mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-15 07:26:02 +00:00
Add results report
Add directory of datasets Add validation test
This commit is contained in:
115
analysis_mysql.py
Normal file
115
analysis_mysql.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from experimentation.Sets import Datasets
|
||||
from experimentation.Utils import TextColor, MySQL
|
||||
|
||||
models = ["stree", "odte", "adaBoost", "bagging"]
|
||||
title = "Best model results"
|
||||
lengths = (30, 9, 11, 11, 11, 11)
|
||||
|
||||
|
||||
def find_best(dataset, classifier):
|
||||
cursor = database.cursor(buffered=True)
|
||||
if classifier == "any":
|
||||
command = (
|
||||
f"select * from results r inner join reference e on "
|
||||
f"r.dataset=e.dataset where r.dataset='{dataset}' "
|
||||
)
|
||||
else:
|
||||
command = (
|
||||
f"select * from results r inner join reference e on "
|
||||
f"r.dataset=e.dataset where r.dataset='{dataset}' and classifier"
|
||||
f"='{classifier}'"
|
||||
)
|
||||
command += (
|
||||
" order by r.dataset, accuracy desc, classifier desc, type, date, time"
|
||||
)
|
||||
cursor.execute(command)
|
||||
return cursor.fetchone()
|
||||
|
||||
|
||||
def report_header_content(title):
|
||||
length = sum(lengths) + len(lengths) - 1
|
||||
output = "\n" + "*" * length + "\n"
|
||||
num = (length - len(title) - 2) // 2
|
||||
num2 = length - len(title) - 2 - 2 * num
|
||||
output += "*" + " " * num + title + " " * (num + num2) + "*\n"
|
||||
output += "*" * length + "\n\n"
|
||||
lines = ""
|
||||
for item, data in enumerate(fields):
|
||||
output += f"{fields[item]:{lengths[item]}} "
|
||||
lines += "=" * lengths[item] + " "
|
||||
output += f"\n{lines}"
|
||||
return output
|
||||
|
||||
|
||||
def report_header(exclude_params):
|
||||
print(TextColor.HEADER + report_header_content(title) + TextColor.ENDC)
|
||||
|
||||
|
||||
def report_line(line):
|
||||
output = f"{line['dataset']:{lengths[0] + 5}s} "
|
||||
data = models.copy()
|
||||
data.insert(0, "reference")
|
||||
for key, model in enumerate(data):
|
||||
output += f"{line[model]:{lengths[key + 1]}s} "
|
||||
return output
|
||||
|
||||
|
||||
def report_footer(agg):
|
||||
print(TextColor.GREEN + f"we have better results {agg['better']:2d} times")
|
||||
print(TextColor.RED + f"we have worse results {agg['worse']:2d} times")
|
||||
color = TextColor.LINE1
|
||||
for item in models:
|
||||
print(color + f"{item:10s} used {agg[item]:2d} times")
|
||||
color = (
|
||||
TextColor.LINE2 if color == TextColor.LINE1 else TextColor.LINE1
|
||||
)
|
||||
|
||||
|
||||
database = MySQL.get_connection()
|
||||
dt = Datasets(False, False, "tanveer")
|
||||
fields = ("Dataset", "Reference")
|
||||
for model in models:
|
||||
fields += (f"{model}",)
|
||||
report_header(title)
|
||||
color = TextColor.LINE1
|
||||
agg = {}
|
||||
for item in [
|
||||
"better",
|
||||
"worse",
|
||||
] + models:
|
||||
agg[item] = 0
|
||||
for dataset in dt:
|
||||
find_one = False
|
||||
line = {"dataset": color + dataset[0]}
|
||||
record = find_best(dataset[0], "any")
|
||||
max_accuracy = 0.0 if record is None else record[5]
|
||||
for model in models:
|
||||
record = find_best(dataset[0], model)
|
||||
if record is None:
|
||||
line[model] = color + "-" * 9 + " "
|
||||
else:
|
||||
reference = record[10]
|
||||
accuracy = record[5]
|
||||
find_one = True
|
||||
agg[model] += 1
|
||||
if accuracy > reference:
|
||||
sign = "+"
|
||||
agg["better"] += 1
|
||||
else:
|
||||
sign = "-"
|
||||
agg["worse"] += 1
|
||||
item = f"{accuracy:9.7} {sign}"
|
||||
line["reference"] = f"{reference:9.7}"
|
||||
line[model] = (
|
||||
TextColor.GREEN + TextColor.BOLD + item + TextColor.ENDC
|
||||
if accuracy == max_accuracy
|
||||
else color + item
|
||||
)
|
||||
if not find_one:
|
||||
print(TextColor.FAIL + f"*No results found for {dataset[0]}")
|
||||
else:
|
||||
color = (
|
||||
TextColor.LINE2 if color == TextColor.LINE1 else TextColor.LINE1
|
||||
)
|
||||
