Add Notes to Proposal convergence
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
#include <memory>
|
||||
|
||||
namespace bayesnet {
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className)
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className, KDB::notes)
|
||||
{
|
||||
validHyperparameters = validHyperparameters_ld;
|
||||
validHyperparameters.push_back("k");
|
||||
|
@@ -16,7 +16,7 @@
|
||||
#include "TANLd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_)
|
||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_, std::vector<std::string>& notes_) : pDataset(dataset_), pFeatures(features_), pClassName(className_), notes(notes_)
|
||||
{
|
||||
}
|
||||
void Proposal::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
@@ -215,6 +215,8 @@ namespace bayesnet {
|
||||
if (convergence_params.verbose) {
|
||||
std::cout << "Converged after " << (iteration + 1) << " iterations" << std::endl;
|
||||
}
|
||||
notes.push_back("Converged after " + std::to_string(iteration + 1) + " of "
|
||||
+ std::to_string(convergence_params.maxIterations) + " iterations");
|
||||
break;
|
||||
}
|
||||
|
||||
|
@@ -18,7 +18,7 @@
|
||||
namespace bayesnet {
|
||||
class Proposal {
|
||||
public:
|
||||
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
|
||||
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_, std::vector<std::string>& notes);
|
||||
void setHyperparameters(nlohmann::json& hyperparameters_);
|
||||
protected:
|
||||
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
|
||||
@@ -61,6 +61,7 @@ namespace bayesnet {
|
||||
};
|
||||
private:
|
||||
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
std::vector<std::string>& notes; // Notes during fit from BaseClassifier
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
|
@@ -7,7 +7,7 @@
|
||||
#include "SPODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className)
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className, SPODE::notes)
|
||||
{
|
||||
validHyperparameters = validHyperparameters_ld; // Inherits the valid hyperparameters from Proposal
|
||||
}
|
||||
|
@@ -8,7 +8,7 @@
|
||||
#include <memory>
|
||||
|
||||
namespace bayesnet {
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className)
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className, TAN::notes)
|
||||
{
|
||||
validHyperparameters = validHyperparameters_ld; // Inherits the valid hyperparameters from Proposal
|
||||
}
|
||||
|
@@ -7,7 +7,7 @@
|
||||
#include "AODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
|
||||
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className, Ensemble::notes)
|
||||
{
|
||||
validHyperparameters = validHyperparameters_ld; // Inherits the valid hyperparameters from Proposal
|
||||
}
|
||||
|
@@ -407,14 +407,15 @@ TEST_CASE("Check proposal checkInput", "[Models]")
|
||||
{
|
||||
class testProposal : public bayesnet::Proposal {
|
||||
public:
|
||||
testProposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_)
|
||||
: Proposal(dataset_, features_, className_)
|
||||
testProposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_, std::vector<std::string>& notes_)
|
||||
: Proposal(dataset_, features_, className_, notes_)
|
||||
{
|
||||
}
|
||||
void test_X_y(const torch::Tensor& X, const torch::Tensor& y) { checkInput(X, y); }
|
||||
};
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = testProposal(raw.dataset, raw.features, raw.className);
|
||||
std::vector<std::string> notes;
|
||||
auto clf = testProposal(raw.dataset, raw.features, raw.className, notes);
|
||||
torch::Tensor X = torch::randint(0, 3, { 10, 4 });
|
||||
torch::Tensor y = torch::rand({ 10 });
|
||||
INFO("Check X is not float");
|
||||
|
Reference in New Issue
Block a user