN2at6TensorES3_</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">bayesnet::Classifier::getNumberOfNodes() const</a></td>
<td class="coverFnHi">308</td>
<td class="coverFnHi">332</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">_ZN8bayesnet10Classifier5scoreERSt6vectorIS1_IiSaIiEESaIS3_EERS3_</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">bayesnet::Classifier::getNumberOfStates() const</a></td>
<td class="coverFnHi">44</td>
<td class="coverFnHi">24</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">_ZN8bayesnet10Classifier7predictERN2at6TensorE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L94">bayesnet::Classifier::predict(at::Tensor&amp;)</a></td>
<td class="coverFnHi">3262</td>
<td class="coverFnHi">1844</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">_ZN8bayesnet10Classifier7predictERSt6vectorIS1_IiSaIiEESaIS3_EE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L101">bayesnet::Classifier::predict(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">44</td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L153">_ZN8bayesnet10Classifier8addNodesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L115">bayesnet::Classifier::predict_proba(at::Tensor&amp;)</a></td>
<td class="coverFnHi">2951</td>
<td class="coverFnHi">1484</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L10">_ZN8bayesnet10ClassifierC2ENS_7NetworkE</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L122">bayesnet::Classifier::predict_proba(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">4750</td>
<td class="coverFnHi">548</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L166">_ZNK8bayesnet10Classifier16getNumberOfEdgesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L137">bayesnet::Classifier::score(at::Tensor&amp;, at::Tensor&amp;)</a></td>
<td class="coverFnHi">475</td>
<td class="coverFnHi">112</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L161">_ZNK8bayesnet10Classifier16getNumberOfNodesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L142">bayesnet::Classifier::score(std::vector&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::allocator&lt;std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt;&amp;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;&amp;)</a></td>
<td class="coverFnHi">475</td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L174">_ZNK8bayesnet10Classifier17getClassNumStatesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L186">bayesnet::Classifier::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json&lt;std::map, std::vector, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector&lt;unsigned char, std::allocator&lt;unsigned char&gt; &gt;, void&gt; const&amp;)</a></td>
<td class="coverFnHi">877</td>
<td class="coverFnHi">92</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L170">_ZNK8bayesnet10Classifier17getNumberOfStatesEv</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">bayesnet::Classifier::show[abi:cxx11]() const</a></td>
<td class="coverFnHi">66</td>
<td class="coverFnHi">24</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L149">_ZNK8bayesnet10Classifier4showB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L178">bayesnet::Classifier::topological_order[abi:cxx11]()</a></td>
<td class="coverFnHi">66</td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L182">_ZNK8bayesnet10Classifier8dump_cptB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.cc.gcov.html#L42">bayesnet::Classifier::trainModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">11</td>
<td class="coverFnHi">1576</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="Classifier.cc.gcov.overview.html" name="overview">
<frame src="Classifier.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Classifier.cc</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (source / <a href="Classifier.cc.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.cc<span style="font-size: 80%;"> (source / <a href="Classifier.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">24</td>
<td class="headerCovTableEntry">24</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -71,188 +79,188 @@
<span id="L9"><span class="lineNum"> 9</span> : #include &quot;Classifier.h&quot;</span>
<span id="L10"><span class="lineNum"> 10</span> : </span>
<span id="L11"><span class="lineNum"> 11</span> : namespace bayesnet {</span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC tlaBgGNC"> 4750 : Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC tlaBgGNC"> 2240 : Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}</span></span>
<span id="L13"><span class="lineNum"> 13</span> : const std::string CLASSIFIER_NOT_FITTED = &quot;Classifier has not been fitted&quot;;</span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 3413 : Classifier&amp; Classifier::build(const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights)</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 1760 : Classifier&amp; Classifier::build(const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights)</span></span>
<span id="L15"><span class="lineNum"> 15</span> : {</span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 3413 : this-&gt;features = features;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 3413 : this-&gt;className = className;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 3413 : this-&gt;states = states;</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 3413 : m = dataset.size(1);</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 3413 : n = features.size();</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 3413 : checkFitParameters();</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 3325 : auto n_classes = states.at(className).size();</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 3325 : metrics = Metrics(dataset, features, className, n_classes);</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 3325 : model.initialize();</span></span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 3325 : buildModel(weights);</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 3325 : trainModel(weights);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 3277 : fitted = true;</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 3277 : return *this;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 1760 : this-&gt;features = features;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 1760 : this-&gt;className = className;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 1760 : this-&gt;states = states;</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 1760 : m = dataset.size(1);</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 1760 : n = features.size();</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 1760 : checkFitParameters();</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 1728 : auto n_classes = states.at(className).size();</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 1728 : metrics = Metrics(dataset, features, className, n_classes);</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 1728 : model.initialize();</span></span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 1728 : buildModel(weights);</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 1728 : trainModel(weights);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 1712 : fitted = true;</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 1712 : return *this;</span></span>
<span id="L29"><span class="lineNum"> 29</span> : }</span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 888 : void Classifier::buildDataset(torch::Tensor&amp; ytmp)</span></span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 340 : void Classifier::buildDataset(torch::Tensor&amp; ytmp)</span></span>
<span id="L31"><span class="lineNum"> 31</span> : {</span>
<span id="L32"><span class="lineNum"> 32</span> : try {</span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 888 : auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 2752 : dataset = torch::cat({ dataset, yresized }, 0);</span></span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 888 : }</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 44 : catch (const std::exception&amp; e) {</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 44 : std::stringstream oss;</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 44 : oss &lt;&lt; &quot;* Error in X and y dimensions *\n&quot;;</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 44 : oss &lt;&lt; &quot;X dimensions: &quot; &lt;&lt; dataset.sizes() &lt;&lt; &quot;\n&quot;;</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 44 : oss &lt;&lt; &quot;y dimensions: &quot; &lt;&lt; ytmp.sizes();</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 44 : throw std::runtime_error(oss.str());</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 88 : }</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 1776 : }</span></span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 2951 : void Classifier::trainModel(const torch::Tensor&amp; weights)</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 340 : auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 1052 : dataset = torch::cat({ dataset, yresized }, 0);</span></span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 340 : }</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 16 : catch (const std::exception&amp; e) {</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 16 : std::stringstream oss;</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 16 : oss &lt;&lt; &quot;* Error in X and y dimensions *\n&quot;;</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 16 : oss &lt;&lt; &quot;X dimensions: &quot; &lt;&lt; dataset.sizes() &lt;&lt; &quot;\n&quot;;</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 16 : oss &lt;&lt; &quot;y dimensions: &quot; &lt;&lt; ytmp.sizes();</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 16 : throw std::runtime_error(oss.str());</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 32 : }</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 680 : }</span></span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 1576 : void Classifier::trainModel(const torch::Tensor&amp; weights)</span></span>
<span id="L45"><span class="lineNum"> 45</span> : {</span>
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 2951 : model.fit(dataset, weights, features, className, states);</span></span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 2951 : }</span></span>
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 1576 : model.fit(dataset, weights, features, className, states);</span></span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 1576 : }</span></span>
<span id="L48"><span class="lineNum"> 48</span> : // X is nxm where n is the number of features and m the number of samples</span>
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 322 : Classifier&amp; Classifier::fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 128 : Classifier&amp; Classifier::fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L50"><span class="lineNum"> 50</span> : {</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 322 : dataset = X;</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 322 : buildDataset(y);</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 300 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 512 : return build(features, className, states, weights);</span></span>
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 300 : }</span></span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 128 : dataset = X;</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 128 : buildDataset(y);</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 120 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 208 : return build(features, className, states, weights);</span></span>
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 120 : }</span></span>
<span id="L56"><span class="lineNum"> 56</span> : // X is nxm where n is the number of features and m the number of samples</span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 360 : Classifier&amp; Classifier::fit(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 136 : Classifier&amp; Classifier::fit(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L58"><span class="lineNum"> 58</span> : {</span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 360 : dataset = torch::zeros({ static_cast&lt;int&gt;(X.size()), static_cast&lt;int&gt;(X[0].size()) }, torch::kInt32);</span></span>
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 5883 : for (int i = 0; i &lt; X.size(); ++i) {</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 22092 : dataset.index_put_({ i, &quot;...&quot; }, torch::tensor(X[i], torch::kInt32));</span></span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 136 : dataset = torch::zeros({ static_cast&lt;int&gt;(X.size()), static_cast&lt;int&gt;(X[0].size()) }, torch::kInt32);</span></span>
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 976 : for (int i = 0; i &lt; X.size(); ++i) {</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 3360 : dataset.index_put_({ i, &quot;...&quot; }, torch::tensor(X[i], torch::kInt32));</span></span>
<span id="L62"><span class="lineNum"> 62</span> : }</span>
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 360 : auto ytmp = torch::tensor(y, torch::kInt32);</span></span>
<span id="L64"><span class="lineNum"> 64</span> <span class="tlaGNC"> 360 : buildDataset(ytmp);</span></span>
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 338 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 628 : return build(features, className, states, weights);</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 5931 : }</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 1089 : Classifier&amp; Classifier::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 136 : auto ytmp = torch::tensor(y, torch::kInt32);</span></span>
<span id="L64"><span class="lineNum"> 64</span> <span class="tlaGNC"> 136 : buildDataset(ytmp);</span></span>
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 128 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 240 : return build(features, className, states, weights);</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 992 : }</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 852 : Classifier&amp; Classifier::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states)</span></span>
<span id="L69"><span class="lineNum"> 69</span> : {</span>
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 1089 : this-&gt;dataset = dataset;</span></span>
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 1089 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 2178 : return build(features, className, states, weights);</span></span>
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 1089 : }</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 1686 : Classifier&amp; Classifier::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights)</span></span>
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 852 : this-&gt;dataset = dataset;</span></span>
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 852 : const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);</span></span>
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 1704 : return build(features, className, states, weights);</span></span>
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 852 : }</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 660 : Classifier&amp; Classifier::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states, const torch::Tensor&amp; weights)</span></span>
<span id="L75"><span class="lineNum"> 75</span> : {</span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 1686 : this-&gt;dataset = dataset;</span></span>
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 1686 : return build(features, className, states, weights);</span></span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 660 : this-&gt;dataset = dataset;</span></span>
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 660 : return build(features, className, states, weights);</span></span>
<span id="L78"><span class="lineNum"> 78</span> : }</span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 3413 : void Classifier::checkFitParameters()</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 1760 : void Classifier::checkFitParameters()</span></span>
<span id="L80"><span class="lineNum"> 80</span> : {</span>
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 3413 : if (torch::is_floating_point(dataset)) {</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 22 : throw std::invalid_argument(&quot;dataset (X, y) must be of type Integer&quot;);</span></span>
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 1760 : if (torch::is_floating_point(dataset)) {</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 8 : throw std::invalid_argument(&quot;dataset (X, y) must be of type Integer&quot;);</span></span>
<span id="L83"><span class="lineNum"> 83</span> : }</span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 3391 : if (dataset.size(0) - 1 != features.size()) {</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 22 : throw std::invalid_argument(&quot;Classifier: X &quot; + std::to_string(dataset.size(0) - 1) + &quot; and features &quot; + std::to_string(features.size()) + &quot; must have the same number of features&quot;);</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 1752 : if (dataset.size(0) - 1 != features.size()) {</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 8 : throw std::invalid_argument(&quot;Classifier: X &quot; + std::to_string(dataset.size(0) - 1) + &quot; and features &quot; + std::to_string(features.size()) + &quot; must have the same number of features&quot;);</span></span>
<span id="L86"><span class="lineNum"> 86</span> : }</span>
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 3369 : if (states.find(className) == states.end()) {</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 22 : throw std::invalid_argument(&quot;class name not found in states&quot;);</span></span>
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 1744 : if (states.find(className) == states.end()) {</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 8 : throw std::invalid_argument(&quot;class name not found in states&quot;);</span></span>