print(report_line(line))
|
||||
report_footer(agg)
|
32
dir_data.py
Normal file
32
dir_data.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from experimentation.Utils import TextColor
|
||||
from experimentation.Sets import Datasets
|
||||
|
||||
path = os.path.join(os.getcwd(), "data/tanveer")
|
||||
color = TextColor.LINE1
|
||||
dt = np.array(list(Datasets(False, False, "tanveer")), dtype="object")
|
||||
dt = dt[:, 0]
|
||||
good = bad = 0
|
||||
for folder in sorted(os.listdir(path)):
|
||||
file_name = os.path.join(path, folder, f"{folder}_R.dat")
|
||||
try:
|
||||
data = pd.read_csv(
|
||||
file_name,
|
||||
sep="\t",
|
||||
index_col=0,
|
||||
)
|
||||
X = data.drop("clase", axis=1).to_numpy()
|
||||
y = data["clase"].to_numpy()
|
||||
sign = "*" if folder in dt else "-"
|
||||
print(color + f"{folder:30s} {str(X.shape):>10s} {sign}")
|
||||
color = (
|
||||
TextColor.LINE1 if color == TextColor.LINE2 else TextColor.LINE2
|
||||
)
|
||||
good += 1
|
||||
except FileNotFoundError:
|
||||
print(TextColor.FAIL + f"{folder} not found.")
|
||||
bad += 1
|
||||
print(TextColor.SUCCESS + f"{good:3d} datasets Ok.")
|
||||
print(TextColor.FAIL + f"{bad:3d} datasets Wrong.")
|
182
kite_tutorial.ipynb
Normal file
182
kite_tutorial.ipynb
Normal file
@@ -0,0 +1,182 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
"### Welcome to Kite's JupyterLab extension tutorial\n",
|
||||
"\n",
|
||||
"Kite gives you **ML-powered autocompletions** and **rich documentation** inside JupyterLab. This guide will teach you everything you need to know about Kite in 5 minutes or less.\n",
|
||||
"\n",
|
||||
"> 💡 _**Tip:** You can open this file at any time with the command `Kite: Open Tutorial` in JupyterLab's command palette._\n",
|
||||
"\n",
|
||||
"#### Before we start...\n",
|
||||
"\n",
|
||||
"Make sure that the Kite icon at the bottom of the window reads `Kite: ready`.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"* If it says `Kite: not running`, please start the Kite Engine first.\n",
|
||||
"* If it says `Kite: not installed`, please [download and install Kite](https://kite.com/download) first."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Part 1: Autocompletions\n",
|
||||
"\n",
|
||||
"**Step 1a**<br/>\n",
|
||||
"Run the code cell below with all the necessary imports 👇"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Run me!\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Step 1b**<br/>\n",
|
||||
"Let's try typing out some code to plot a sine graph. As you type, Kite will automatically show you completions for what you're going to type next.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"> 💡 _**Tip:** You can turn completions docs on and off in JupyterLab's command palette with the command `Kite: Toggle Docs Panel`._\n",
|
||||
"\n",
|
||||
"> 💡 _**Tip:** The starred completions ★ are from Kite Pro. You can [start your free Kite Pro trial](https://www.kite.com/pro/trial/) anytime. Afterwards, if you choose not to upgrade, you can still use Kite 100% for free._\n",
|
||||
"\n",
|
||||
"Try typing out the code yourself to see Kite's autocompletions in action.<br/>\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"x = np.linspace(-np.pi, np.pi, 50)\n",
|
||||
"y = np.sin(x)\n",
|
||||
"plt.plot(x, y)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Type this code in the cell below 👇"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Put code in me\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Part 2: Manual completions\n",
|
||||
"\n",
|
||||
"You can still use JupyterLab's builtin kernel completions. These are particularly useful when you need to access a `DataFrame`'s column names.\n",
|
||||
"\n",
|
||||
"**Step 2a**<br/>\n",
|
||||
"First, run the code cell below to get some sample data to store in a `DataFrame` 👇"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Run me!\n",
|
||||
"url = 'https://kite.com/kite-public/iris.csv'\n",
|
||||
"df = pd.read_csv(url)\n",
|
||||
