Add new hyperparameters to the Ld classifiers

- *ld_algorithm*: algorithm to use for local discretization, with the following options: "MDLP", "BINQ", "BINU".
  - *ld_proposed_cuts*: number of cut points to return.
  - *mdlp_min_length*: minimum length of a partition in MDLP algorithm to be evaluated for partition.
  - *mdlp_max_depth*: maximum level of recursion in MDLP algorithm.
This commit is contained in:
2025-06-29 13:00:34 +02:00
parent dafd5672bc
commit 9f3de4d924
10 changed files with 104 additions and 18 deletions

View File

@@ -7,6 +7,17 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased]
## [1.2.0] - 2025-06-30
### Internal
- Add docs generation to CMakeLists.txt.
- Add new hyperparameters to the Ld classifiers:
- *ld_algorithm*: algorithm to use for local discretization, with the following options: "MDLP", "BINQ", "BINU".
- *ld_proposed_cuts*: number of cut points to return.
- *mdlp_min_length*: minimum length of a partition in MDLP algorithm to be evaluated for partition.
- *mdlp_max_depth*: maximum level of recursion in MDLP algorithm.
## [1.1.1] - 2025-05-20
### Internal

View File

@@ -10,17 +10,16 @@
#include "Classifier.h"
namespace bayesnet {
class KDB : public Classifier {
private:
int k;
float theta;
protected:
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
void buildModel(const torch::Tensor& weights) override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() = default;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
protected:
int k;
float theta;
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
void buildModel(const torch::Tensor& weights) override;
};
}
#endif

View File

@@ -7,7 +7,25 @@
#include "KDBLd.h"
namespace bayesnet {
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className)
{
validHyperparameters = validHyperparameters_ld;
validHyperparameters.push_back("k");
validHyperparameters.push_back("theta");
}
void KDBLd::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
hyperparameters.erase("k");
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
hyperparameters.erase("theta");
}
Proposal::setHyperparameters(hyperparameters);
}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
checkInput(X_, y_);

View File

@@ -11,12 +11,12 @@
namespace bayesnet {
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
torch::Tensor predict(torch::Tensor& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };

View File

@@ -7,13 +7,42 @@
#include "Proposal.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_)
{
for (auto& [key, value] : discretizers) {
delete value;
}
void Proposal::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("ld_proposed_cuts")) {
ld_params.proposed_cuts = hyperparameters["ld_proposed_cuts"];
hyperparameters.erase("ld_proposed_cuts");
}
if (hyperparameters.contains("mdlp_max_depth")) {
ld_params.max_depth = hyperparameters["mdlp_max_depth"];
hyperparameters.erase("mdlp_max_depth");
}
if (hyperparameters.contains("mdlp_min_length")) {
ld_params.min_length = hyperparameters["mdlp_min_length"];
hyperparameters.erase("mdlp_min_length");
}
if (hyperparameters.contains("ld_algorithm")) {
auto algorithm = hyperparameters["ld_algorithm"];
hyperparameters.erase("ld_algorithm");
if (algorithm == "MDLP") {
discretizationType = discretization_t::MDLP;
} else if (algorithm == "BINQ") {
discretizationType = discretization_t::BINQ;
} else if (algorithm == "BINU") {
discretizationType = discretization_t::BINU;
} else {
throw std::invalid_argument("Invalid discretization algorithm: " + algorithm.get<std::string>());
}
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters for Proposal: " + hyperparameters.dump());
}
}
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
{
if (!torch::is_floating_point(X)) {
@@ -84,8 +113,15 @@ namespace bayesnet {
pDataset = torch::zeros({ n + 1, m }, torch::kInt32);
auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
std::unique_ptr<mdlp::Discretizer> discretizer;
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
if (discretizationType == discretization_t::BINQ) {
discretizer = std::make_unique<mdlp::BinDisc>(ld_params.proposed_cuts, mdlp::strategy_t::QUANTILE);
} else if (discretizationType == discretization_t::BINU) {
discretizer = std::make_unique<mdlp::BinDisc>(ld_params.proposed_cuts, mdlp::strategy_t::UNIFORM);
} else { // Default is MDLP
discretizer = std::make_unique<mdlp::CPPFImdlp>(ld_params.min_length, ld_params.max_depth, ld_params.proposed_cuts);
}
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
@@ -93,7 +129,7 @@ namespace bayesnet {
auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
discretizers[pFeatures[i]] = std::move(discretizer);
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = std::vector<int>(n_classes);

View File

@@ -10,14 +10,16 @@
#include <map>
#include <torch/torch.h>
#include <fimdlp/CPPFImdlp.h>
#include <fimdlp/BinDisc.h>
#include "bayesnet/network/Network.h"
#include <nlohmann/json.hpp>
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
virtual ~Proposal();
void setHyperparameters(const nlohmann::json& hyperparameters_);
protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X);
@@ -25,12 +27,24 @@ namespace bayesnet {
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<std::string, mdlp::CPPFImdlp*> discretizers;
map<std::string, std::unique_ptr<mdlp::Discretizer>> discretizers;
// MDLP parameters
struct {
size_t min_length = 3; // Minimum length of the interval to consider it in mdlp
float proposed_cuts = 0.0; // Proposed cuts for the Discretization algorithm
int max_depth = std::numeric_limits<int>::max(); // Maximum depth of the MDLP tree
} ld_params;
nlohmann::json validHyperparameters_ld = { "ld_algorithm", "ld_proposed_cuts", "mdlp_min_length", "mdlp_max_depth" };
private:
std::vector<int> factorize(const std::vector<std::string>& labels_t);
torch::Tensor& pDataset; // (n+1)xm tensor
std::vector<std::string>& pFeatures;
std::string& pClassName;
enum class discretization_t {
MDLP,
BINQ,
BINU
} discretizationType = discretization_t::MDLP; // Default discretization type
};
}

View File

@@ -7,7 +7,11 @@
#include "SPODELd.h"
namespace bayesnet {
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className)
{
validHyperparameters = validHyperparameters_ld; // Inherits the valid hyperparameters from Proposal
}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
checkInput(X_, y_);

View File

@@ -9,6 +9,7 @@
namespace bayesnet {
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
{
validHyperparameters = validHyperparameters_ld; // Inherits the valid hyperparameters from Proposal
}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
{
@@ -31,6 +32,7 @@ namespace bayesnet {
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
models.back()->setHyperparameters(hyperparameters);
}
n_models = models.size();
significanceModels = std::vector<double>(n_models, 1.0);

View File

@@ -20,6 +20,8 @@ namespace bayesnet {
protected:
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
void buildModel(const torch::Tensor& weights) override;
private:
nlohmann::json hyperparameters = {}; // Hyperparameters for the model
};
}
#endif // !AODELD_H

View File

@@ -18,7 +18,7 @@
std::map<std::string, std::string> modules = {
{ "mdlp", "2.0.1" },
{ "Folding", "1.1.1" },
{ "json", "3.12" },
{ "json", "3.11" },
{ "ArffFiles", "1.1.0" }
};