<span id="L89"><span class="lineNum"> 89</span> : }</span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 124581 : for (auto feature : features) {</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 121256 : if (states.find(feature) == states.end()) {</span></span>
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 22 : throw std::invalid_argument(&quot;feature [&quot; + feature + &quot;] not found in states&quot;);</span></span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 32996 : for (auto feature : features) {</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 31268 : if (states.find(feature) == states.end()) {</span></span>
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 8 : throw std::invalid_argument(&quot;feature [&quot; + feature + &quot;] not found in states&quot;);</span></span>
<span id="L93"><span class="lineNum"> 93</span> : }</span>
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 121256 : }</span></span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 3325 : }</span></span>
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 3262 : torch::Tensor Classifier::predict(torch::Tensor&amp; X)</span></span>
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 31268 : }</span></span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 1728 : }</span></span>
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 1844 : torch::Tensor Classifier::predict(torch::Tensor&amp; X)</span></span>
<span id="L97"><span class="lineNum"> 97</span> : {</span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 3262 : if (!fitted) {</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 44 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 1844 : if (!fitted) {</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 16 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L100"><span class="lineNum"> 100</span> : }</span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 3218 : return model.predict(X);</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 1828 : return model.predict(X);</span></span>
<span id="L102"><span class="lineNum"> 102</span> : }</span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 44 : std::vector&lt;int&gt; Classifier::predict(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X)</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 16 : std::vector&lt;int&gt; Classifier::predict(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X)</span></span>
<span id="L104"><span class="lineNum"> 104</span> : {</span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 44 : if (!fitted) {</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 22 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 16 : if (!fitted) {</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L107"><span class="lineNum"> 107</span> : }</span>
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 22 : auto m_ = X[0].size();</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 22 : auto n_ = X.size();</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 22 : std::vector&lt;std::vector&lt;int&gt;&gt; Xd(n_, std::vector&lt;int&gt;(m_, 0));</span></span>
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 110 : for (auto i = 0; i &lt; n_; i++) {</span></span>
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 176 : Xd[i] = std::vector&lt;int&gt;(X[i].begin(), X[i].end());</span></span>
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 8 : auto m_ = X[0].size();</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 8 : auto n_ = X.size();</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 8 : std::vector&lt;std::vector&lt;int&gt;&gt; Xd(n_, std::vector&lt;int&gt;(m_, 0));</span></span>
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 40 : for (auto i = 0; i &lt; n_; i++) {</span></span>
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 64 : Xd[i] = std::vector&lt;int&gt;(X[i].begin(), X[i].end());</span></span>
<span id="L113"><span class="lineNum"> 113</span> : }</span>
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 22 : auto yp = model.predict(Xd);</span></span>
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 44 : return yp;</span></span>
<span id="L116"><span class="lineNum"> 116</span> <span class="tlaGNC"> 22 : }</span></span>
<span id="L117"><span class="lineNum"> 117</span> <span class="tlaGNC"> 3562 : torch::Tensor Classifier::predict_proba(torch::Tensor&amp; X)</span></span>
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 8 : auto yp = model.predict(Xd);</span></span>
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 16 : return yp;</span></span>
<span id="L116"><span class="lineNum"> 116</span> <span class="tlaGNC"> 8 : }</span></span>
<span id="L117"><span class="lineNum"> 117</span> <span class="tlaGNC"> 1484 : torch::Tensor Classifier::predict_proba(torch::Tensor&amp; X)</span></span>
<span id="L118"><span class="lineNum"> 118</span> : {</span>
<span id="L119"><span class="lineNum"> 119</span> <span class="tlaGNC"> 3562 : if (!fitted) {</span></span>
<span id="L120"><span class="lineNum"> 120</span> <span class="tlaGNC"> 22 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L119"><span class="lineNum"> 119</span> <span class="tlaGNC"> 1484 : if (!fitted) {</span></span>
<span id="L120"><span class="lineNum"> 120</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L121"><span class="lineNum"> 121</span> : }</span>
<span id="L122"><span class="lineNum"> 122</span> <span class="tlaGNC"> 3540 : return model.predict_proba(X);</span></span>
<span id="L122"><span class="lineNum"> 122</span> <span class="tlaGNC"> 1476 : return model.predict_proba(X);</span></span>
<span id="L123"><span class="lineNum"> 123</span> : }</span>
<span id="L124"><span class="lineNum"> 124</span> <span class="tlaGNC"> 766 : std::vector&lt;std::vector&lt;double&gt;&gt; Classifier::predict_proba(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X)</span></span>
<span id="L124"><span class="lineNum"> 124</span> <span class="tlaGNC"> 548 : std::vector&lt;std::vector&lt;double&gt;&gt; Classifier::predict_proba(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X)</span></span>
<span id="L125"><span class="lineNum"> 125</span> : {</span>
<span id="L126"><span class="lineNum"> 126</span> <span class="tlaGNC"> 766 : if (!fitted) {</span></span>
<span id="L127"><span class="lineNum"> 127</span> <span class="tlaGNC"> 22 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L126"><span class="lineNum"> 126</span> <span class="tlaGNC"> 548 : if (!fitted) {</span></span>
<span id="L127"><span class="lineNum"> 127</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L128"><span class="lineNum"> 128</span> : }</span>
<span id="L129"><span class="lineNum"> 129</span> <span class="tlaGNC"> 744 : auto m_ = X[0].size();</span></span>
<span id="L130"><span class="lineNum"> 130</span> <span class="tlaGNC"> 744 : auto n_ = X.size();</span></span>
<span id="L131"><span class="lineNum"> 131</span> <span class="tlaGNC"> 744 : std::vector&lt;std::vector&lt;int&gt;&gt; Xd(n_, std::vector&lt;int&gt;(m_, 0));</span></span>
<span id="L129"><span class="lineNum"> 129</span> <span class="tlaGNC"> 540 : auto m_ = X[0].size();</span></span>
<span id="L130"><span class="lineNum"> 130</span> <span class="tlaGNC"> 540 : auto n_ = X.size();</span></span>
<span id="L131"><span class="lineNum"> 131</span> <span class="tlaGNC"> 540 : std::vector&lt;std::vector&lt;int&gt;&gt; Xd(n_, std::vector&lt;int&gt;(m_, 0));</span></span>
<span id="L132"><span class="lineNum"> 132</span> : // Convert to nxm vector</span>
<span id="L133"><span class="lineNum"> 133</span> <span class="tlaGNC"> 9722 : for (auto i = 0; i &lt; n_; i++) {</span></span>
<span id="L134"><span class="lineNum"> 134</span> <span class="tlaGNC"> 17956 : Xd[i] = std::vector&lt;int&gt;(X[i].begin(), X[i].end());</span></span>
<span id="L133"><span class="lineNum"> 133</span> <span class="tlaGNC"> 5040 : for (auto i = 0; i &lt; n_; i++) {</span></span>
<span id="L134"><span class="lineNum"> 134</span> <span class="tlaGNC"> 9000 : Xd[i] = std::vector&lt;int&gt;(X[i].begin(), X[i].end());</span></span>
<span id="L135"><span class="lineNum"> 135</span> : }</span>
<span id="L136"><span class="lineNum"> 136</span> <span class="tlaGNC"> 744 : auto yp = model.predict_proba(Xd);</span></span>
<span id="L137"><span class="lineNum"> 137</span> <span class="tlaGNC"> 1488 : return yp;</span></span>
<span id="L138"><span class="lineNum"> 138</span> <span class="tlaGNC"> 744 : }</span></span>
<span id="L139"><span class="lineNum"> 139</span> <span class="tlaGNC"> 308 : float Classifier::score(torch::Tensor&amp; X, torch::Tensor&amp; y)</span></span>
<span id="L136"><span class="lineNum"> 136</span> <span class="tlaGNC"> 540 : auto yp = model.predict_proba(Xd);</span></span>
<span id="L137"><span class="lineNum"> 137</span> <span class="tlaGNC"> 1080 : return yp;</span></span>
<span id="L138"><span class="lineNum"> 138</span> <span class="tlaGNC"> 540 : }</span></span>
<span id="L139"><span class="lineNum"> 139</span> <span class="tlaGNC"> 112 : float Classifier::score(torch::Tensor&amp; X, torch::Tensor&amp; y)</span></span>
<span id="L140"><span class="lineNum"> 140</span> : {</span>
<span id="L141"><span class="lineNum"> 141</span> <span class="tlaGNC"> 308 : torch::Tensor y_pred = predict(X);</span></span>
<span id="L142"><span class="lineNum"> 142</span> <span class="tlaGNC"> 572 : return (y_pred == y).sum().item&lt;float&gt;() / y.size(0);</span></span>
<span id="L143"><span class="lineNum"> 143</span> <span class="tlaGNC"> 286 : }</span></span>
<span id="L144"><span class="lineNum"> 144</span> <span class="tlaGNC"> 44 : float Classifier::score(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y)</span></span>
<span id="L141"><span class="lineNum"> 141</span> <span class="tlaGNC"> 112 : torch::Tensor y_pred = predict(X);</span></span>
<span id="L142"><span class="lineNum"> 142</span> <span class="tlaGNC"> 208 : return (y_pred == y).sum().item&lt;float&gt;() / y.size(0);</span></span>
<span id="L143"><span class="lineNum"> 143</span> <span class="tlaGNC"> 104 : }</span></span>
<span id="L144"><span class="lineNum"> 144</span> <span class="tlaGNC"> 16 : float Classifier::score(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y)</span></span>
<span id="L145"><span class="lineNum"> 145</span> : {</span>
<span id="L146"><span class="lineNum"> 146</span> <span class="tlaGNC"> 44 : if (!fitted) {</span></span>
<span id="L147"><span class="lineNum"> 147</span> <span class="tlaGNC"> 22 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L146"><span class="lineNum"> 146</span> <span class="tlaGNC"> 16 : if (!fitted) {</span></span>
<span id="L147"><span class="lineNum"> 147</span> <span class="tlaGNC"> 8 : throw std::logic_error(CLASSIFIER_NOT_FITTED);</span></span>
<span id="L148"><span class="lineNum"> 148</span> : }</span>
<span id="L149"><span class="lineNum"> 149</span> <span class="tlaGNC"> 22 : return model.score(X, y);</span></span>
<span id="L149"><span class="lineNum"> 149</span> <span class="tlaGNC"> 8 : return model.score(X, y);</span></span>
<span id="L150"><span class="lineNum"> 150</span> : }</span>
<span id="L151"><span class="lineNum"> 151</span> <span class="tlaGNC"> 66 : std::vector&lt;std::string&gt; Classifier::show() const</span></span>
<span id="L151"><span class="lineNum"> 151</span> <span class="tlaGNC"> 24 : std::vector&lt;std::string&gt; Classifier::show() const</span></span>
<span id="L152"><span class="lineNum"> 152</span> : {</span>
<span id="L153"><span class="lineNum"> 153</span> <span class="tlaGNC"> 66 : return model.show();</span></span>
<span id="L153"><span class="lineNum"> 153</span> <span class="tlaGNC"> 24 : return model.show();</span></span>
<span id="L154"><span class="lineNum"> 154</span> : }</span>
<span id="L155"><span class="lineNum"> 155</span> <span class="tlaGNC"> 2951 : void Classifier::addNodes()</span></span>
<span id="L155"><span class="lineNum"> 155</span> <span class="tlaGNC"> 1576 : void Classifier::addNodes()</span></span>
<span id="L156"><span class="lineNum"> 156</span> : {</span>
<span id="L157"><span class="lineNum"> 157</span> : // Add all nodes to the network</span>
<span id="L158"><span class="lineNum"> 158</span> <span class="tlaGNC"> 116009 : for (const auto&amp; feature : features) {</span></span>
<span id="L159"><span class="lineNum"> 159</span> <span class="tlaGNC"> 113058 : model.addNode(feature);</span></span>
<span id="L158"><span class="lineNum"> 158</span> <span class="tlaGNC"> 30872 : for (const auto&amp; feature : features) {</span></span>
<span id="L159"><span class="lineNum"> 159</span> <span class="tlaGNC"> 29296 : model.addNode(feature);</span></span>
<span id="L160"><span class="lineNum"> 160</span> : }</span>
<span id="L161"><span class="lineNum"> 161</span> <span class="tlaGNC"> 2951 : model.addNode(className);</span></span>
<span id="L162"><span class="lineNum"> 162</span> <span class="tlaGNC"> 2951 : }</span></span>
<span id="L163"><span class="lineNum"> 163</span> <span class="tlaGNC"> 475 : int Classifier::getNumberOfNodes() const</span></span>
<span id="L161"><span class="lineNum"> 161</span> <span class="tlaGNC"> 1576 : model.addNode(className);</span></span>
<span id="L162"><span class="lineNum"> 162</span> <span class="tlaGNC"> 1576 : }</span></span>
<span id="L163"><span class="lineNum"> 163</span> <span class="tlaGNC"> 332 : int Classifier::getNumberOfNodes() const</span></span>
<span id="L164"><span class="lineNum"> 164</span> : {</span>
<span id="L165"><span class="lineNum"> 165</span> : // Features does not include class</span>
<span id="L166"><span class="lineNum"> 166</span> <span class="tlaGNC"> 475 : return fitted ? model.getFeatures().size() : 0;</span></span>
<span id="L166"><span class="lineNum"> 166</span> <span class="tlaGNC"> 332 : return fitted ? model.getFeatures().size() : 0;</span></span>
<span id="L167"><span class="lineNum"> 167</span> : }</span>
<span id="L168"><span class="lineNum"> 168</span> <span class="tlaGNC"> 475 : int Classifier::getNumberOfEdges() const</span></span>
<span id="L168"><span class="lineNum"> 168</span> <span class="tlaGNC"> 332 : int Classifier::getNumberOfEdges() const</span></span>
<span id="L169"><span class="lineNum"> 169</span> : {</span>
<span id="L170"><span class="lineNum"> 170</span> <span class="tlaGNC"> 475 : return fitted ? model.getNumEdges() : 0;</span></span>
<span id="L170"><span class="lineNum"> 170</span> <span class="tlaGNC"> 332 : return fitted ? model.getNumEdges() : 0;</span></span>
<span id="L171"><span class="lineNum"> 171</span> : }</span>
<span id="L172"><span class="lineNum"> 172</span> <span class="tlaGNC"> 66 : int Classifier::getNumberOfStates() const</span></span>
<span id="L172"><span class="lineNum"> 172</span> <span class="tlaGNC"> 24 : int Classifier::getNumberOfStates() const</span></span>
<span id="L173"><span class="lineNum"> 173</span> : {</span>
<span id="L174"><span class="lineNum"> 174</span> <span class="tlaGNC"> 66 : return fitted ? model.getStates() : 0;</span></span>
<span id="L174"><span class="lineNum"> 174</span> <span class="tlaGNC"> 24 : return fitted ? model.getStates() : 0;</span></span>
<span id="L175"><span class="lineNum"> 175</span> : }</span>
<span id="L176"><span class="lineNum"> 176</span> <span class="tlaGNC"> 877 : int Classifier::getClassNumStates() const</span></span>
<span id="L176"><span class="lineNum"> 176</span> <span class="tlaGNC"> 348 : int Classifier::getClassNumStates() const</span></span>
<span id="L177"><span class="lineNum"> 177</span> : {</span>
<span id="L178"><span class="lineNum"> 178</span> <span class="tlaGNC"> 877 : return fitted ? model.getClassNumStates() : 0;</span></span>
<span id="L178"><span class="lineNum"> 178</span> <span class="tlaGNC"> 348 : return fitted ? model.getClassNumStates() : 0;</span></span>
<span id="L179"><span class="lineNum"> 179</span> : }</span>
<span id="L180"><span class="lineNum"> 180</span> <span class="tlaGNC"> 11 : std::vector&lt;std::string&gt; Classifier::topological_order()</span></span>
<span id="L180"><span class="lineNum"> 180</span> <span class="tlaGNC"> 4 : std::vector&lt;std::string&gt; Classifier::topological_order()</span></span>
<span id="L181"><span class="lineNum"> 181</span> : {</span>
<span id="L182"><span class="lineNum"> 182</span> <span class="tlaGNC"> 11 : return model.topological_sort();</span></span>
<span id="L182"><span class="lineNum"> 182</span> <span class="tlaGNC"> 4 : return model.topological_sort();</span></span>
<span id="L183"><span class="lineNum"> 183</span> : }</span>
<span id="L184"><span class="lineNum"> 184</span> <span class="tlaGNC"> 11 : std::string Classifier::dump_cpt() const</span></span>
<span id="L184"><span class="lineNum"> 184</span> <span class="tlaGNC"> 4 : std::string Classifier::dump_cpt() const</span></span>
<span id="L185"><span class="lineNum"> 185</span> : {</span>
<span id="L186"><span class="lineNum"> 186</span> <span class="tlaGNC"> 11 : return model.dump_cpt();</span></span>
<span id="L186"><span class="lineNum"> 186</span> <span class="tlaGNC"> 4 : return model.dump_cpt();</span></span>
<span id="L187"><span class="lineNum"> 187</span> : }</span>
<span id="L188"><span class="lineNum"> 188</span> <span class="tlaGNC"> 231 : void Classifier::setHyperparameters(const nlohmann::json&amp; hyperparameters)</span></span>
<span id="L188"><span class="lineNum"> 188</span> <span class="tlaGNC"> 92 : void Classifier::setHyperparameters(const nlohmann::json&amp; hyperparameters)</span></span>
<span id="L189"><span class="lineNum"> 189</span> : {</span>
<span id="L190"><span class="lineNum"> 190</span> <span class="tlaGNC"> 231 : if (!hyperparameters.empty()) {</span></span>
<span id="L191"><span class="lineNum"> 191</span> <span class="tlaGNC"> 22 : throw std::invalid_argument(&quot;Invalid hyperparameters&quot; + hyperparameters.dump());</span></span>
<span id="L190"><span class="lineNum"> 190</span> <span class="tlaGNC"> 92 : if (!hyperparameters.empty()) {</span></span>
<span id="L191"><span class="lineNum"> 191</span> <span class="tlaGNC"> 8 : throw std::invalid_argument(&quot;Invalid hyperparameters&quot; + hyperparameters.dump());</span></span>
<span id="L192"><span class="lineNum"> 192</span> : }</span>
<span id="L193"><span class="lineNum"> 193</span> <span class="tlaGNC"> 209 : }</span></span>
<span id="L193"><span class="lineNum"> 193</span> <span class="tlaGNC"> 84 : }</span></span>
<span id="L194"><span class="lineNum"> 194</span> : }</span>
</pre>
</td>