"df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Step 2b**<br/>\n",
|
||||
"Let's plot a scatter graph of sepal length vs. sepal width. When you are accessing a `DataFrame`'s columns, you'll still need to hit `tab` to request completions from the kernel.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Try requesting kernel completions yourself.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"plt.scatter(df['sepal_length'], df['sepal_width'])\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Type this code in the cell below, making sure to hit `tab` when you are filling in the column names 👇"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Put code in me\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Part 3: Copilot Documentation\n",
|
||||
"\n",
|
||||
"If you've enabled \"docs following cursor\" in the Copilot, the Copilot will automatically update with the documentation of the identifier underneath your cursor.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"**Step 3a**<br/>\n",
|
||||
"Try it yourself! Just click around in the code cells of this notebook and see the Copilot update automatically."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### The End\n",
|
||||
"\n",
|
||||
"Now you know everything you need to know about Kite's JupyterLab plugin. Kite is under active development and we expect to ship improvements and more features in the near future.\n",
|
||||
"\n",
|
||||
"In the meantime, if you experience bugs or have feature requests, feel free to open an issue in our [public GitHub repo](https://github.com/kiteco/issue-tracker).\n",
|
||||
"\n",
|
||||
"Happy coding!"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
@@ -30,65 +30,9 @@
|
||||
"import json\n",
|
||||
"import sqlite3\n",
|
||||
"import mysql.connector\n",
|
||||
"from experimentation.Utils import MySQL\n",
|
||||
"\n",
|
||||
"database = mysql.connector.connect(\n",
|
||||
" host=\"atenea.rmontanana.es\",\n",
|
||||
" port=31428,\n",
|
||||
" user=\"stree\",\n",
|
||||
" password=\"xtree\",\n",
|
||||
" database=\"stree\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"replace into results (date, time, type, accuracy, dataset, classifier, norm, stand, parameters) values (%s, %s, %s, %s, %s, %s, %s, %s, %s) ('2020-11-18', '12:03:17', 0.99786, '', 'stree', True, False, '{\"C\": 0.15, \"degree\": 6, \"gamma\": 0.7, \"kernel\": \"poly\", \"max_features\": null, \"max_iter\": 100000.0, \"random_state\": 0}')\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"cursor = database.cursor()\n",
|
||||
"date = '2020-11-18'\n",
|
||||
"time = '12:03:17'\n",
|
||||
"accuracy = 0.99786\n",
|
||||
"dataset = ''\n",
|
||||
"clf = 'stree'\n",
|
||||
"norm = True\n",
|
||||
"stand = False\n",
|
||||
"parameters = {\"C\": .15, \"degree\": 6, \"gamma\": .7, \"kernel\": \"poly\", \"max_features\": None, \"max_iter\": 100000.0, \"random_state\": 0}\n",
|
||||
"command_insert = \"replace into results (date, time, type, accuracy, dataset, classifier, norm, stand, parameters) values (%s, %s, %s, %s, %s, %s, %s, %s, %s)\"\n",
|
||||
"values = (date, time, accuracy, dataset, clf, norm, stand, json.dumps(parameters))\n",
|
||||
"print(command_insert, values)\n",
|
||||
"#cursor.execute(command_insert, values)\n",
|
||||
"database.commit()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'{\"C\": 0.15, \"degree\": 6, \"gamma\": 0.7, \"kernel\": \"poly\", \"max_features\": null, \"max_iter\": 100000.0, \"random_state\": 0}'"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 3
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"json.dumps(parameters)"
|
||||
"database = MySQL.get_connection()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -473,8 +417,7 @@
|
||||
" values =(date, time, record_type, record['test_score'], record['dataset'], model, record['normalize'], record['standardize'], record['parameters'])\n",
|
||||
" print(f\"{date} - {time} - {record['dataset']}\")\n",
|
||||
" cursor.execute(command_insert, values)\n",
