- *ld_algorithm*: algorithm to use for local discretization, with the following options: "MDLP", "BINQ", "BINU". - *ld_proposed_cuts*: number of cut points to return. - *mdlp_min_length*: minimum length of a partition in MDLP algorithm to be evaluated for partition. - *mdlp_max_depth*: maximum level of recursion in MDLP algorithm.
58 lines
2.1 KiB
C++
58 lines
2.1 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
|
|
#include "KDBLd.h"
|
|
|
|
namespace bayesnet {
|
|
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className)
|
|
{
|
|
validHyperparameters = validHyperparameters_ld;
|
|
validHyperparameters.push_back("k");
|
|
validHyperparameters.push_back("theta");
|
|
}
|
|
void KDBLd::setHyperparameters(const nlohmann::json& hyperparameters_)
|
|
{
|
|
auto hyperparameters = hyperparameters_;
|
|
if (hyperparameters.contains("k")) {
|
|
k = hyperparameters["k"];
|
|
hyperparameters.erase("k");
|
|
}
|
|
if (hyperparameters.contains("theta")) {
|
|
theta = hyperparameters["theta"];
|
|
hyperparameters.erase("theta");
|
|
}
|
|
Proposal::setHyperparameters(hyperparameters);
|
|
}
|
|
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
|
{
|
|
checkInput(X_, y_);
|
|
features = features_;
|
|
className = className_;
|
|
Xf = X_;
|
|
y = y_;
|
|
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
|
states = fit_local_discretization(y);
|
|
// We have discretized the input data
|
|
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
|
KDB::fit(dataset, features, className, states, smoothing);
|
|
states = localDiscretizationProposal(states, model);
|
|
return *this;
|
|
}
|
|
torch::Tensor KDBLd::predict(torch::Tensor& X)
|
|
{
|
|
auto Xt = prepareX(X);
|
|
return KDB::predict(Xt);
|
|
}
|
|
torch::Tensor KDBLd::predict_proba(torch::Tensor& X)
|
|
{
|
|
auto Xt = prepareX(X);
|
|
return KDB::predict_proba(Xt);
|
|
}
|
|
std::vector<std::string> KDBLd::graph(const std::string& name) const
|
|
{
|
|
return KDB::graph(name);
|
|
}
|
|
} |