View File

@@ -0,0 +1,69 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.cc</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="Classifier.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="Classifier.cc.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="Classifier.cc.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="Classifier.cc.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="Classifier.cc.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="Classifier.cc.gcov.html#L21" target="source" alt="overview">
<area shape="rect" coords="0,36,79,39" href="Classifier.cc.gcov.html#L25" target="source" alt="overview">
<area shape="rect" coords="0,40,79,43" href="Classifier.cc.gcov.html#L29" target="source" alt="overview">
<area shape="rect" coords="0,44,79,47" href="Classifier.cc.gcov.html#L33" target="source" alt="overview">
<area shape="rect" coords="0,48,79,51" href="Classifier.cc.gcov.html#L37" target="source" alt="overview">
<area shape="rect" coords="0,52,79,55" href="Classifier.cc.gcov.html#L41" target="source" alt="overview">
<area shape="rect" coords="0,56,79,59" href="Classifier.cc.gcov.html#L45" target="source" alt="overview">
<area shape="rect" coords="0,60,79,63" href="Classifier.cc.gcov.html#L49" target="source" alt="overview">
<area shape="rect" coords="0,64,79,67" href="Classifier.cc.gcov.html#L53" target="source" alt="overview">
<area shape="rect" coords="0,68,79,71" href="Classifier.cc.gcov.html#L57" target="source" alt="overview">
<area shape="rect" coords="0,72,79,75" href="Classifier.cc.gcov.html#L61" target="source" alt="overview">
<area shape="rect" coords="0,76,79,79" href="Classifier.cc.gcov.html#L65" target="source" alt="overview">
<area shape="rect" coords="0,80,79,83" href="Classifier.cc.gcov.html#L69" target="source" alt="overview">
<area shape="rect" coords="0,84,79,87" href="Classifier.cc.gcov.html#L73" target="source" alt="overview">
<area shape="rect" coords="0,88,79,91" href="Classifier.cc.gcov.html#L77" target="source" alt="overview">
<area shape="rect" coords="0,92,79,95" href="Classifier.cc.gcov.html#L81" target="source" alt="overview">
<area shape="rect" coords="0,96,79,99" href="Classifier.cc.gcov.html#L85" target="source" alt="overview">
<area shape="rect" coords="0,100,79,103" href="Classifier.cc.gcov.html#L89" target="source" alt="overview">
<area shape="rect" coords="0,104,79,107" href="Classifier.cc.gcov.html#L93" target="source" alt="overview">
<area shape="rect" coords="0,108,79,111" href="Classifier.cc.gcov.html#L97" target="source" alt="overview">
<area shape="rect" coords="0,112,79,115" href="Classifier.cc.gcov.html#L101" target="source" alt="overview">
<area shape="rect" coords="0,116,79,119" href="Classifier.cc.gcov.html#L105" target="source" alt="overview">
<area shape="rect" coords="0,120,79,123" href="Classifier.cc.gcov.html#L109" target="source" alt="overview">
<area shape="rect" coords="0,124,79,127" href="Classifier.cc.gcov.html#L113" target="source" alt="overview">
<area shape="rect" coords="0,128,79,131" href="Classifier.cc.gcov.html#L117" target="source" alt="overview">
<area shape="rect" coords="0,132,79,135" href="Classifier.cc.gcov.html#L121" target="source" alt="overview">
<area shape="rect" coords="0,136,79,139" href="Classifier.cc.gcov.html#L125" target="source" alt="overview">
<area shape="rect" coords="0,140,79,143" href="Classifier.cc.gcov.html#L129" target="source" alt="overview">
<area shape="rect" coords="0,144,79,147" href="Classifier.cc.gcov.html#L133" target="source" alt="overview">
<area shape="rect" coords="0,148,79,151" href="Classifier.cc.gcov.html#L137" target="source" alt="overview">
<area shape="rect" coords="0,152,79,155" href="Classifier.cc.gcov.html#L141" target="source" alt="overview">
<area shape="rect" coords="0,156,79,159" href="Classifier.cc.gcov.html#L145" target="source" alt="overview">
<area shape="rect" coords="0,160,79,163" href="Classifier.cc.gcov.html#L149" target="source" alt="overview">
<area shape="rect" coords="0,164,79,167" href="Classifier.cc.gcov.html#L153" target="source" alt="overview">
<area shape="rect" coords="0,168,79,171" href="Classifier.cc.gcov.html#L157" target="source" alt="overview">
<area shape="rect" coords="0,172,79,175" href="Classifier.cc.gcov.html#L161" target="source" alt="overview">
<area shape="rect" coords="0,176,79,179" href="Classifier.cc.gcov.html#L165" target="source" alt="overview">
<area shape="rect" coords="0,180,79,183" href="Classifier.cc.gcov.html#L169" target="source" alt="overview">
<area shape="rect" coords="0,184,79,187" href="Classifier.cc.gcov.html#L173" target="source" alt="overview">
<area shape="rect" coords="0,188,79,191" href="Classifier.cc.gcov.html#L177" target="source" alt="overview">
<area shape="rect" coords="0,192,79,195" href="Classifier.cc.gcov.html#L181" target="source" alt="overview">
</map>
<center>
<a href="Classifier.cc.gcov.html#top" target="source">Top</a><br><br>
<img src="Classifier.cc.gcov.png" width=80 height=193 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 852 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Classifier.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">80.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,44 +71,30 @@
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">_ZN8bayesnet10Classifier10getVersionB5cxx11Ev</a></td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">_ZNK8bayesnet10Classifier8getNotesB5cxx11Ev</a></td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">_ZNK8bayesnet10Classifier9getStatusEv</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">bayesnet::Classifier::getVersion[abi:cxx11]()</a></td>
<td class="coverFnHi">32</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">bayesnet::Classifier::getNotes[abi:cxx11]() const</a></td>
<td class="coverFnHi">241</td>
<td class="coverFnHi">80</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">bayesnet::Classifier::getStatus() const</a></td>
<td class="coverFnAliasLo">0</td>
<td class="coverFnHi">128</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD2Ev</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">bayesnet::Classifier::~Classifier()</a></td>
<td class="coverFnAliasHi">241</td>
<td class="coverFnHi">1680</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Classifier.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (<a href="Classifier.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">80.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,46 +71,32 @@
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">_ZN8bayesnet10Classifier10getVersionB5cxx11Ev</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">bayesnet::Classifier::getNotes[abi:cxx11]() const</a></td>
<td class="coverFnHi">8</td>
<td class="coverFnHi">80</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">bayesnet::Classifier::getStatus() const</a></td>
<td class="coverFnHi">241</td>
<td class="coverFnHi">128</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD0Ev</a></td>
<td class="coverFnAliasLo">0</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Classifier.h.gcov.html#L16">_ZN8bayesnet10ClassifierD2Ev</a></td>
<td class="coverFnAliasHi">241</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L36">_ZNK8bayesnet10Classifier8getNotesB5cxx11Ev</a></td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L30">_ZNK8bayesnet10Classifier9getStatusEv</a></td>
<td class="coverFn"><a href="Classifier.h.gcov.html#L31">bayesnet::Classifier::getVersion[abi:cxx11]()</a></td>
<td class="coverFnHi">32</td>
</tr>
<tr>
<td class="coverFn"><a href="Classifier.h.gcov.html#L16">bayesnet::Classifier::~Classifier()</a></td>
<td class="coverFnHi">1680</td>
</tr>
</table>
<br>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="Classifier.h.gcov.overview.html" name="overview">
<frame src="Classifier.h.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Classifier.h</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (source / <a href="Classifier.h.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Classifier.h<span style="font-size: 80%;"> (source / <a href="Classifier.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">80.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -77,7 +85,7 @@
<span id="L15"><span class="lineNum"> 15</span> : class Classifier : public BaseClassifier {</span>
<span id="L16"><span class="lineNum"> 16</span> : public:</span>
<span id="L17"><span class="lineNum"> 17</span> : Classifier(Network model);</span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC tlaBgGNC"> 241 : virtual ~Classifier() = default;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC tlaBgGNC"> 1680 : virtual ~Classifier() = default;</span></span>
<span id="L19"><span class="lineNum"> 19</span> : Classifier&amp; fit(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L20"><span class="lineNum"> 20</span> : Classifier&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L21"><span class="lineNum"> 21</span> : Classifier&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, std::map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
@@ -91,13 +99,13 @@
<span id="L29"><span class="lineNum"> 29</span> : std::vector&lt;int&gt; predict(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X) override;</span>
<span id="L30"><span class="lineNum"> 30</span> : torch::Tensor predict_proba(torch::Tensor&amp; X) override;</span>
<span id="L31"><span class="lineNum"> 31</span> : std::vector&lt;std::vector&lt;double&gt;&gt; predict_proba(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X) override;</span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 32 : status_t getStatus() const override { return status; }</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 24 : std::string getVersion() override { return { project_version.begin(), project_version.end() }; };</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 128 : status_t getStatus() const override { return status; }</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 96 : std::string getVersion() override { return { project_version.begin(), project_version.end() }; };</span></span>
<span id="L34"><span class="lineNum"> 34</span> : float score(torch::Tensor&amp; X, torch::Tensor&amp; y) override;</span>
<span id="L35"><span class="lineNum"> 35</span> : float score(std::vector&lt;std::vector&lt;int&gt;&gt;&amp; X, std::vector&lt;int&gt;&amp; y) override;</span>
<span id="L36"><span class="lineNum"> 36</span> : std::vector&lt;std::string&gt; show() const override;</span>
<span id="L37"><span class="lineNum"> 37</span> : std::vector&lt;std::string&gt; topological_order() override;</span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 12 : std::vector&lt;std::string&gt; getNotes() const override { return notes; }</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 80 : std::vector&lt;std::string&gt; getNotes() const override { return notes; }</span></span>
<span id="L39"><span class="lineNum"> 39</span> : std::string dump_cpt() const override;</span>
<span id="L40"><span class="lineNum"> 40</span> : void setHyperparameters(const nlohmann::json&amp; hyperparameters) override; //For classifiers that don't have hyperparameters</span>
<span id="L41"><span class="lineNum"> 41</span> : protected:</span>