|
||||
" database.commit()\n",
|
||||
"\n"
|
||||
" database.commit()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -566,13 +509,6 @@
|
||||
" cursor.execute(command, values)\n",
|
||||
"database.commit()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
]
|
||||
}
|
386
param_analysis.ipynb
Normal file
386
param_analysis.ipynb
Normal file
@@ -0,0 +1,386 @@
|
||||
{
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.2-final"
|
||||
},
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2,
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import sqlite3\n",
|
||||
"import mysql.connector\n",
|
||||
"from experimentation.Utils import MySQL\n",
|
||||
"from experimentation.Sets import Datasets\n",
|
||||
"\n",
|
||||
"database = MySQL.get_connection()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"classifier = 'bagging'\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_best(dataset):\n",
|
||||
" cursor = database.cursor(buffered=True)\n",
|
||||
" if classifier == \"any\":\n",
|
||||
" command = (\n",
|
||||
" f\"select * from results r inner join reference e on \"\n",
|
||||
" f\"r.dataset=e.dataset where r.dataset='{dataset}' \"\n",
|
||||
" )\n",
|
||||
" else:\n",
|
||||
" command = (\n",
|
||||
" f\"select * from results r inner join reference e on \"\n",
|
||||
" f\"r.dataset=e.dataset where r.dataset='{dataset}' and classifier\"\n",
|
||||
" f\"='{classifier}'\"\n",
|
||||
" )\n",
|
||||
" command += (\n",
|
||||
" \" order by r.dataset, accuracy desc, classifier desc, type, date, time\"\n",
|
||||
" )\n",
|
||||
" cursor.execute(command)\n",
|
||||
" return cursor.fetchone()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_values(parameter, kernel_chosen):\n",
|
||||
" result = []\n",
|
||||
" for data in agg[kernel_chosen]:\n",
|
||||
" base_parameter = f\"base_estimator__{parameter}\"\n",
|
||||
" if parameter in data.keys():\n",
|
||||
" result.append(data[parameter])\n",
|
||||
" if base_parameter in data.keys():\n",
|
||||
" result.append(data[base_parameter])\n",
|
||||
" try:\n",
|
||||
" result_ordered = sorted(result)\n",
|
||||
" return result_ordered\n",
|
||||
" except TypeError:\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Aggregating data ..................................................\n",
|
||||
"stree has 0 results\n",
|
||||
"adaBoost has 0 results\n",
|
||||
"bagging has 43 results\n",
|
||||
"odte has 0 results\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dt = Datasets(False, False, 'tanveer')\n",
|
||||
"models = ['stree', 'adaBoost', 'bagging', 'odte']\n",
|
||||
"agg_models = {}\n",
|
||||
"for i in models:\n",
|
||||
" agg_models[i] = 0\n",
|
||||
"agg = {'linear': [], 'rbf': [], 'poly': []}\n",
|
||||
"print(\"Aggregating data .\", end='')\n",
|
||||
"for dataset in dt:\n",
|
||||
" result = find_best(dataset[0])\n",
|
||||
" print('.', end='')\n",
|
||||
" if result:\n",
|
||||
" agg_models[result[3]] += 1\n",
|
||||
" json_result = json.loads(result[8])\n",
|
||||
" key = json_result['kernel'] if 'kernel' in json_result.keys() else 'linear'\n",
|
||||
" agg[key].append(json_result)\n",
|
||||
"print('')\n",
|
||||
"for i in models:\n",
|
||||
" print(f\"{i:10} has {agg_models[i]:2} results\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Used kernel linear: 43 times\nUsed kernel poly: 0 times\nUsed kernel rbf: 0 times\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(\"Used kernel linear: \", len(agg['linear']), ' times')\n",
|
||||
"print(\"Used kernel poly: \", len(agg['poly']), ' times')\n",
|
||||
"print(\"Used kernel rbf: \", len(agg['rbf']), ' times')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 7
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"find_values('gamma', 'poly')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[0.05,\n",
|
||||
" 0.05,\n",
|
||||
" 0.05,\n",
|
||||
" 0.05,\n",
|
||||
" 0.05,\n",
|
||||
" 0.05,\n",
|
||||
" 0.2,\n",
|
||||
" 0.2,\n",
|
||||
" 0.2,\n",
|
||||
" 0.2,\n",
