Files
BayesNet/bayesnet/classifiers/Proposal.cc

242 lines
12 KiB
C++

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Proposal.h"
#include <iostream>
#include <cmath>
#include <limits>
#include "Classifier.h"
#include "KDB.h"
#include "TAN.h"
#include "SPODE.h"
#include "KDBLd.h"
#include "TANLd.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_, std::vector<std::string>& notes_) : pDataset(dataset_), pFeatures(features_), pClassName(className_), notes(notes_)
{
}
void Proposal::setHyperparameters(nlohmann::json& hyperparameters)
{
if (hyperparameters.contains("ld_proposed_cuts")) {
ld_params.proposed_cuts = hyperparameters["ld_proposed_cuts"];
hyperparameters.erase("ld_proposed_cuts");
}
if (hyperparameters.contains("mdlp_max_depth")) {
ld_params.max_depth = hyperparameters["mdlp_max_depth"];
hyperparameters.erase("mdlp_max_depth");
}
if (hyperparameters.contains("mdlp_min_length")) {
ld_params.min_length = hyperparameters["mdlp_min_length"];
hyperparameters.erase("mdlp_min_length");
}
if (hyperparameters.contains("ld_algorithm")) {
auto algorithm = hyperparameters["ld_algorithm"];
hyperparameters.erase("ld_algorithm");
if (algorithm == "MDLP") {
discretizationType = discretization_t::MDLP;
} else if (algorithm == "BINQ") {
discretizationType = discretization_t::BINQ;
} else if (algorithm == "BINU") {
discretizationType = discretization_t::BINU;
} else {
throw std::invalid_argument("Invalid discretization algorithm: " + algorithm.get<std::string>());
}
}
// Convergence parameters
if (hyperparameters.contains("max_iterations")) {
convergence_params.maxIterations = hyperparameters["max_iterations"];
hyperparameters.erase("max_iterations");
}
if (hyperparameters.contains("verbose_convergence")) {
convergence_params.verbose = hyperparameters["verbose_convergence"];
hyperparameters.erase("verbose_convergence");
}
}
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
{
if (!torch::is_floating_point(X)) {
throw std::invalid_argument("X must be a floating point tensor");
}
if (torch::is_floating_point(y)) {
throw std::invalid_argument("y must be an integer tensor");
}
}
// Fit method for single classifier
map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<std::string, std::vector<int>> states = oldStates;
std::vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
std::vector<std::string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
std::vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
std::vector<std::string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto yxv = factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = std::vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
model.fit(pDataset, weights, pFeatures, pClassName, states, Smoothing_t::ORIGINAL);
}
return states;
}
map<std::string, std::vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<std::string, std::vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, torch::kInt32);
auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
std::unique_ptr<mdlp::Discretizer> discretizer;
for (auto i = 0; i < pFeatures.size(); ++i) {
if (discretizationType == discretization_t::BINQ) {
discretizer = std::make_unique<mdlp::BinDisc>(ld_params.proposed_cuts, mdlp::strategy_t::QUANTILE);
} else if (discretizationType == discretization_t::BINU) {
discretizer = std::make_unique<mdlp::BinDisc>(ld_params.proposed_cuts, mdlp::strategy_t::UNIFORM);
} else { // Default is MDLP
discretizer = std::make_unique<mdlp::CPPFImdlp>(ld_params.min_length, ld_params.max_depth, ld_params.proposed_cuts);
}
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = std::move(discretizer);
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = std::vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = std::vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
std::vector<int> Proposal::factorize(const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
}
yy.push_back(labelMap[label]);
}
return yy;
}
template<typename Classifier>
map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization(
const torch::Tensor& y,
Classifier* classifier,
torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className,
const map<std::string, std::vector<int>>& initialStates,
Smoothing_t smoothing
)
{
// Phase 1: Initial discretization (same as original)
auto currentStates = fit_local_discretization(y);
auto previousModel = Network();
if (convergence_params.verbose) {
std::cout << "Starting iterative local discretization with "
<< convergence_params.maxIterations << " max iterations" << std::endl;
}
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
for (int iteration = 0; iteration < convergence_params.maxIterations; ++iteration) {
if (convergence_params.verbose) {
std::cout << "Iteration " << (iteration + 1) << "/" << convergence_params.maxIterations << std::endl;
}
// Phase 2: Build model with current discretization
classifier->fit(dataset, features, className, currentStates, weights, smoothing);
// Phase 3: Network-aware discretization refinement
currentStates = localDiscretizationProposal(currentStates, classifier->getModel());
// Check convergence
if (iteration > 0 && previousModel == classifier->getModel()) {
if (convergence_params.verbose) {
std::cout << "Converged after " << (iteration + 1) << " iterations" << std::endl;
}
notes.push_back("Converged after " + std::to_string(iteration + 1) + " of "
+ std::to_string(convergence_params.maxIterations) + " iterations");
break;
}
// Update for next iteration
previousModel = classifier->getModel();
}
return currentStates;
}
// Explicit template instantiation for common classifier types
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<KDB>(
const torch::Tensor&, KDB*, torch::Tensor&, const std::vector<std::string>&,
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<TAN>(
const torch::Tensor&, TAN*, torch::Tensor&, const std::vector<std::string>&,
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
template map<std::string, std::vector<int>> Proposal::iterativeLocalDiscretization<SPODE>(
const torch::Tensor&, SPODE*, torch::Tensor&, const std::vector<std::string>&,
const std::string&, const map<std::string, std::vector<int>>&, Smoothing_t);
}