View File

@@ -0,0 +1,37 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Classifier.h</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="Classifier.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="Classifier.h.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="Classifier.h.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="Classifier.h.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="Classifier.h.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="Classifier.h.gcov.html#L21" target="source" alt="overview">
<area shape="rect" coords="0,36,79,39" href="Classifier.h.gcov.html#L25" target="source" alt="overview">
<area shape="rect" coords="0,40,79,43" href="Classifier.h.gcov.html#L29" target="source" alt="overview">
<area shape="rect" coords="0,44,79,47" href="Classifier.h.gcov.html#L33" target="source" alt="overview">
<area shape="rect" coords="0,48,79,51" href="Classifier.h.gcov.html#L37" target="source" alt="overview">
<area shape="rect" coords="0,52,79,55" href="Classifier.h.gcov.html#L41" target="source" alt="overview">
<area shape="rect" coords="0,56,79,59" href="Classifier.h.gcov.html#L45" target="source" alt="overview">
<area shape="rect" coords="0,60,79,63" href="Classifier.h.gcov.html#L49" target="source" alt="overview">
<area shape="rect" coords="0,64,79,67" href="Classifier.h.gcov.html#L53" target="source" alt="overview">
</map>
<center>
<a href="Classifier.h.gcov.html#top" target="source">Top</a><br><br>
<img src="Classifier.h.gcov.png" width=80 height=64 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 453 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDB.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">96.3&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">5</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,37 +71,37 @@
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">_ZNK8bayesnet3KDB5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">bayesnet::KDB::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">22</td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">_ZN8bayesnet3KDB18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">bayesnet::KDB::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json&lt;std::map, std::vector, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector&lt;unsigned char, std::allocator&lt;unsigned char&gt; &gt;, void&gt; const&amp;)</a></td>
<td class="coverFnHi">33</td>
<td class="coverFnHi">12</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">_ZN8bayesnet3KDB10buildModelERKN2at6TensorE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">bayesnet::KDB::buildModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">143</td>
<td class="coverFnHi">52</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">_ZN8bayesnet3KDBC2Eif</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">bayesnet::KDB::KDB(int, float)</a></td>
<td class="coverFnHi">407</td>
<td class="coverFnHi">148</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">_ZN8bayesnet3KDB11add_m_edgesEiRSt6vectorIiSaIiEERN2at6TensorE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">bayesnet::KDB::add_m_edges(int, std::vector&lt;int, std::allocator&lt;int&gt; &gt;&amp;, at::Tensor&amp;)</a></td>
<td class="coverFnHi">946</td>
<td class="coverFnHi">344</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDB.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (<a href="KDB.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">96.3&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">5</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,37 +71,37 @@
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">_ZN8bayesnet3KDB10buildModelERKN2at6TensorE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">bayesnet::KDB::KDB(int, float)</a></td>
<td class="coverFnHi">143</td>
<td class="coverFnHi">148</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">_ZN8bayesnet3KDB11add_m_edgesEiRSt6vectorIiSaIiEERN2at6TensorE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L77">bayesnet::KDB::add_m_edges(int, std::vector&lt;int, std::allocator&lt;int&gt; &gt;&amp;, at::Tensor&amp;)</a></td>
<td class="coverFnHi">946</td>
<td class="coverFnHi">344</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">_ZN8bayesnet3KDB18setHyperparametersERKN8nlohmann16json_abi_v3_11_310basic_jsonISt3mapSt6vectorNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEblmdSaNS2_14adl_serializerES5_IhSaIhEEvEE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L26">bayesnet::KDB::buildModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">33</td>
<td class="coverFnHi">52</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L8">_ZN8bayesnet3KDBC2Eif</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">bayesnet::KDB::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">407</td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="KDB.cc.gcov.html#L101">_ZNK8bayesnet3KDB5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="KDB.cc.gcov.html#L13">bayesnet::KDB::setHyperparameters(nlohmann::json_abi_v3_11_3::basic_json&lt;std::map, std::vector, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_11_3::adl_serializer, std::vector&lt;unsigned char, std::allocator&lt;unsigned char&gt; &gt;, void&gt; const&amp;)</a></td>
<td class="coverFnHi">22</td>
<td class="coverFnHi">12</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="KDB.cc.gcov.overview.html" name="overview">
<frame src="KDB.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDB.cc</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (source / <a href="KDB.cc.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.cc<span style="font-size: 80%;"> (source / <a href="KDB.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">96.3&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">5</td>
<td class="headerCovTableEntry">5</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -69,25 +77,25 @@
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;KDB.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 407 : KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)</span></span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 148 : KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)</span></span>
<span id="L11"><span class="lineNum"> 11</span> : {</span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 1221 : validHyperparameters = { &quot;k&quot;, &quot;theta&quot; };</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 444 : validHyperparameters = { &quot;k&quot;, &quot;theta&quot; };</span></span>
<span id="L13"><span class="lineNum"> 13</span> : </span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 1221 : }</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 33 : void KDB::setHyperparameters(const nlohmann::json&amp; hyperparameters_)</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 444 : }</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 12 : void KDB::setHyperparameters(const nlohmann::json&amp; hyperparameters_)</span></span>
<span id="L16"><span class="lineNum"> 16</span> : {</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 33 : auto hyperparameters = hyperparameters_;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 33 : if (hyperparameters.contains(&quot;k&quot;)) {</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 11 : k = hyperparameters[&quot;k&quot;];</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 11 : hyperparameters.erase(&quot;k&quot;);</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 12 : auto hyperparameters = hyperparameters_;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 12 : if (hyperparameters.contains(&quot;k&quot;)) {</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 4 : k = hyperparameters[&quot;k&quot;];</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 4 : hyperparameters.erase(&quot;k&quot;);</span></span>
<span id="L21"><span class="lineNum"> 21</span> : }</span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 33 : if (hyperparameters.contains(&quot;theta&quot;)) {</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 11 : theta = hyperparameters[&quot;theta&quot;];</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 11 : hyperparameters.erase(&quot;theta&quot;);</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 12 : if (hyperparameters.contains(&quot;theta&quot;)) {</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 4 : theta = hyperparameters[&quot;theta&quot;];</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 4 : hyperparameters.erase(&quot;theta&quot;);</span></span>
<span id="L25"><span class="lineNum"> 25</span> : }</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 33 : Classifier::setHyperparameters(hyperparameters);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 33 : }</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 143 : void KDB::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 12 : Classifier::setHyperparameters(hyperparameters);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 12 : }</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 52 : void KDB::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L29"><span class="lineNum"> 29</span> : {</span>
<span id="L30"><span class="lineNum"> 30</span> : /*</span>
<span id="L31"><span class="lineNum"> 31</span> : 1. For each feature Xi, compute mutual information, I(X;C),</span>
@@ -110,66 +118,66 @@
<span id="L48"><span class="lineNum"> 48</span> : */</span>
<span id="L49"><span class="lineNum"> 49</span> : // 1. For each feature Xi, compute mutual information, I(X;C),</span>
<span id="L50"><span class="lineNum"> 50</span> : // where C is the class.</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 143 : addNodes();</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 429 : const torch::Tensor&amp; y = dataset.index({ -1, &quot;...&quot; });</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 143 : std::vector&lt;double&gt; mi;</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 1089 : for (auto i = 0; i &lt; features.size(); i++) {</span></span>
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 2838 : torch::Tensor firstFeature = dataset.index({ i, &quot;...&quot; });</span></span>
<span id="L56"><span class="lineNum"> 56</span> <span class="tlaGNC"> 946 : mi.push_back(metrics.mutualInformation(firstFeature, y, weights));</span></span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 946 : }</span></span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 52 : addNodes();</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 156 : const torch::Tensor&amp; y = dataset.index({ -1, &quot;...&quot; });</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 52 : std::vector&lt;double&gt; mi;</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 396 : for (auto i = 0; i &lt; features.size(); i++) {</span></span>
<span id="L55"><span class="lineNum"> 55</span> <span class="tlaGNC"> 1032 : torch::Tensor firstFeature = dataset.index({ i, &quot;...&quot; });</span></span>
<span id="L56"><span class="lineNum"> 56</span> <span class="tlaGNC"> 344 : mi.push_back(metrics.mutualInformation(firstFeature, y, weights));</span></span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 344 : }</span></span>
<span id="L58"><span class="lineNum"> 58</span> : // 2. Compute class conditional mutual information I(Xi;XjIC), f or each</span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 143 : auto conditionalEdgeWeights = metrics.conditionalEdge(weights);</span></span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 52 : auto conditionalEdgeWeights = metrics.conditionalEdge(weights);</span></span>
<span id="L60"><span class="lineNum"> 60</span> : // 3. Let the used variable list, S, be empty.</span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 143 : std::vector&lt;int&gt; S;</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 52 : std::vector&lt;int&gt; S;</span></span>
<span id="L62"><span class="lineNum"> 62</span> : // 4. Let the DAG network being constructed, BN, begin with a single</span>
<span id="L63"><span class="lineNum"> 63</span> : // class node, C.</span>
<span id="L64"><span class="lineNum"> 64</span> : // 5. Repeat until S includes all domain features</span>
<span id="L65"><span class="lineNum"> 65</span> : // 5.1. Select feature Xmax which is not in S and has the largest value</span>
<span id="L66"><span class="lineNum"> 66</span> : // I(Xmax;C).</span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 143 : auto order = argsort(mi);</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 1089 : for (auto idx : order) {</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 52 : auto order = argsort(mi);</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 396 : for (auto idx : order) {</span></span>
<span id="L69"><span class="lineNum"> 69</span> : // 5.2. Add a node to BN representing Xmax.</span>
<span id="L70"><span class="lineNum"> 70</span> : // 5.3. Add an arc from C to Xmax in BN.</span>
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 946 : model.addEdge(className, features[idx]);</span></span>
<span id="L71"><span class="lineNum"> 71</span> <span class="tlaGNC"> 344 : model.addEdge(className, features[idx]);</span></span>
<span id="L72"><span class="lineNum"> 72</span> : // 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with</span>
<span id="L73"><span class="lineNum"> 73</span> : // the highest value for I(Xmax;X,jC).</span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 946 : add_m_edges(idx, S, conditionalEdgeWeights);</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 344 : add_m_edges(idx, S, conditionalEdgeWeights);</span></span>
<span id="L75"><span class="lineNum"> 75</span> : // 5.5. Add Xmax to S.</span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 946 : S.push_back(idx);</span></span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 344 : S.push_back(idx);</span></span>
<span id="L77"><span class="lineNum"> 77</span> : }</span>
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 1232 : }</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 946 : void KDB::add_m_edges(int idx, std::vector&lt;int&gt;&amp; S, torch::Tensor&amp; weights)</span></span>
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 448 : }</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 344 : void KDB::add_m_edges(int idx, std::vector&lt;int&gt;&amp; S, torch::Tensor&amp; weights)</span></span>
<span id="L80"><span class="lineNum"> 80</span> : {</span>
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 946 : auto n_edges = std::min(k, static_cast&lt;int&gt;(S.size()));</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 946 : auto cond_w = clone(weights);</span></span>
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 946 : bool exit_cond = k == 0;</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 946 : int num = 0;</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 2761 : while (!exit_cond) {</span></span>
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 7260 : auto max_minfo = argmax(cond_w.index({ idx, &quot;...&quot; })).item&lt;int&gt;();</span></span>
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 1815 : auto belongs = find(S.begin(), S.end(), max_minfo) != S.end();</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 4851 : if (belongs &amp;&amp; cond_w.index({ idx, max_minfo }).item&lt;float&gt;() &gt; theta) {</span></span>
<span id="L81"><span class="lineNum"> 81</span> <span class="tlaGNC"> 344 : auto n_edges = std::min(k, static_cast&lt;int&gt;(S.size()));</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 344 : auto cond_w = clone(weights);</span></span>
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 344 : bool exit_cond = k == 0;</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 344 : int num = 0;</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 1004 : while (!exit_cond) {</span></span>
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 2640 : auto max_minfo = argmax(cond_w.index({ idx, &quot;...&quot; })).item&lt;int&gt;();</span></span>
<span id="L87"><span class="lineNum"> 87</span> <span class="tlaGNC"> 660 : auto belongs = find(S.begin(), S.end(), max_minfo) != S.end();</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 1764 : if (belongs &amp;&amp; cond_w.index({ idx, max_minfo }).item&lt;float&gt;() &gt; theta) {</span></span>
<span id="L89"><span class="lineNum"> 89</span> : try {</span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 880 : model.addEdge(features[max_minfo], features[idx]);</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 880 : num++;</span></span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 320 : model.addEdge(features[max_minfo], features[idx]);</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 320 : num++;</span></span>
<span id="L92"><span class="lineNum"> 92</span> : }</span>
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaUNC tlaBgUNC"> 0 : catch (const std::invalid_argument&amp; e) {</span></span>
<span id="L94"><span class="lineNum"> 94</span> : // Loops are not allowed</span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaUNC"> 0 : }</span></span>
<span id="L96"><span class="lineNum"> 96</span> : }</span>
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC tlaBgGNC"> 7260 : cond_w.index_put_({ idx, max_minfo }, -1);</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 5445 : auto candidates_mask = cond_w.index({ idx, &quot;...&quot; }).gt(theta);</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 1815 : auto candidates = candidates_mask.nonzero();</span></span>
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 1815 : exit_cond = num == n_edges || candidates.size(0) == 0;</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 1815 : }</span></span>
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 7403 : }</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 22 : std::vector&lt;std::string&gt; KDB::graph(const std::string&amp; title) const</span></span>
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC tlaBgGNC"> 2640 : cond_w.index_put_({ idx, max_minfo }, -1);</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 1980 : auto candidates_mask = cond_w.index({ idx, &quot;...&quot; }).gt(theta);</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 660 : auto candidates = candidates_mask.nonzero();</span></span>
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 660 : exit_cond = num == n_edges || candidates.size(0) == 0;</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 660 : }</span></span>
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 2692 : }</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 8 : std::vector&lt;std::string&gt; KDB::graph(const std::string&amp; title) const</span></span>
<span id="L104"><span class="lineNum"> 104</span> : {</span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 22 : std::string header{ title };</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 22 : if (title == &quot;KDB&quot;) {</span></span>
<span id="L107"><span class="lineNum"> 107</span> <span class="tlaGNC"> 22 : header += &quot; (k=&quot; + std::to_string(k) + &quot;, theta=&quot; + std::to_string(theta) + &quot;)&quot;;</span></span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 8 : std::string header{ title };</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 8 : if (title == &quot;KDB&quot;) {</span></span>
<span id="L107"><span class="lineNum"> 107</span> <span class="tlaGNC"> 8 : header += &quot; (k=&quot; + std::to_string(k) + &quot;, theta=&quot; + std::to_string(theta) + &quot;)&quot;;</span></span>
<span id="L108"><span class="lineNum"> 108</span> : }</span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 44 : return model.graph(header);</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 22 : }</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 16 : return model.graph(header);</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 8 : }</span></span>
<span id="L111"><span class="lineNum"> 111</span> : }</span>
</pre>
</td>

View File

@@ -0,0 +1,48 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.cc</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="KDB.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="KDB.cc.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="KDB.cc.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="KDB.cc.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="KDB.cc.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="KDB.cc.gcov.html#L21" target="source" alt="overview">
<area shape="rect" coords="0,36,79,39" href="KDB.cc.gcov.html#L25" target="source" alt="overview">
<area shape="rect" coords="0,40,79,43" href="KDB.cc.gcov.html#L29" target="source" alt="overview">
<area shape="rect" coords="0,44,79,47" href="KDB.cc.gcov.html#L33" target="source" alt="overview">
<area shape="rect" coords="0,48,79,51" href="KDB.cc.gcov.html#L37" target="source" alt="overview">
<area shape="rect" coords="0,52,79,55" href="KDB.cc.gcov.html#L41" target="source" alt="overview">
<area shape="rect" coords="0,56,79,59" href="KDB.cc.gcov.html#L45" target="source" alt="overview">
<area shape="rect" coords="0,60,79,63" href="KDB.cc.gcov.html#L49" target="source" alt="overview">
<area shape="rect" coords="0,64,79,67" href="KDB.cc.gcov.html#L53" target="source" alt="overview">
<area shape="rect" coords="0,68,79,71" href="KDB.cc.gcov.html#L57" target="source" alt="overview">
<area shape="rect" coords="0,72,79,75" href="KDB.cc.gcov.html#L61" target="source" alt="overview">
<area shape="rect" coords="0,76,79,79" href="KDB.cc.gcov.html#L65" target="source" alt="overview">
<area shape="rect" coords="0,80,79,83" href="KDB.cc.gcov.html#L69" target="source" alt="overview">
<area shape="rect" coords="0,84,79,87" href="KDB.cc.gcov.html#L73" target="source" alt="overview">
<area shape="rect" coords="0,88,79,91" href="KDB.cc.gcov.html#L77" target="source" alt="overview">
<area shape="rect" coords="0,92,79,95" href="KDB.cc.gcov.html#L81" target="source" alt="overview">
<area shape="rect" coords="0,96,79,99" href="KDB.cc.gcov.html#L85" target="source" alt="overview">
<area shape="rect" coords="0,100,79,103" href="KDB.cc.gcov.html#L89" target="source" alt="overview">
<area shape="rect" coords="0,104,79,107" href="KDB.cc.gcov.html#L93" target="source" alt="overview">
<area shape="rect" coords="0,108,79,111" href="KDB.cc.gcov.html#L97" target="source" alt="overview">
</map>
<center>
<a href="KDB.cc.gcov.html#top" target="source">Top</a><br><br>
<img src="KDB.cc.gcov.png" width=80 height=110 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 814 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDB.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFn"><a href="KDB.h.gcov.html#L20">bayesnet::KDB::~KDB()</a></td>
<td class="coverFnHi">11</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFnAliasHi">2</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD2Ev</a></td>
<td class="coverFnAliasHi">9</td>
<td class="coverFnHi">44</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDB.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (<a href="KDB.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFn"><a href="KDB.h.gcov.html#L20">bayesnet::KDB::~KDB()</a></td>
<td class="coverFnHi">11</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD0Ev</a></td>
<td class="coverFnAliasHi">2</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDB.h.gcov.html#L20">_ZN8bayesnet3KDBD2Ev</a></td>
<td class="coverFnAliasHi">9</td>
<td class="coverFnHi">44</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="KDB.h.gcov.overview.html" name="overview">
<frame src="KDB.h.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDB.h</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (source / <a href="KDB.h.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDB.h<span style="font-size: 80%;"> (source / <a href="KDB.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -81,7 +89,7 @@
<span id="L19"><span class="lineNum"> 19</span> : void buildModel(const torch::Tensor&amp; weights) override;</span>
<span id="L20"><span class="lineNum"> 20</span> : public:</span>
<span id="L21"><span class="lineNum"> 21</span> : explicit KDB(int k, float theta = 0.03);</span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC tlaBgGNC"> 11 : virtual ~KDB() = default;</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC tlaBgGNC"> 44 : virtual ~KDB() = default;</span></span>
<span id="L23"><span class="lineNum"> 23</span> : void setHyperparameters(const nlohmann::json&amp; hyperparameters_) override;</span>
<span id="L24"><span class="lineNum"> 24</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; name = &quot;KDB&quot;) const override;</span>
<span id="L25"><span class="lineNum"> 25</span> : };</span>