|
||||
" 0.2,\n",
|
||||
" 0.2,\n",
|
||||
" 0.2,\n",
|
||||
" 0.55,\n",
|
||||
" 0.55,\n",
|
||||
" 0.55,\n",
|
||||
" 1.0,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 7,\n",
|
||||
" 55,\n",
|
||||
" 55,\n",
|
||||
" 55,\n",
|
||||
" 55,\n",
|
||||
" 55,\n",
|
||||
" 55,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0,\n",
|
||||
" 10000.0]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 8
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"find_values('C', 'linear')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 9
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"find_values('C', 'poly')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 10
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"find_values('C', 'rbf')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.2,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.2,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.2,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.2,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" None,\n",
|
||||
" 0.6,\n",
|
||||
" 'auto',\n",
|
||||
" 0.6,\n",
|
||||
" 'auto']"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 11
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"find_values('max_features', 'linear')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
]
|
||||
}
|
@@ -1,290 +0,0 @@
|
||||
{
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.2-final"
|
||||
},
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2,
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import sqlite3\n",
|
||||
"import mysql.connector\n",
|
||||
"from experimentation.Sets import Datasets\n",
|
||||
"from experimentation.Utils import TextColor\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"database = mysql.connector.connect(\n",
|
||||
" host=\"atenea.rmontanana.es\",\n",
|
||||
" port=31428,\n",
|
||||
" user=\"stree\",\n",
|
||||
" password=\"xtree\",\n",
|
||||
" database=\"stree\",\n",
|
||||
")\n",
|
||||
"dt = Datasets(False, False, 'tanveer')\n",
|
||||
"\n",
|
||||
"#\n",
|
||||
"# CONFIGURABLE REPORT PARAMETERS\n",
|
||||
"#\n",
|
||||
"exclude_parameters = True\n",
|
||||
"# classififer can be {any, stree, bagging, adaBoost, odte}\n",
|
||||
"classifier = \"stree\"\n",
|
||||
"title = \"Best Hyperparameters found for datasets\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_best(dataset):\n",
|
||||
" cursor = database.cursor(buffered=True)\n",
|
||||
" if classifier == \"any\":\n",
|
||||
" command = f\"select * from results r inner join reference e on r.dataset=e.dataset where r.dataset='{dataset}' \"\n",
|
||||
" else:\n",
|
||||
" command = f\"select * from results r inner join reference e on r.dataset=e.dataset where r.dataset='{dataset}' and classifier='{classifier}'\" \n",
|
||||
" command += \" order by r.dataset, accuracy desc, classifier desc, type, date, time\"\n",
|
||||
" cursor.execute(command)\n",
|
||||
" return cursor.fetchone()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lengths = (10, 8, 10, 10, 30, 3, 3, 9, 11)\n",
|
||||
"if exclude_parameters:\n",
|
||||
" fields = ('Date', 'Time', 'Type', 'Classifier', 'Dataset', 'Nor', 'Std', 'Accuracy', 'Reference')\n",
|
||||
" lengths = (10, 8, 10, 10, 30, 3, 3, 9, 11)\n",
|
||||
"else:\n",
|
||||
" fields = ('Date', 'Time', 'Type', 'Classifier', 'Dataset', 'Nor', 'Std', 'Accuracy', 'Reference', 'Parameters')\n",
|
||||
" lengths = (10, 8, 10, 10, 30, 3, 3, 9, 11, 30)\n",
|
||||
"def report_header_content(title):\n",
|
||||
" length = sum(lengths) + len(lengths) - 1\n",
|
||||
" output = \"\\n\" + \"*\" * length + \"\\n\"\n",
|
||||
" title = title + f\" -- {classifier} classifier --\"\n",
|
||||
" num = (length - len(title) - 2) // 2\n",
|
||||
" num2 = length - len(title) - 2 - 2 * num\n",
|
||||
" output += \"*\" + \" \" * num + title + \" \" * (num + num2) + \"*\\n\"\n",
|
||||
" output += \"*\" * length + \"\\n\\n\"\n",
|
||||
" lines = \"\"\n",
|
||||
" for item, data in enumerate(fields):\n",
|
||||
" output += f\"{fields[item]:{lengths[item]}} \"\n",
|
||||
" lines += \"=\" * lengths[item] + \" \"\n",
|
||||
" output += f\"\\n{lines}\"\n",
|
||||
" return output\n",
|
||||
"def report_header(exclude_params):\n",
|
||||
" print(\n",
|
||||
" TextColor.HEADER\n",
|
||||
" + report_header_content(title)\n",
|
||||
" + TextColor.ENDC\n",
|
||||
" )\n",
|
||||
"def report_line(record, agg):\n",
|
||||
" accuracy = record[5]\n",
|
||||
" expected = record[10]\n",
|
||||
" if accuracy < expected: \n",
|
||||
" agg['worse'] += 1\n",
|
||||
" sign = '-'\n",
|
||||
" elif accuracy > expected:\n",
|
||||
" agg['better'] += 1\n",
|
||||
" sign = '+'\n",
|
||||
" else:\n",
|
||||
" agg['equal'] +=1\n",
|
||||
" sign = '='\n",
|
||||
" output = f\"{record[0]:%Y-%m-%d} {str(record[1]):>8s} {record[2]:10s} {record[3]:10s} {record[4]:30s}\"\n",
|
||||
" output += f\" {record[6]:3d} {record[7]:3d} {accuracy:8.7f} {expected:8.7f} {sign}\"\n",
|
||||
" if not exclude_parameters:\n",
|
||||
" output += f\" {record[8]}\"\n",
|
||||
" return output\n",
|
||||
"def report_footer(agg):\n",
|
||||
" print(\n",
|
||||
" TextColor.GREEN\n",
|
||||
" + f\"we have better results {agg['better']:2d} times\"\n",
|
||||
" )\n",
|
||||
" print(\n",
|
||||
" TextColor.RED\n",
|
||||
" + f\"we have worse results {agg['worse']:2d} times\"\n",
|
||||
" )\n",
|
||||
" print(\n",
|
||||
" TextColor.MAGENTA\n",
|
||||
" + f\"we have equal results {agg['equal']:2d} times\"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"\u001b[95m\n",
|
||||
"******************************************************************************************************\n",
|
||||
"* Best Hyperparameters found for datasets -- stree classifier -- *\n",
|
||||
"******************************************************************************************************\n",
|
||||
"\n",
|
||||
"Date Time Type Classifier Dataset Nor Std Accuracy Reference \n",
|
||||
"========== ======== ========== ========== ============================== === === ========= =========== \u001b[0m\n",
|
||||
"\u001b[95m2020-11-13 12:04:24 crossval stree balance-scale 1 0 0.9488000 0.9046280 +\n",
|
||||
"\u001b[94m2020-11-13 12:04:25 crossval stree balloons 1 0 0.8666670 0.6625000 +\n",
|
||||
"\u001b[95m2020-11-13 12:04:25 crossval stree breast-cancer-wisc-diag 1 0 0.9789320 0.9743450 +\n",
|
||||
"\u001b[94m2020-11-13 12:04:25 crossval stree breast-cancer-wisc-prog 1 0 0.8284620 0.7993400 +\n",
|
||||
"\u001b[95m2020-11-13 12:04:25 crossval stree breast-cancer-wisc 1 0 0.9656940 0.9702560 -\n",
|
||||
"\u001b[94m2020-11-13 12:04:26 crossval stree breast-cancer 1 0 0.7308530 0.7382400 -\n",
|
||||
"\u001b[95m2020-11-13 12:04:26 crossval stree cardiotocography-10clases 1 0 0.6665220 0.8277610 -\n",
|
||||
"\u001b[94m2020-11-13 12:04:27 crossval stree cardiotocography-3clases 1 0 0.8480740 0.9201340 -\n",
|
||||
"\u001b[91m*No results found for conn-bench-sonar-mines-rocks\n",
|
||||
"\u001b[95m2020-11-13 12:04:27 crossval stree cylinder-bands 1 0 0.6326670 0.7691410 -\n",
|
||||
"\u001b[94m2020-11-13 12:04:27 crossval stree dermatology 1 0 0.9754540 0.9732780 +\n",
|
||||
"\u001b[95m2020-11-13 12:04:27 crossval stree echocardiogram 1 0 0.8472930 0.8485270 -\n",
|
||||
"\u001b[94m2020-11-13 12:04:27 crossval stree fertility 1 0 0.8800000 0.8840000 -\n",
|
||||
"\u001b[95m2020-11-13 12:04:28 crossval stree haberman-survival 1 0 0.7646750 0.7392540 +\n",
|
||||
"\u001b[94m2020-11-13 12:04:28 crossval stree heart-hungarian 1 0 0.8299240 0.8204750 +\n",
|
||||
"\u001b[95m2020-11-13 12:04:28 crossval stree hepatitis 1 0 0.8645160 0.8232030 +\n",
|
||||
"\u001b[94m2020-11-13 12:04:28 crossval stree ilpd-indian-liver 1 0 0.7426910 0.7150280 +\n",
|
||||
"\u001b[95m2020-11-13 12:04:28 crossval stree ionosphere 1 0 0.9487320 0.9442150 +\n",
|
||||
"\u001b[94m2020-11-13 12:04:28 crossval stree iris 0 0 0.9800000 0.9786560 +\n",
|
||||
"\u001b[95m2020-11-13 12:15:39 crossval stree led-display 1 0 0.7120000 0.7102000 +\n",