View File

@@ -0,0 +1,27 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDB.h</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="KDB.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="KDB.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="KDB.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="KDB.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="KDB.h.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="KDB.h.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="KDB.h.gcov.html#L13" target="source" alt="overview">
</map>
<center>
<a href="KDB.h.gcov.html#top" target="source">Top</a><br><br>
<img src="KDB.h.gcov.png" width=80 height=26 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 279 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDBLd.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,30 +71,30 @@
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">_ZNK8bayesnet5KDBLd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">bayesnet::KDBLd::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">11</td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">_ZN8bayesnet5KDBLd7predictERN2at6TensorE</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">bayesnet::KDBLd::predict(at::Tensor&amp;)</a></td>
<td class="coverFnHi">44</td>
<td class="coverFnHi">16</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">_ZN8bayesnet5KDBLd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">bayesnet::KDBLd::fit(at::Tensor&amp;, at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">55</td>
<td class="coverFnHi">20</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">_ZN8bayesnet5KDBLdC2Ei</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">bayesnet::KDBLd::KDBLd(int)</a></td>
<td class="coverFnHi">187</td>
<td class="coverFnHi">68</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDBLd.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (<a href="KDBLd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,30 +71,30 @@
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">_ZN8bayesnet5KDBLd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">bayesnet::KDBLd::KDBLd(int)</a></td>
<td class="coverFnHi">55</td>
<td class="coverFnHi">68</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">_ZN8bayesnet5KDBLd7predictERN2at6TensorE</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L9">bayesnet::KDBLd::fit(at::Tensor&amp;, at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">44</td>
<td class="coverFnHi">20</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L8">_ZN8bayesnet5KDBLdC2Ei</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">bayesnet::KDBLd::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">187</td>
<td class="coverFnHi">4</td>
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L29">_ZNK8bayesnet5KDBLd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="KDBLd.cc.gcov.html#L24">bayesnet::KDBLd::predict(at::Tensor&amp;)</a></td>
<td class="coverFnHi">11</td>
<td class="coverFnHi">16</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="KDBLd.cc.gcov.overview.html" name="overview">
<frame src="KDBLd.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDBLd.cc</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (source / <a href="KDBLd.cc.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.cc<span style="font-size: 80%;"> (source / <a href="KDBLd.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">4</td>
<td class="headerCovTableEntry">4</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -69,30 +77,30 @@
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;KDBLd.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 187 : KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 55 : KDBLd&amp; KDBLd::fit(torch::Tensor&amp; X_, torch::Tensor&amp; y_, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 68 : KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 20 : KDBLd&amp; KDBLd::fit(torch::Tensor&amp; X_, torch::Tensor&amp; y_, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L12"><span class="lineNum"> 12</span> : {</span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 55 : checkInput(X_, y_);</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 55 : features = features_;</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 55 : className = className_;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 55 : Xf = X_;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 55 : y = y_;</span></span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 20 : checkInput(X_, y_);</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 20 : features = features_;</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 20 : className = className_;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 20 : Xf = X_;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 20 : y = y_;</span></span>
<span id="L18"><span class="lineNum"> 18</span> : // Fills std::vectors Xv &amp; yv with the data from tensors X_ (discretized) &amp; y</span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 55 : states = fit_local_discretization(y);</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 20 : states = fit_local_discretization(y);</span></span>
<span id="L20"><span class="lineNum"> 20</span> : // We have discretized the input data</span>
<span id="L21"><span class="lineNum"> 21</span> : // 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network</span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 55 : KDB::fit(dataset, features, className, states);</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 55 : states = localDiscretizationProposal(states, model);</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 55 : return *this;</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 20 : KDB::fit(dataset, features, className, states);</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 20 : states = localDiscretizationProposal(states, model);</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 20 : return *this;</span></span>
<span id="L25"><span class="lineNum"> 25</span> : }</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 44 : torch::Tensor KDBLd::predict(torch::Tensor&amp; X)</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 16 : torch::Tensor KDBLd::predict(torch::Tensor&amp; X)</span></span>
<span id="L27"><span class="lineNum"> 27</span> : {</span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 44 : auto Xt = prepareX(X);</span></span>
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 88 : return KDB::predict(Xt);</span></span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 44 : }</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 11 : std::vector&lt;std::string&gt; KDBLd::graph(const std::string&amp; name) const</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 16 : auto Xt = prepareX(X);</span></span>
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 32 : return KDB::predict(Xt);</span></span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 16 : }</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 4 : std::vector&lt;std::string&gt; KDBLd::graph(const std::string&amp; name) const</span></span>
<span id="L32"><span class="lineNum"> 32</span> : {</span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 11 : return KDB::graph(name);</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 4 : return KDB::graph(name);</span></span>
<span id="L34"><span class="lineNum"> 34</span> : }</span>
<span id="L35"><span class="lineNum"> 35</span> : }</span>
</pre>

View File

@@ -0,0 +1,29 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.cc</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="KDBLd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="KDBLd.cc.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="KDBLd.cc.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="KDBLd.cc.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="KDBLd.cc.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="KDBLd.cc.gcov.html#L21" target="source" alt="overview">
</map>
<center>
<a href="KDBLd.cc.gcov.html#top" target="source">Top</a><br><br>
<img src="KDBLd.cc.gcov.png" width=80 height=34 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 333 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDBLd.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">bayesnet::KDBLd::~KDBLd()</a></td>
<td class="coverFnHi">5</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFnAliasHi">2</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD2Ev</a></td>
<td class="coverFnAliasHi">3</td>
<td class="coverFnHi">20</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDBLd.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (<a href="KDBLd.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFn"><a href="KDBLd.h.gcov.html#L15">bayesnet::KDBLd::~KDBLd()</a></td>
<td class="coverFnHi">5</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD0Ev</a></td>
<td class="coverFnAliasHi">2</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="KDBLd.h.gcov.html#L15">_ZN8bayesnet5KDBLdD2Ev</a></td>
<td class="coverFnAliasHi">3</td>
<td class="coverFnHi">20</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="KDBLd.h.gcov.overview.html" name="overview">
<frame src="KDBLd.h.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/KDBLd.h</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (source / <a href="KDBLd.h.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - KDBLd.h<span style="font-size: 80%;"> (source / <a href="KDBLd.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -76,7 +84,7 @@
<span id="L14"><span class="lineNum"> 14</span> : private:</span>
<span id="L15"><span class="lineNum"> 15</span> : public:</span>
<span id="L16"><span class="lineNum"> 16</span> : explicit KDBLd(int k);</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC tlaBgGNC"> 5 : virtual ~KDBLd() = default;</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC tlaBgGNC"> 20 : virtual ~KDBLd() = default;</span></span>
<span id="L18"><span class="lineNum"> 18</span> : KDBLd&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L19"><span class="lineNum"> 19</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; name = &quot;KDB&quot;) const override;</span>
<span id="L20"><span class="lineNum"> 20</span> : torch::Tensor predict(torch::Tensor&amp; X) override;</span>

View File

@@ -0,0 +1,26 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/KDBLd.h</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="KDBLd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="KDBLd.h.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="KDBLd.h.gcov.html#L9" target="source" alt="overview">
</map>
<center>
<a href="KDBLd.h.gcov.html#top" target="source">Top</a><br><br>
<img src="KDBLd.h.gcov.png" width=80 height=23 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 265 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Proposal.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">97.7&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">88.9&nbsp;%</td>
<td class="headerCovTableEntry">9</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">8</td>
<td class="headerCovTableEntry">8</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,72 +71,58 @@
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">_ZN8bayesnet8Proposal8prepareXERN2at6TensorE</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">bayesnet::Proposal::prepareX(at::Tensor&amp;)</a></td>
<td class="coverFnHi">462</td>
<td class="coverFnHi">168</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">bayesnet::Proposal::~Proposal()</a></td>
<td class="coverFnHi">550</td>
<td class="coverFnHi">200</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">bayesnet::Proposal::localDiscretizationProposal(std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt; const&amp;, bayesnet::Network&amp;)</a></td>
<td class="coverFnAliasLo">0</td>
<td class="coverFnHi">212</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD2Ev</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">bayesnet::Proposal::checkInput(at::Tensor const&amp;, at::Tensor const&amp;)</a></td>
<td class="coverFnAliasHi">550</td>
<td class="coverFnHi">228</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">_ZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkE</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">bayesnet::Proposal::fit_local_discretization[abi:cxx11](at::Tensor const&amp;)</a></td>
<td class="coverFnHi">583</td>
<td class="coverFnHi">232</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">_ZN8bayesnet8Proposal10checkInputERKN2at6TensorES4_</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">bayesnet::Proposal::Proposal(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt;&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;&amp;)</a></td>
<td class="coverFnHi">627</td>
<td class="coverFnHi">424</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">_ZN8bayesnet8Proposal24fit_local_discretizationB5cxx11ERKN2at6TensorE</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">auto bayesnet::Proposal::localDiscretizationProposal(std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt; const&amp;, bayesnet::Network&amp;)::{lambda(auto:1 const&amp;)#2}::operator()&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">638</td>
<td class="coverFnHi">1372</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">_ZN8bayesnet8ProposalC2ERN2at6TensorERSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERSA_</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">auto bayesnet::Proposal::localDiscretizationProposal(std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt; const&amp;, bayesnet::Network&amp;)::{lambda(auto:1 const&amp;)#1}::operator()&lt;bayesnet::Node*&gt;(bayesnet::Node* const&amp;) const</a></td>
<td class="coverFnHi">1166</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E0_clIS7_EEDaSO_</a></td>
<td class="coverFnHi">3773</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E_clIPNS_4NodeEEEDaSO_</a></td>
<td class="coverFnHi">7414</td>
<td class="coverFnHi">2696</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Proposal.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (<a href="Proposal.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">97.7&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">88.9&nbsp;%</td>
<td class="headerCovTableEntry">9</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">8</td>
<td class="headerCovTableEntry">8</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,72 +71,58 @@
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">_ZN8bayesnet8Proposal10checkInputERKN2at6TensorES4_</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">auto bayesnet::Proposal::localDiscretizationProposal(std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt; const&amp;, bayesnet::Network&amp;)::{lambda(auto:1 const&amp;)#1}::operator()&lt;bayesnet::Node*&gt;(bayesnet::Node* const&amp;) const</a></td>
<td class="coverFnHi">627</td>
<td class="coverFnHi">2696</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">_ZN8bayesnet8Proposal24fit_local_discretizationB5cxx11ERKN2at6TensorE</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">auto bayesnet::Proposal::localDiscretizationProposal(std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt; const&amp;, bayesnet::Network&amp;)::{lambda(auto:1 const&amp;)#2}::operator()&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">638</td>
<td class="coverFnHi">1372</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">_ZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkE</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">bayesnet::Proposal::Proposal(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt;&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;&amp;)</a></td>
<td class="coverFnHi">583</td>
<td class="coverFnHi">424</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">_ZN8bayesnet8Proposal8prepareXERN2at6TensorE</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L16">bayesnet::Proposal::checkInput(at::Tensor const&amp;, at::Tensor const&amp;)</a></td>
<td class="coverFnHi">462</td>
<td class="coverFnHi">228</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L9">_ZN8bayesnet8ProposalC2ERN2at6TensorERSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERSA_</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L77">bayesnet::Proposal::fit_local_discretization[abi:cxx11](at::Tensor const&amp;)</a></td>
<td class="coverFnHi">1166</td>
<td class="coverFnHi">232</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L25">bayesnet::Proposal::localDiscretizationProposal(std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt; const&amp;, bayesnet::Network&amp;)</a></td>
<td class="coverFnHi">550</td>
<td class="coverFnHi">212</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD0Ev</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L104">bayesnet::Proposal::prepareX(at::Tensor&amp;)</a></td>
<td class="coverFnAliasLo">0</td>
<td class="coverFnHi">168</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="Proposal.cc.gcov.html#L10">_ZN8bayesnet8ProposalD2Ev</a></td>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L10">bayesnet::Proposal::~Proposal()</a></td>
<td class="coverFnAliasHi">550</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L47">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E0_clIS7_EEDaSO_</a></td>
<td class="coverFnHi">3773</td>
</tr>
<tr>
<td class="coverFn"><a href="Proposal.cc.gcov.html#L41">_ZZN8bayesnet8Proposal27localDiscretizationProposalERKSt3mapINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt6vectorIiSaIiEESt4lessIS7_ESaISt4pairIKS7_SA_EEERNS_7NetworkEENKUlRKT_E_clIPNS_4NodeEEEDaSO_</a></td>
<td class="coverFnHi">7414</td>
<td class="coverFnHi">200</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="Proposal.cc.gcov.overview.html" name="overview">
<frame src="Proposal.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/Proposal.cc</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (source / <a href="Proposal.cc.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - Proposal.cc<span style="font-size: 80%;"> (source / <a href="Proposal.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">97.7&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryMed">88.9&nbsp;%</td>
<td class="headerCovTableEntry">9</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">8</td>
<td class="headerCovTableEntry">8</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -70,111 +78,111 @@
<span id="L8"><span class="lineNum"> 8</span> : #include &quot;Proposal.h&quot;</span>
<span id="L9"><span class="lineNum"> 9</span> : </span>
<span id="L10"><span class="lineNum"> 10</span> : namespace bayesnet {</span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 1166 : Proposal::Proposal(torch::Tensor&amp; dataset_, std::vector&lt;std::string&gt;&amp; features_, std::string&amp; className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 550 : Proposal::~Proposal()</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 424 : Proposal::Proposal(torch::Tensor&amp; dataset_, std::vector&lt;std::string&gt;&amp; features_, std::string&amp; className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 200 : Proposal::~Proposal()</span></span>
<span id="L13"><span class="lineNum"> 13</span> : {</span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 5214 : for (auto&amp; [key, value] : discretizers) {</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 4664 : delete value;</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 1896 : for (auto&amp; [key, value] : discretizers) {</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 1696 : delete value;</span></span>
<span id="L16"><span class="lineNum"> 16</span> : }</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 550 : }</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 627 : void Proposal::checkInput(const torch::Tensor&amp; X, const torch::Tensor&amp; y)</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 200 : }</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 228 : void Proposal::checkInput(const torch::Tensor&amp; X, const torch::Tensor&amp; y)</span></span>
<span id="L19"><span class="lineNum"> 19</span> : {</span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 627 : if (!torch::is_floating_point(X)) {</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 228 : if (!torch::is_floating_point(X)) {</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaUNC tlaBgUNC"> 0 : throw std::invalid_argument(&quot;X must be a floating point tensor&quot;);</span></span>
<span id="L22"><span class="lineNum"> 22</span> : }</span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC tlaBgGNC"> 627 : if (torch::is_floating_point(y)) {</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC tlaBgGNC"> 228 : if (torch::is_floating_point(y)) {</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaUNC tlaBgUNC"> 0 : throw std::invalid_argument(&quot;y must be an integer tensor&quot;);</span></span>
<span id="L25"><span class="lineNum"> 25</span> : }</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC tlaBgGNC"> 627 : }</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 583 : map&lt;std::string, std::vector&lt;int&gt;&gt; Proposal::localDiscretizationProposal(const map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; oldStates, Network&amp; model)</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC tlaBgGNC"> 228 : }</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 212 : map&lt;std::string, std::vector&lt;int&gt;&gt; Proposal::localDiscretizationProposal(const map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; oldStates, Network&amp; model)</span></span>
<span id="L28"><span class="lineNum"> 28</span> : {</span>
<span id="L29"><span class="lineNum"> 29</span> : // order of local discretization is important. no good 0, 1, 2...</span>
<span id="L30"><span class="lineNum"> 30</span> : // although we rediscretize features after the local discretization of every feature</span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 583 : auto order = model.topological_sort();</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 583 : auto&amp; nodes = model.getNodes();</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 583 : map&lt;std::string, std::vector&lt;int&gt;&gt; states = oldStates;</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 583 : std::vector&lt;int&gt; indicesToReDiscretize;</span></span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 583 : bool upgrade = false; // Flag to check if we need to upgrade the model</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 4884 : for (auto feature : order) {</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 4301 : auto nodeParents = nodes[feature]-&gt;getParents();</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 4301 : if (nodeParents.size() &lt; 2) continue; // Only has class as parent</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 3641 : upgrade = true;</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 3641 : int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 3641 : indicesToReDiscretize.push_back(index); // We need to re-discretize this feature</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 3641 : std::vector&lt;std::string&gt; parents;</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 11055 : transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto&amp; p) { return p-&gt;getName(); });</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 212 : auto order = model.topological_sort();</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 212 : auto&amp; nodes = model.getNodes();</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 212 : map&lt;std::string, std::vector&lt;int&gt;&gt; states = oldStates;</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 212 : std::vector&lt;int&gt; indicesToReDiscretize;</span></span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 212 : bool upgrade = false; // Flag to check if we need to upgrade the model</span></span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 1776 : for (auto feature : order) {</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 1564 : auto nodeParents = nodes[feature]-&gt;getParents();</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 1564 : if (nodeParents.size() &lt; 2) continue; // Only has class as parent</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 1324 : upgrade = true;</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 1324 : int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 1324 : indicesToReDiscretize.push_back(index); // We need to re-discretize this feature</span></span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 1324 : std::vector&lt;std::string&gt; parents;</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 4020 : transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto&amp; p) { return p-&gt;getName(); });</span></span>
<span id="L44"><span class="lineNum"> 44</span> : // Remove class as parent as it will be added later</span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 3641 : parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());</span></span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 1324 : parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());</span></span>
<span id="L46"><span class="lineNum"> 46</span> : // Get the indices of the parents</span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 3641 : std::vector&lt;int&gt; indices;</span></span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 3641 : indices.push_back(-1); // Add class index</span></span>
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 7414 : transform(parents.begin(), parents.end(), back_inserter(indices), [&amp;](const auto&amp; p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });</span></span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 1324 : std::vector&lt;int&gt; indices;</span></span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 1324 : indices.push_back(-1); // Add class index</span></span>
<span id="L49"><span class="lineNum"> 49</span> <span class="tlaGNC"> 2696 : transform(parents.begin(), parents.end(), back_inserter(indices), [&amp;](const auto&amp; p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });</span></span>
<span id="L50"><span class="lineNum"> 50</span> : // Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 3641 : std::vector&lt;std::string&gt; yJoinParents(Xf.size(1));</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 11055 : for (auto idx : indices) {</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 2636260 : for (int i = 0; i &lt; Xf.size(1); ++i) {</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 7886538 : yJoinParents[i] += to_string(pDataset.index({ idx, i }).item&lt;int&gt;());</span></span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC"> 1324 : std::vector&lt;std::string&gt; yJoinParents(Xf.size(1));</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 4020 : for (auto idx : indices) {</span></span>
<span id="L53"><span class="lineNum"> 53</span> <span class="tlaGNC"> 958640 : for (int i = 0; i &lt; Xf.size(1); ++i) {</span></span>
<span id="L54"><span class="lineNum"> 54</span> <span class="tlaGNC"> 2867832 : yJoinParents[i] += to_string(pDataset.index({ idx, i }).item&lt;int&gt;());</span></span>
<span id="L55"><span class="lineNum"> 55</span> : }</span>
<span id="L56"><span class="lineNum"> 56</span> : }</span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 3641 : auto arff = ArffFiles();</span></span>
<span id="L58"><span class="lineNum"> 58</span> <span class="tlaGNC"> 3641 : auto yxv = arff.factorize(yJoinParents);</span></span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 7282 : auto xvf_ptr = Xf.index({ index }).data_ptr&lt;float&gt;();</span></span>
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 3641 : auto xvf = std::vector&lt;mdlp::precision_t&gt;(xvf_ptr, xvf_ptr + Xf.size(1));</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 3641 : discretizers[feature]-&gt;fit(xvf, yxv);</span></span>
<span id="L62"><span class="lineNum"> 62</span> <span class="tlaGNC"> 4961 : }</span></span>
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 583 : if (upgrade) {</span></span>
<span id="L57"><span class="lineNum"> 57</span> <span class="tlaGNC"> 1324 : auto arff = ArffFiles();</span></span>
<span id="L58"><span class="lineNum"> 58</span> <span class="tlaGNC"> 1324 : auto yxv = arff.factorize(yJoinParents);</span></span>
<span id="L59"><span class="lineNum"> 59</span> <span class="tlaGNC"> 2648 : auto xvf_ptr = Xf.index({ index }).data_ptr&lt;float&gt;();</span></span>
<span id="L60"><span class="lineNum"> 60</span> <span class="tlaGNC"> 1324 : auto xvf = std::vector&lt;mdlp::precision_t&gt;(xvf_ptr, xvf_ptr + Xf.size(1));</span></span>
<span id="L61"><span class="lineNum"> 61</span> <span class="tlaGNC"> 1324 : discretizers[feature]-&gt;fit(xvf, yxv);</span></span>
<span id="L62"><span class="lineNum"> 62</span> <span class="tlaGNC"> 1804 : }</span></span>
<span id="L63"><span class="lineNum"> 63</span> <span class="tlaGNC"> 212 : if (upgrade) {</span></span>
<span id="L64"><span class="lineNum"> 64</span> : // Discretize again X (only the affected indices) with the new fitted discretizers</span>
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 4224 : for (auto index : indicesToReDiscretize) {</span></span>
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 7282 : auto Xt_ptr = Xf.index({ index }).data_ptr&lt;float&gt;();</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 3641 : auto Xt = std::vector&lt;float&gt;(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 14564 : pDataset.index_put_({ index, &quot;...&quot; }, torch::tensor(discretizers[pFeatures[index]]-&gt;transform(Xt)));</span></span>
<span id="L69"><span class="lineNum"> 69</span> <span class="tlaGNC"> 3641 : auto xStates = std::vector&lt;int&gt;(discretizers[pFeatures[index]]-&gt;getCutPoints().size() + 1);</span></span>
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 3641 : iota(xStates.begin(), xStates.end(), 0);</span></span>
<span id="L65"><span class="lineNum"> 65</span> <span class="tlaGNC"> 1536 : for (auto index : indicesToReDiscretize) {</span></span>
<span id="L66"><span class="lineNum"> 66</span> <span class="tlaGNC"> 2648 : auto Xt_ptr = Xf.index({ index }).data_ptr&lt;float&gt;();</span></span>
<span id="L67"><span class="lineNum"> 67</span> <span class="tlaGNC"> 1324 : auto Xt = std::vector&lt;float&gt;(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
<span id="L68"><span class="lineNum"> 68</span> <span class="tlaGNC"> 5296 : pDataset.index_put_({ index, &quot;...&quot; }, torch::tensor(discretizers[pFeatures[index]]-&gt;transform(Xt)));</span></span>
<span id="L69"><span class="lineNum"> 69</span> <span class="tlaGNC"> 1324 : auto xStates = std::vector&lt;int&gt;(discretizers[pFeatures[index]]-&gt;getCutPoints().size() + 1);</span></span>
<span id="L70"><span class="lineNum"> 70</span> <span class="tlaGNC"> 1324 : iota(xStates.begin(), xStates.end(), 0);</span></span>
<span id="L71"><span class="lineNum"> 71</span> : //Update new states of the feature/node</span>
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 3641 : states[pFeatures[index]] = xStates;</span></span>
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 3641 : }</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 583 : const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);</span></span>
<span id="L75"><span class="lineNum"> 75</span> <span class="tlaGNC"> 583 : model.fit(pDataset, weights, pFeatures, pClassName, states);</span></span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 583 : }</span></span>
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 1166 : return states;</span></span>
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 2640352 : }</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 638 : map&lt;std::string, std::vector&lt;int&gt;&gt; Proposal::fit_local_discretization(const torch::Tensor&amp; y)</span></span>
<span id="L72"><span class="lineNum"> 72</span> <span class="tlaGNC"> 1324 : states[pFeatures[index]] = xStates;</span></span>
<span id="L73"><span class="lineNum"> 73</span> <span class="tlaGNC"> 1324 : }</span></span>
<span id="L74"><span class="lineNum"> 74</span> <span class="tlaGNC"> 212 : const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);</span></span>
<span id="L75"><span class="lineNum"> 75</span> <span class="tlaGNC"> 212 : model.fit(pDataset, weights, pFeatures, pClassName, states);</span></span>
<span id="L76"><span class="lineNum"> 76</span> <span class="tlaGNC"> 212 : }</span></span>
<span id="L77"><span class="lineNum"> 77</span> <span class="tlaGNC"> 424 : return states;</span></span>
<span id="L78"><span class="lineNum"> 78</span> <span class="tlaGNC"> 960128 : }</span></span>
<span id="L79"><span class="lineNum"> 79</span> <span class="tlaGNC"> 232 : map&lt;std::string, std::vector&lt;int&gt;&gt; Proposal::fit_local_discretization(const torch::Tensor&amp; y)</span></span>
<span id="L80"><span class="lineNum"> 80</span> : {</span>
<span id="L81"><span class="lineNum"> 81</span> : // Discretize the continuous input data and build pDataset (Classifier::dataset)</span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 638 : int m = Xf.size(1);</span></span>
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 638 : int n = Xf.size(0);</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 638 : map&lt;std::string, std::vector&lt;int&gt;&gt; states;</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 638 : pDataset = torch::zeros({ n + 1, m }, torch::kInt32);</span></span>
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 638 : auto yv = std::vector&lt;int&gt;(y.data_ptr&lt;int&gt;(), y.data_ptr&lt;int&gt;() + y.size(0));</span></span>
<span id="L82"><span class="lineNum"> 82</span> <span class="tlaGNC"> 232 : int m = Xf.size(1);</span></span>
<span id="L83"><span class="lineNum"> 83</span> <span class="tlaGNC"> 232 : int n = Xf.size(0);</span></span>
<span id="L84"><span class="lineNum"> 84</span> <span class="tlaGNC"> 232 : map&lt;std::string, std::vector&lt;int&gt;&gt; states;</span></span>
<span id="L85"><span class="lineNum"> 85</span> <span class="tlaGNC"> 232 : pDataset = torch::zeros({ n + 1, m }, torch::kInt32);</span></span>
<span id="L86"><span class="lineNum"> 86</span> <span class="tlaGNC"> 232 : auto yv = std::vector&lt;int&gt;(y.data_ptr&lt;int&gt;(), y.data_ptr&lt;int&gt;() + y.size(0));</span></span>
<span id="L87"><span class="lineNum"> 87</span> : // discretize input data by feature(row)</span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 5346 : for (auto i = 0; i &lt; pFeatures.size(); ++i) {</span></span>
<span id="L89"><span class="lineNum"> 89</span> <span class="tlaGNC"> 4708 : auto* discretizer = new mdlp::CPPFImdlp();</span></span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 9416 : auto Xt_ptr = Xf.index({ i }).data_ptr&lt;float&gt;();</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 4708 : auto Xt = std::vector&lt;float&gt;(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 4708 : discretizer-&gt;fit(Xt, yv);</span></span>
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaGNC"> 18832 : pDataset.index_put_({ i, &quot;...&quot; }, torch::tensor(discretizer-&gt;transform(Xt)));</span></span>
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 4708 : auto xStates = std::vector&lt;int&gt;(discretizer-&gt;getCutPoints().size() + 1);</span></span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 4708 : iota(xStates.begin(), xStates.end(), 0);</span></span>
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 4708 : states[pFeatures[i]] = xStates;</span></span>
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC"> 4708 : discretizers[pFeatures[i]] = discretizer;</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 4708 : }</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 638 : int n_classes = torch::max(y).item&lt;int&gt;() + 1;</span></span>
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 638 : auto yStates = std::vector&lt;int&gt;(n_classes);</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 638 : iota(yStates.begin(), yStates.end(), 0);</span></span>
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 638 : states[pClassName] = yStates;</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 1914 : pDataset.index_put_({ n, &quot;...&quot; }, y);</span></span>
<span id="L104"><span class="lineNum"> 104</span> <span class="tlaGNC"> 1276 : return states;</span></span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 10692 : }</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 462 : torch::Tensor Proposal::prepareX(torch::Tensor&amp; X)</span></span>
<span id="L88"><span class="lineNum"> 88</span> <span class="tlaGNC"> 1944 : for (auto i = 0; i &lt; pFeatures.size(); ++i) {</span></span>
<span id="L89"><span class="lineNum"> 89</span> <span class="tlaGNC"> 1712 : auto* discretizer = new mdlp::CPPFImdlp();</span></span>
<span id="L90"><span class="lineNum"> 90</span> <span class="tlaGNC"> 3424 : auto Xt_ptr = Xf.index({ i }).data_ptr&lt;float&gt;();</span></span>
<span id="L91"><span class="lineNum"> 91</span> <span class="tlaGNC"> 1712 : auto Xt = std::vector&lt;float&gt;(Xt_ptr, Xt_ptr + Xf.size(1));</span></span>
<span id="L92"><span class="lineNum"> 92</span> <span class="tlaGNC"> 1712 : discretizer-&gt;fit(Xt, yv);</span></span>
<span id="L93"><span class="lineNum"> 93</span> <span class="tlaGNC"> 6848 : pDataset.index_put_({ i, &quot;...&quot; }, torch::tensor(discretizer-&gt;transform(Xt)));</span></span>
<span id="L94"><span class="lineNum"> 94</span> <span class="tlaGNC"> 1712 : auto xStates = std::vector&lt;int&gt;(discretizer-&gt;getCutPoints().size() + 1);</span></span>
<span id="L95"><span class="lineNum"> 95</span> <span class="tlaGNC"> 1712 : iota(xStates.begin(), xStates.end(), 0);</span></span>
<span id="L96"><span class="lineNum"> 96</span> <span class="tlaGNC"> 1712 : states[pFeatures[i]] = xStates;</span></span>
<span id="L97"><span class="lineNum"> 97</span> <span class="tlaGNC"> 1712 : discretizers[pFeatures[i]] = discretizer;</span></span>
<span id="L98"><span class="lineNum"> 98</span> <span class="tlaGNC"> 1712 : }</span></span>
<span id="L99"><span class="lineNum"> 99</span> <span class="tlaGNC"> 232 : int n_classes = torch::max(y).item&lt;int&gt;() + 1;</span></span>
<span id="L100"><span class="lineNum"> 100</span> <span class="tlaGNC"> 232 : auto yStates = std::vector&lt;int&gt;(n_classes);</span></span>
<span id="L101"><span class="lineNum"> 101</span> <span class="tlaGNC"> 232 : iota(yStates.begin(), yStates.end(), 0);</span></span>
<span id="L102"><span class="lineNum"> 102</span> <span class="tlaGNC"> 232 : states[pClassName] = yStates;</span></span>
<span id="L103"><span class="lineNum"> 103</span> <span class="tlaGNC"> 696 : pDataset.index_put_({ n, &quot;...&quot; }, y);</span></span>
<span id="L104"><span class="lineNum"> 104</span> <span class="tlaGNC"> 464 : return states;</span></span>
<span id="L105"><span class="lineNum"> 105</span> <span class="tlaGNC"> 3888 : }</span></span>
<span id="L106"><span class="lineNum"> 106</span> <span class="tlaGNC"> 168 : torch::Tensor Proposal::prepareX(torch::Tensor&amp; X)</span></span>
<span id="L107"><span class="lineNum"> 107</span> : {</span>
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 462 : auto Xtd = torch::zeros_like(X, torch::kInt32);</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 3784 : for (int i = 0; i &lt; X.size(0); ++i) {</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 3322 : auto Xt = std::vector&lt;float&gt;(X[i].data_ptr&lt;float&gt;(), X[i].data_ptr&lt;float&gt;() + X.size(1));</span></span>
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 3322 : auto Xd = discretizers[pFeatures[i]]-&gt;transform(Xt);</span></span>
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 9966 : Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));</span></span>
<span id="L113"><span class="lineNum"> 113</span> <span class="tlaGNC"> 3322 : }</span></span>
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 462 : return Xtd;</span></span>
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 3322 : }</span></span>
<span id="L108"><span class="lineNum"> 108</span> <span class="tlaGNC"> 168 : auto Xtd = torch::zeros_like(X, torch::kInt32);</span></span>
<span id="L109"><span class="lineNum"> 109</span> <span class="tlaGNC"> 1376 : for (int i = 0; i &lt; X.size(0); ++i) {</span></span>
<span id="L110"><span class="lineNum"> 110</span> <span class="tlaGNC"> 1208 : auto Xt = std::vector&lt;float&gt;(X[i].data_ptr&lt;float&gt;(), X[i].data_ptr&lt;float&gt;() + X.size(1));</span></span>
<span id="L111"><span class="lineNum"> 111</span> <span class="tlaGNC"> 1208 : auto Xd = discretizers[pFeatures[i]]-&gt;transform(Xt);</span></span>
<span id="L112"><span class="lineNum"> 112</span> <span class="tlaGNC"> 3624 : Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));</span></span>
<span id="L113"><span class="lineNum"> 113</span> <span class="tlaGNC"> 1208 : }</span></span>
<span id="L114"><span class="lineNum"> 114</span> <span class="tlaGNC"> 336 : return Xtd;</span></span>
<span id="L115"><span class="lineNum"> 115</span> <span class="tlaGNC"> 1376 : }</span></span>
<span id="L116"><span class="lineNum"> 116</span> : }</span>
</pre>
</td>