|
||||
"\u001b[91m*No results found for libras\n",
|
||||
"\u001b[91m*No results found for low-res-spect\n",
|
||||
"\u001b[94m2020-11-13 12:15:39 crossval stree lymphography 1 0 0.8648280 0.8554050 +\n",
|
||||
"\u001b[95m2020-11-13 12:15:39 crossval stree mammographic 1 0 0.8293720 0.8274720 +\n",
|
||||
"\u001b[91m*No results found for molec-biol-promoter\n",
|
||||
"\u001b[91m*No results found for musk-1\n",
|
||||
"\u001b[94m2020-11-13 12:15:39 crossval stree oocytes_merluccius_nucleus_4d 1 0 0.8082210 0.8399630 -\n",
|
||||
"\u001b[95m2020-11-13 12:15:39 crossval stree oocytes_merluccius_states_2f 1 0 0.9119030 0.9299630 -\n",
|
||||
"\u001b[94m2020-11-13 12:15:40 crossval stree oocytes_trisopterus_nucleus_2f 1 0 0.7476910 0.8333330 -\n",
|
||||
"\u001b[95m2020-11-13 12:15:40 crossval stree oocytes_trisopterus_states_5b 1 0 0.8453610 0.9315790 -\n",
|
||||
"\u001b[94m2020-11-13 12:15:40 crossval stree parkinsons 1 0 0.8461540 0.9202210 -\n",
|
||||
"\u001b[95m2020-11-13 12:15:41 crossval stree pima 1 0 0.7800020 0.7671880 +\n",
|
||||
"\u001b[94m2020-11-13 12:15:41 crossval stree pittsburg-bridges-MATERIAL 1 0 0.8861470 0.8642860 +\n",
|
||||
"\u001b[95m2020-11-13 12:15:41 crossval stree pittsburg-bridges-REL-L 1 0 0.6761900 0.6959290 -\n",
|
||||
"\u001b[94m2020-11-13 12:15:41 crossval stree pittsburg-bridges-SPAN 1 0 0.6771930 0.6891300 -\n",
|
||||
"\u001b[95m2020-11-13 12:15:41 crossval stree pittsburg-bridges-T-OR-D 1 0 0.9023810 0.8743700 +\n",
|
||||
"\u001b[94m2020-11-13 12:15:41 crossval stree planning 1 0 0.7255250 0.7255790 -\n",
|
||||
"\u001b[95m2020-11-13 12:15:41 crossval stree post-operative 1 0 0.7222220 0.7117420 +\n",
|
||||
"\u001b[94m2020-11-13 12:15:41 crossval stree seeds 1 0 0.9619050 0.9563030 +\n",
|
||||
"\u001b[95m2020-11-13 12:15:41 crossval stree statlog-australian-credit 1 0 0.6797100 0.6782810 +\n",
|
||||
"\u001b[94m2020-11-13 12:21:08 crossval stree statlog-german-credit 1 0 0.7620000 0.7562000 +\n",
|
||||
"\u001b[95m2020-11-13 12:21:08 crossval stree statlog-heart 1 0 0.8481480 0.8422990 +\n",
|
||||
"\u001b[94m2020-11-13 12:21:12 crossval stree statlog-image 1 0 0.9593070 0.9761940 -\n",
|
||||
"\u001b[95m2020-11-13 12:21:13 crossval stree statlog-vehicle 1 0 0.8014130 0.8006730 +\n",
|
||||
"\u001b[91m*No results found for synthetic-control\n",
|
||||
"\u001b[94m2020-11-13 12:21:13 crossval stree tic-tac-toe 1 0 0.9874350 0.9853850 +\n",
|
||||
"\u001b[95m2020-11-13 12:21:14 crossval stree vertebral-column-2clases 1 0 0.8290320 0.8491530 -\n",
|
||||
"\u001b[94m2020-11-13 12:21:14 crossval stree wine 1 0 0.9777780 0.9932810 -\n",
|
||||
"\u001b[95m2020-11-13 12:21:14 crossval stree zoo 1 0 0.9704760 0.9603850 +\n",
|
||||
"\u001b[92mwe have better results 25 times\n",
|
||||
"\u001b[91mwe have worse results 18 times\n",
|
||||
"\u001b[95mwe have equal results 0 times\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"report_header(title)\n",
|
||||
"color = TextColor.LINE1\n",
|
||||
"agg = {'equal': 0, 'better': 0, 'worse': 0}\n",
|
||||
"for dataset in dt:\n",
|
||||
" record = find_best(dataset[0])\n",
|
||||
" if record is None:\n",
|
||||
" print(TextColor.FAIL + f\"*No results found for {dataset[0]}\")\n",
|
||||
" else:\n",
|
||||
" color = TextColor.MAGENTA if color == TextColor.LINE1 else TextColor.LINE1\n",
|
||||
" print(color + report_line(record, agg))\n",
|
||||
"report_footer(agg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"******************************************************************************************************\n",
|
||||
"* Best Hyperparameters found for datasets -- any classifier -- *\n",
|
||||
"******************************************************************************************************\n",
|
||||
"\n",
|
||||
"Date Time Type Classifier Dataset Nor Std Accuracy Reference \n",
|
||||
"========== ======== ========== ========== ============================== === === ========= =========== \n",
|