View File

@@ -0,0 +1,49 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/Proposal.cc</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="Proposal.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="Proposal.cc.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="Proposal.cc.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="Proposal.cc.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="Proposal.cc.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="Proposal.cc.gcov.html#L21" target="source" alt="overview">
<area shape="rect" coords="0,36,79,39" href="Proposal.cc.gcov.html#L25" target="source" alt="overview">
<area shape="rect" coords="0,40,79,43" href="Proposal.cc.gcov.html#L29" target="source" alt="overview">
<area shape="rect" coords="0,44,79,47" href="Proposal.cc.gcov.html#L33" target="source" alt="overview">
<area shape="rect" coords="0,48,79,51" href="Proposal.cc.gcov.html#L37" target="source" alt="overview">
<area shape="rect" coords="0,52,79,55" href="Proposal.cc.gcov.html#L41" target="source" alt="overview">
<area shape="rect" coords="0,56,79,59" href="Proposal.cc.gcov.html#L45" target="source" alt="overview">
<area shape="rect" coords="0,60,79,63" href="Proposal.cc.gcov.html#L49" target="source" alt="overview">
<area shape="rect" coords="0,64,79,67" href="Proposal.cc.gcov.html#L53" target="source" alt="overview">
<area shape="rect" coords="0,68,79,71" href="Proposal.cc.gcov.html#L57" target="source" alt="overview">
<area shape="rect" coords="0,72,79,75" href="Proposal.cc.gcov.html#L61" target="source" alt="overview">
<area shape="rect" coords="0,76,79,79" href="Proposal.cc.gcov.html#L65" target="source" alt="overview">
<area shape="rect" coords="0,80,79,83" href="Proposal.cc.gcov.html#L69" target="source" alt="overview">
<area shape="rect" coords="0,84,79,87" href="Proposal.cc.gcov.html#L73" target="source" alt="overview">
<area shape="rect" coords="0,88,79,91" href="Proposal.cc.gcov.html#L77" target="source" alt="overview">
<area shape="rect" coords="0,92,79,95" href="Proposal.cc.gcov.html#L81" target="source" alt="overview">
<area shape="rect" coords="0,96,79,99" href="Proposal.cc.gcov.html#L85" target="source" alt="overview">
<area shape="rect" coords="0,100,79,103" href="Proposal.cc.gcov.html#L89" target="source" alt="overview">
<area shape="rect" coords="0,104,79,107" href="Proposal.cc.gcov.html#L93" target="source" alt="overview">
<area shape="rect" coords="0,108,79,111" href="Proposal.cc.gcov.html#L97" target="source" alt="overview">
<area shape="rect" coords="0,112,79,115" href="Proposal.cc.gcov.html#L101" target="source" alt="overview">
</map>
<center>
<a href="Proposal.cc.gcov.html#top" target="source">Top</a><br><br>
<img src="Proposal.cc.gcov.png" width=80 height=115 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 796 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODE.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,23 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">_ZNK8bayesnet5SPODE5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">bayesnet::SPODE::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">187</td>
<td class="coverFnHi">68</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">_ZN8bayesnet5SPODE10buildModelERKN2at6TensorE</a></td>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">bayesnet::SPODE::buildModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">2665</td>
<td class="coverFnHi">1016</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">_ZN8bayesnet5SPODEC2Ei</a></td>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">bayesnet::SPODE::SPODE(int)</a></td>
<td class="coverFnHi">2962</td>
<td class="coverFnHi">1124</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODE.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (<a href="SPODE.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,23 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">_ZN8bayesnet5SPODE10buildModelERKN2at6TensorE</a></td>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">bayesnet::SPODE::SPODE(int)</a></td>
<td class="coverFnHi">2665</td>
<td class="coverFnHi">1124</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L9">_ZN8bayesnet5SPODEC2Ei</a></td>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L11">bayesnet::SPODE::buildModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">2962</td>
<td class="coverFnHi">1016</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">_ZNK8bayesnet5SPODE5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="SPODE.cc.gcov.html#L24">bayesnet::SPODE::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">187</td>
<td class="coverFnHi">68</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="SPODE.cc.gcov.overview.html" name="overview">
<frame src="SPODE.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODE.cc</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (source / <a href="SPODE.cc.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.cc<span style="font-size: 80%;"> (source / <a href="SPODE.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -70,24 +78,24 @@
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> : </span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 2962 : SPODE::SPODE(int root) : Classifier(Network()), root(root) {}</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 1124 : SPODE::SPODE(int root) : Classifier(Network()), root(root) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> : </span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 2665 : void SPODE::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 1016 : void SPODE::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L14"><span class="lineNum"> 14</span> : {</span>
<span id="L15"><span class="lineNum"> 15</span> : // 0. Add all nodes to the model</span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 2665 : addNodes();</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 1016 : addNodes();</span></span>
<span id="L17"><span class="lineNum"> 17</span> : // 1. Add edges from the class node to all other nodes</span>
<span id="L18"><span class="lineNum"> 18</span> : // 2. Add edges from the root node to all other nodes</span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 113941 : for (int i = 0; i &lt; static_cast&lt;int&gt;(features.size()); ++i) {</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 111276 : model.addEdge(className, features[i]);</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 111276 : if (i != root) {</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 108611 : model.addEdge(features[root], features[i]);</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 25680 : for (int i = 0; i &lt; static_cast&lt;int&gt;(features.size()); ++i) {</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 24664 : model.addEdge(className, features[i]);</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 24664 : if (i != root) {</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 23648 : model.addEdge(features[root], features[i]);</span></span>
<span id="L23"><span class="lineNum"> 23</span> : }</span>
<span id="L24"><span class="lineNum"> 24</span> : }</span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 2665 : }</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 187 : std::vector&lt;std::string&gt; SPODE::graph(const std::string&amp; name) const</span></span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 1016 : }</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 68 : std::vector&lt;std::string&gt; SPODE::graph(const std::string&amp; name) const</span></span>
<span id="L27"><span class="lineNum"> 27</span> : {</span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 187 : return model.graph(name);</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 68 : return model.graph(name);</span></span>
<span id="L29"><span class="lineNum"> 29</span> : }</span>
<span id="L30"><span class="lineNum"> 30</span> : </span>
<span id="L31"><span class="lineNum"> 31</span> : }</span>

View File

@@ -0,0 +1,28 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.cc</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="SPODE.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="SPODE.cc.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="SPODE.cc.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="SPODE.cc.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="SPODE.cc.gcov.html#L17" target="source" alt="overview">
</map>
<center>
<a href="SPODE.cc.gcov.html#top" target="source">Top</a><br><br>
<img src="SPODE.cc.gcov.png" width=80 height=30 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 310 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODE.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">bayesnet::SPODE::~SPODE()</a></td>
<td class="coverFnHi">337</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFnAliasHi">148</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED2Ev</a></td>
<td class="coverFnAliasHi">189</td>
<td class="coverFnHi">1836</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODE.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (<a href="SPODE.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFn"><a href="SPODE.h.gcov.html#L17">bayesnet::SPODE::~SPODE()</a></td>
<td class="coverFnHi">337</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED0Ev</a></td>
<td class="coverFnAliasHi">148</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODE.h.gcov.html#L17">_ZN8bayesnet5SPODED2Ev</a></td>
<td class="coverFnAliasHi">189</td>
<td class="coverFnHi">1836</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="SPODE.h.gcov.overview.html" name="overview">
<frame src="SPODE.h.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODE.h</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (source / <a href="SPODE.h.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODE.h<span style="font-size: 80%;"> (source / <a href="SPODE.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -78,7 +86,7 @@
<span id="L16"><span class="lineNum"> 16</span> : void buildModel(const torch::Tensor&amp; weights) override;</span>
<span id="L17"><span class="lineNum"> 17</span> : public:</span>
<span id="L18"><span class="lineNum"> 18</span> : explicit SPODE(int root);</span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC tlaBgGNC"> 337 : virtual ~SPODE() = default;</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC tlaBgGNC"> 1836 : virtual ~SPODE() = default;</span></span>
<span id="L20"><span class="lineNum"> 20</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; name = &quot;SPODE&quot;) const override;</span>
<span id="L21"><span class="lineNum"> 21</span> : };</span>
<span id="L22"><span class="lineNum"> 22</span> : }</span>

View File

@@ -0,0 +1,26 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODE.h</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="SPODE.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="SPODE.h.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="SPODE.h.gcov.html#L9" target="source" alt="overview">
</map>
<center>
<a href="SPODE.h.gcov.html#top" target="source">Top</a><br><br>
<img src="SPODE.h.gcov.png" width=80 height=22 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 245 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODELd.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">6</td>
<td class="headerCovTableEntry">6</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,44 +71,44 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">_ZN8bayesnet7SPODELd3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">bayesnet::SPODELd::fit(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">22</td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">_ZNK8bayesnet7SPODELd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">bayesnet::SPODELd::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">99</td>
<td class="coverFnHi">36</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">_ZN8bayesnet7SPODELd7predictERN2at6TensorE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">bayesnet::SPODELd::predict(at::Tensor&amp;)</a></td>
<td class="coverFnHi">374</td>
<td class="coverFnHi">136</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">_ZN8bayesnet7SPODELd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">bayesnet::SPODELd::fit(at::Tensor&amp;, at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">462</td>
<td class="coverFnHi">168</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">_ZN8bayesnet7SPODELd9commonFitERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">bayesnet::SPODELd::commonFit(std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">473</td>
<td class="coverFnHi">172</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">_ZN8bayesnet7SPODELdC2Ei</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">bayesnet::SPODELd::SPODELd(int)</a></td>
<td class="coverFnHi">605</td>
<td class="coverFnHi">220</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODELd.cc - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (<a href="SPODELd.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">6</td>
<td class="headerCovTableEntry">6</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,44 +71,44 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">_ZN8bayesnet7SPODELd3fitERN2at6TensorERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">bayesnet::SPODELd::SPODELd(int)</a></td>
<td class="coverFnHi">22</td>
<td class="coverFnHi">220</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">_ZN8bayesnet7SPODELd3fitERN2at6TensorES3_RKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaISA_EERKSA_RSt3mapISA_S4_IiSaIiEESt4lessISA_ESaISt4pairISF_SJ_EEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">bayesnet::SPODELd::commonFit(std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">462</td>
<td class="coverFnHi">172</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">_ZN8bayesnet7SPODELd7predictERN2at6TensorE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L9">bayesnet::SPODELd::fit(at::Tensor&amp;, at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">374</td>
<td class="coverFnHi">168</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L27">_ZN8bayesnet7SPODELd9commonFitERKSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS7_EERKS7_RSt3mapIS7_S1_IiSaIiEESt4lessIS7_ESaISt4pairISC_SG_EEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L17">bayesnet::SPODELd::fit(at::Tensor&amp;, std::vector&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::allocator&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt; &gt; const&amp;, std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;, std::map&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt;, std::vector&lt;int, std::allocator&lt;int&gt; &gt;, std::less&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; &gt;, std::allocator&lt;std::pair&lt;std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const, std::vector&lt;int, std::allocator&lt;int&gt; &gt; &gt; &gt; &gt;&amp;)</a></td>
<td class="coverFnHi">473</td>
<td class="coverFnHi">8</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L8">_ZN8bayesnet7SPODELdC2Ei</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">bayesnet::SPODELd::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">605</td>
<td class="coverFnHi">36</td>
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L44">_ZNK8bayesnet7SPODELd5graphERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE</a></td>
<td class="coverFn"><a href="SPODELd.cc.gcov.html#L39">bayesnet::SPODELd::predict(at::Tensor&amp;)</a></td>
<td class="coverFnHi">99</td>
<td class="coverFnHi">136</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="SPODELd.cc.gcov.overview.html" name="overview">
<frame src="SPODELd.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODELd.cc</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (source / <a href="SPODELd.cc.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.cc<span style="font-size: 80%;"> (source / <a href="SPODELd.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">6</td>
<td class="headerCovTableEntry">6</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -69,45 +77,45 @@
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;SPODELd.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 605 : SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 462 : SPODELd&amp; SPODELd::fit(torch::Tensor&amp; X_, torch::Tensor&amp; y_, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 220 : SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}</span></span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC"> 168 : SPODELd&amp; SPODELd::fit(torch::Tensor&amp; X_, torch::Tensor&amp; y_, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L12"><span class="lineNum"> 12</span> : {</span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 462 : checkInput(X_, y_);</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 462 : Xf = X_;</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 462 : y = y_;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 462 : return commonFit(features_, className_, states_);</span></span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 168 : checkInput(X_, y_);</span></span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 168 : Xf = X_;</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 168 : y = y_;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 168 : return commonFit(features_, className_, states_);</span></span>
<span id="L17"><span class="lineNum"> 17</span> : }</span>
<span id="L18"><span class="lineNum"> 18</span> : </span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 22 : SPODELd&amp; SPODELd::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 8 : SPODELd&amp; SPODELd::fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L20"><span class="lineNum"> 20</span> : {</span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 22 : if (!torch::is_floating_point(dataset)) {</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 11 : throw std::runtime_error(&quot;Dataset must be a floating point tensor&quot;);</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 8 : if (!torch::is_floating_point(dataset)) {</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 4 : throw std::runtime_error(&quot;Dataset must be a floating point tensor&quot;);</span></span>
<span id="L23"><span class="lineNum"> 23</span> : }</span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 44 : Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), &quot;...&quot; }).clone();</span></span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 33 : y = dataset.index({ -1, &quot;...&quot; }).clone().to(torch::kInt32);</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 11 : return commonFit(features_, className_, states_);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 33 : }</span></span>
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 16 : Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), &quot;...&quot; }).clone();</span></span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 12 : y = dataset.index({ -1, &quot;...&quot; }).clone().to(torch::kInt32);</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 4 : return commonFit(features_, className_, states_);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 12 : }</span></span>
<span id="L28"><span class="lineNum"> 28</span> : </span>
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 473 : SPODELd&amp; SPODELd::commonFit(const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 172 : SPODELd&amp; SPODELd::commonFit(const std::vector&lt;std::string&gt;&amp; features_, const std::string&amp; className_, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states_)</span></span>
<span id="L30"><span class="lineNum"> 30</span> : {</span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 473 : features = features_;</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 473 : className = className_;</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 172 : features = features_;</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 172 : className = className_;</span></span>
<span id="L33"><span class="lineNum"> 33</span> : // Fills std::vectors Xv &amp; yv with the data from tensors X_ (discretized) &amp; y</span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 473 : states = fit_local_discretization(y);</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 172 : states = fit_local_discretization(y);</span></span>
<span id="L35"><span class="lineNum"> 35</span> : // We have discretized the input data</span>
<span id="L36"><span class="lineNum"> 36</span> : // 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network</span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 473 : SPODE::fit(dataset, features, className, states);</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 473 : states = localDiscretizationProposal(states, model);</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 473 : return *this;</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 172 : SPODE::fit(dataset, features, className, states);</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 172 : states = localDiscretizationProposal(states, model);</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 172 : return *this;</span></span>
<span id="L40"><span class="lineNum"> 40</span> : }</span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 374 : torch::Tensor SPODELd::predict(torch::Tensor&amp; X)</span></span>
<span id="L41"><span class="lineNum"> 41</span> <span class="tlaGNC"> 136 : torch::Tensor SPODELd::predict(torch::Tensor&amp; X)</span></span>
<span id="L42"><span class="lineNum"> 42</span> : {</span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 374 : auto Xt = prepareX(X);</span></span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 748 : return SPODE::predict(Xt);</span></span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 374 : }</span></span>
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 99 : std::vector&lt;std::string&gt; SPODELd::graph(const std::string&amp; name) const</span></span>
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 136 : auto Xt = prepareX(X);</span></span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 272 : return SPODE::predict(Xt);</span></span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 136 : }</span></span>
<span id="L46"><span class="lineNum"> 46</span> <span class="tlaGNC"> 36 : std::vector&lt;std::string&gt; SPODELd::graph(const std::string&amp; name) const</span></span>
<span id="L47"><span class="lineNum"> 47</span> : {</span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 99 : return SPODE::graph(name);</span></span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaGNC"> 36 : return SPODE::graph(name);</span></span>
<span id="L49"><span class="lineNum"> 49</span> : }</span>
<span id="L50"><span class="lineNum"> 50</span> : }</span>
</pre>

View File

@@ -0,0 +1,33 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.cc</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="SPODELd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="SPODELd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="SPODELd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="SPODELd.cc.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="SPODELd.cc.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="SPODELd.cc.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="SPODELd.cc.gcov.html#L13" target="source" alt="overview">
<area shape="rect" coords="0,28,79,31" href="SPODELd.cc.gcov.html#L17" target="source" alt="overview">
<area shape="rect" coords="0,32,79,35" href="SPODELd.cc.gcov.html#L21" target="source" alt="overview">
<area shape="rect" coords="0,36,79,39" href="SPODELd.cc.gcov.html#L25" target="source" alt="overview">
<area shape="rect" coords="0,40,79,43" href="SPODELd.cc.gcov.html#L29" target="source" alt="overview">
<area shape="rect" coords="0,44,79,47" href="SPODELd.cc.gcov.html#L33" target="source" alt="overview">
<area shape="rect" coords="0,48,79,51" href="SPODELd.cc.gcov.html#L37" target="source" alt="overview">
</map>
<center>
<a href="SPODELd.cc.gcov.html#top" target="source">Top</a><br><br>
<img src="SPODELd.cc.gcov.png" width=80 height=49 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 403 B

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODELd.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODELd.h<span style="font-size: 80%;"> (<a href="SPODELd.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.h<span style="font-size: 80%;"> (<a href="SPODELd.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.h.gcov.html#L14">_ZN8bayesnet7SPODELdD0Ev</a></td>
<td class="coverFn"><a href="SPODELd.h.gcov.html#L14">bayesnet::SPODELd::~SPODELd()</a></td>
<td class="coverFnHi">80</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODELd.h.gcov.html#L14">_ZN8bayesnet7SPODELdD0Ev</a></td>
<td class="coverFnAliasHi">39</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODELd.h.gcov.html#L14">_ZN8bayesnet7SPODELdD2Ev</a></td>
<td class="coverFnAliasHi">41</td>
<td class="coverFnHi">320</td>
</tr>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODELd.h - functions</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.h - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODELd.h<span style="font-size: 80%;"> (<a href="SPODELd.h.gcov.html">source</a> / functions)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.h<span style="font-size: 80%;"> (<a href="SPODELd.h.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -63,23 +71,9 @@
</tr>
<tr>
<td class="coverFn"><a href="SPODELd.h.gcov.html#L14">_ZN8bayesnet7SPODELdD0Ev</a></td>
<td class="coverFn"><a href="SPODELd.h.gcov.html#L14">bayesnet::SPODELd::~SPODELd()</a></td>
<td class="coverFnHi">80</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODELd.h.gcov.html#L14">_ZN8bayesnet7SPODELdD0Ev</a></td>
<td class="coverFnAliasHi">39</td>
</tr>
<tr>
<td class="coverFnAlias"><a href="SPODELd.h.gcov.html#L14">_ZN8bayesnet7SPODELdD2Ev</a></td>
<td class="coverFnAliasHi">41</td>
<td class="coverFnHi">320</td>
</tr>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="SPODELd.h.gcov.overview.html" name="overview">
<frame src="SPODELd.h.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/classifiers/SPODELd.h</title>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
@@ -19,7 +19,7 @@
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/classifiers</a> - SPODELd.h<span style="font-size: 80%;"> (source / <a href="SPODELd.h.func-c.html">functions</a>)</span></td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPODELd.h<span style="font-size: 80%;"> (source / <a href="SPODELd.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
@@ -28,7 +28,7 @@
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
@@ -37,12 +37,20 @@
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-29 20:48:03</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
@@ -75,7 +83,7 @@
<span id="L13"><span class="lineNum"> 13</span> : class SPODELd : public SPODE, public Proposal {</span>
<span id="L14"><span class="lineNum"> 14</span> : public:</span>
<span id="L15"><span class="lineNum"> 15</span> : explicit SPODELd(int root);</span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC tlaBgGNC"> 80 : virtual ~SPODELd() = default;</span></span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC tlaBgGNC"> 320 : virtual ~SPODELd() = default;</span></span>
<span id="L17"><span class="lineNum"> 17</span> : SPODELd&amp; fit(torch::Tensor&amp; X, torch::Tensor&amp; y, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L18"><span class="lineNum"> 18</span> : SPODELd&amp; fit(torch::Tensor&amp; dataset, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states) override;</span>
<span id="L19"><span class="lineNum"> 19</span> : SPODELd&amp; commonFit(const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, map&lt;std::string, std::vector&lt;int&gt;&gt;&amp; states);</span>

View File

@@ -0,0 +1,27 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPODELd.h</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<map name="overview">
<area shape="rect" coords="0,0,79,3" href="SPODELd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,4,79,7" href="SPODELd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,8,79,11" href="SPODELd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,12,79,15" href="SPODELd.h.gcov.html#L1" target="source" alt="overview">
<area shape="rect" coords="0,16,79,19" href="SPODELd.h.gcov.html#L5" target="source" alt="overview">
<area shape="rect" coords="0,20,79,23" href="SPODELd.h.gcov.html#L9" target="source" alt="overview">
<area shape="rect" coords="0,24,79,27" href="SPODELd.h.gcov.html#L13" target="source" alt="overview">
</map>
<center>
<a href="SPODELd.h.gcov.html#top" target="source">Top</a><br><br>
<img src="SPODELd.h.gcov.png" width=80 height=24 alt="Overview" border=0 usemap="#overview">
</center>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 270 B

View File

@@ -0,0 +1,104 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPnDE.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPnDE.cc<span style="font-size: 80%;"> (<a href="SPnDE.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">14</td>
<td class="headerCovTableEntry">14</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><a href="SPnDE.cc.func.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></a></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPnDE.cc.gcov.html#L31">bayesnet::SPnDE::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">24</td>
</tr>
<tr>
<td class="coverFn"><a href="SPnDE.cc.gcov.html#L9">bayesnet::SPnDE::SPnDE(std::vector&lt;int, std::allocator&lt;int&gt; &gt;)</a></td>
<td class="coverFnHi">456</td>
</tr>
<tr>
<td class="coverFn"><a href="SPnDE.cc.gcov.html#L11">bayesnet::SPnDE::buildModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">456</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,104 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPnDE.cc - functions</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPnDE.cc<span style="font-size: 80%;"> (<a href="SPnDE.cc.gcov.html">source</a> / functions)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">14</td>
<td class="headerCovTableEntry">14</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<center>
<table cellpadding=1 cellspacing=1 border=0>
<tr><td><br></td></tr>
<tr>
<td class="tableHead">Function Name <span title="Click to sort table by function name" class="tableHeadSort"><img src="../../glass.png" width=10 height=14 alt="Sort by function name" title="Click to sort table by function name" border=0></span></td>
<td class="tableHead">Hit count <span title="Click to sort table by function hit count" class="tableHeadSort"><a href="SPnDE.cc.func-c.html"><img src="../../updown.png" width=10 height=14 alt="Sort by function hit count" title="Click to sort table by function hit count" border=0></a></span></td>
</tr>
<tr>
<td class="coverFn"><a href="SPnDE.cc.gcov.html#L9">bayesnet::SPnDE::SPnDE(std::vector&lt;int, std::allocator&lt;int&gt; &gt;)</a></td>
<td class="coverFnHi">456</td>
</tr>
<tr>
<td class="coverFn"><a href="SPnDE.cc.gcov.html#L11">bayesnet::SPnDE::buildModel(at::Tensor const&amp;)</a></td>
<td class="coverFnHi">456</td>
</tr>
<tr>
<td class="coverFn"><a href="SPnDE.cc.gcov.html#L31">bayesnet::SPnDE::graph(std::__cxx11::basic_string&lt;char, std::char_traits&lt;char&gt;, std::allocator&lt;char&gt; &gt; const&amp;) const</a></td>
<td class="coverFnHi">24</td>
</tr>
</table>
<br>
</center>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

View File

@@ -0,0 +1,19 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPnDE.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<frameset cols="120,*">
<frame src="SPnDE.cc.gcov.overview.html" name="overview">
<frame src="SPnDE.cc.gcov.html" name="source">
<noframes>
<center>Frames not supported by your browser!<br></center>
</noframes>
</frameset>
</html>

View File

@@ -0,0 +1,122 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - BayesNet Coverage Report - bayesnet/classifiers/SPnDE.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/classifiers</a> - SPnDE.cc<span style="font-size: 80%;"> (source / <a href="SPnDE.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">BayesNet Coverage Report</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">14</td>
<td class="headerCovTableEntry">14</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-05-06 17:54:04</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">3</td>
<td class="headerCovTableEntry">3</td>
</tr>
<tr>
<td class="headerItem">Legend:</td>
<td class="headerValueLeg"> Lines:
<span class="coverLegendCov">hit</span>
<span class="coverLegendNoCov">not hit</span>
</td>
<td></td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &quot;SPnDE.h&quot;</span>
<span id="L8"><span class="lineNum"> 8</span> : </span>
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
<span id="L10"><span class="lineNum"> 10</span> : </span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 456 : SPnDE::SPnDE(std::vector&lt;int&gt; parents) : Classifier(Network()), parents(parents) {}</span></span>
<span id="L12"><span class="lineNum"> 12</span> : </span>
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 456 : void SPnDE::buildModel(const torch::Tensor&amp; weights)</span></span>
<span id="L14"><span class="lineNum"> 14</span> : {</span>
<span id="L15"><span class="lineNum"> 15</span> : // 0. Add all nodes to the model</span>
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 456 : addNodes();</span></span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 456 : std::vector&lt;int&gt; attributes;</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 4440 : for (int i = 0; i &lt; static_cast&lt;int&gt;(features.size()); ++i) {</span></span>
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 3984 : if (std::find(parents.begin(), parents.end(), i) == parents.end()) {</span></span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 3072 : attributes.push_back(i);</span></span>
<span id="L21"><span class="lineNum"> 21</span> : }</span>
<span id="L22"><span class="lineNum"> 22</span> : }</span>
<span id="L23"><span class="lineNum"> 23</span> : // 1. Add edges from the class node to all other nodes</span>
<span id="L24"><span class="lineNum"> 24</span> : // 2. Add edges from the parents nodes to all other nodes</span>
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 3528 : for (const auto&amp; attribute : attributes) {</span></span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 3072 : model.addEdge(className, features[attribute]);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 9216 : for (const auto&amp; root : parents) {</span></span>
<span id="L28"><span class="lineNum"> 28</span> : </span>
<span id="L29"><span class="lineNum"> 29</span> <span class="tlaGNC"> 6144 : model.addEdge(features[root], features[attribute]);</span></span>
<span id="L30"><span class="lineNum"> 30</span> : }</span>
<span id="L31"><span class="lineNum"> 31</span> : }</span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 456 : }</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 24 : std::vector&lt;std::string&gt; SPnDE::graph(const std::string&amp; name) const</span></span>
<span id="L34"><span class="lineNum"> 34</span> : {</span>
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 24 : return model.graph(name);</span></span>
<span id="L36"><span class="lineNum"> 36</span> : }</span>
<span id="L37"><span class="lineNum"> 37</span> : </span>
<span id="L38"><span class="lineNum"> 38</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>

Some files were not shown because too many files have changed in this diff Show More