||||
"\n",
|
||||
"2020-11-13 12:04:24 crossval stree balance-scale 1 0 0.9488000 0.9046280 +\n",
|
||||
"2020-11-13 12:04:25 crossval stree balloons 1 0 0.8666670 0.6625000 +\n",
|
||||
"2020-11-16 13:34:47 gridsearch bagging breast-cancer-wisc-diag 1 1 0.9806860 0.9743450 +\n",
|
||||
"2020-11-11 23:10:52 gridsearch bagging breast-cancer-wisc-prog 1 1 0.8337180 0.7993400 +\n",
|
||||
"2020-11-16 13:34:49 gridsearch bagging breast-cancer-wisc 1 1 0.9699790 0.9702560 -\n",
|
||||
"2020-11-18 23:04:30 gridsearch odte breast-cancer 1 1 0.7449490 0.7382400 +\n",
|
||||
"2020-11-16 13:37:13 gridsearch bagging cardiotocography-10clases 1 1 0.7022580 0.8277610 -\n",
|
||||
"2020-11-16 13:35:23 gridsearch bagging cardiotocography-3clases 1 1 0.8490220 0.9201340 -\n",
|
||||
"*No results found for conn-bench-sonar-mines-rocks\n",
|
||||
"2020-11-13 12:04:27 crossval stree cylinder-bands 1 0 0.6326670 0.7691410 -\n",
|
||||
"2020-11-13 12:04:27 crossval stree dermatology 1 0 0.9754540 0.9732780 +\n",
|
||||
"2020-11-13 12:04:27 crossval stree echocardiogram 1 0 0.8472930 0.8485270 -\n",
|
||||
"2020-11-19 15:22:26 gridsearch bagging fertility 1 1 0.8900000 0.8840000 +\n",
|
||||
"2020-11-13 12:04:28 crossval stree haberman-survival 1 0 0.7646750 0.7392540 +\n",
|
||||
"2020-11-13 12:04:28 crossval stree heart-hungarian 1 0 0.8299240 0.8204750 +\n",
|
||||
"2020-11-13 12:04:28 crossval stree hepatitis 1 0 0.8645160 0.8232030 +\n",
|
||||
"2020-11-13 12:04:28 crossval stree ilpd-indian-liver 1 0 0.7426910 0.7150280 +\n",
|
||||
"2020-11-16 13:34:59 gridsearch bagging ionosphere 1 1 0.9515490 0.9442150 +\n",
|
||||
"2020-11-03 18:52:15 gridsearch odte iris 1 0 0.9933330 0.9786560 +\n",
|
||||
"2020-11-13 12:15:39 crossval stree led-display 1 0 0.7120000 0.7102000 +\n",
|
||||
"*No results found for libras\n",
|
||||
"*No results found for low-res-spect\n",
|
||||
"2020-11-16 13:35:08 gridsearch bagging lymphography 1 1 0.8781610 0.8554050 +\n",
|
||||
"2020-11-13 12:15:39 crossval stree mammographic 1 0 0.8293720 0.8274720 +\n",
|
||||
"2020-11-16 22:17:03 gridsearch bagging molec-biol-promoter 1 1 0.9060610 0.8182690 +\n",
|
||||
"*No results found for musk-1\n",
|
||||
"2020-11-13 12:15:39 crossval stree oocytes_merluccius_nucleus_4d 1 0 0.8082210 0.8399630 -\n",
|
||||
"2020-11-13 12:15:39 crossval stree oocytes_merluccius_states_2f 1 0 0.9119030 0.9299630 -\n",
|
||||
"2020-11-13 12:15:40 crossval stree oocytes_trisopterus_nucleus_2f 1 0 0.7476910 0.8333330 -\n",
|
||||
"2020-11-16 13:35:41 gridsearch bagging oocytes_trisopterus_states_5b 1 1 0.8540800 0.9315790 -\n",
|
||||
"2020-11-13 12:15:40 crossval stree parkinsons 1 0 0.8461540 0.9202210 -\n",
|
||||
"2020-11-13 12:15:41 crossval stree pima 1 0 0.7800020 0.7671880 +\n",
|
||||
"2020-11-13 12:15:41 crossval stree pittsburg-bridges-MATERIAL 1 0 0.8861470 0.8642860 +\n",
|
||||
"2020-11-16 13:36:41 gridsearch bagging pittsburg-bridges-REL-L 1 1 0.6766670 0.6959290 -\n",
|
||||
"2020-11-16 13:22:50 gridsearch adaBoost pittsburg-bridges-SPAN 1 1 0.7210530 0.6891300 +\n",
|
||||
"2020-11-13 12:15:41 crossval stree pittsburg-bridges-T-OR-D 1 0 0.9023810 0.8743700 +\n",
|
||||
"2020-11-13 12:15:41 crossval stree planning 1 0 0.7255250 0.7255790 -\n",
|
||||
"2020-11-13 12:15:41 crossval stree post-operative 1 0 0.7222220 0.7117420 +\n",
|
||||
"2020-11-13 12:15:41 crossval stree seeds 1 0 0.9619050 0.9563030 +\n",
|
||||
"2020-11-13 12:15:41 crossval stree statlog-australian-credit 1 0 0.6797100 0.6782810 +\n",
|
||||
"2020-11-13 12:21:08 crossval stree statlog-german-credit 1 0 0.7620000 0.7562000 +\n",
|
||||
"2020-11-16 13:36:12 gridsearch bagging statlog-heart 1 1 0.8518520 0.8422990 +\n",
|
||||
"2020-11-16 14:04:13 gridsearch bagging statlog-image 1 1 0.9627710 0.9761940 -\n",
|
||||
"2020-11-13 12:21:13 crossval stree statlog-vehicle 1 0 0.8014130 0.8006730 +\n",
|
||||
"*No results found for synthetic-control\n",
|
||||
"2020-11-13 12:21:13 crossval stree tic-tac-toe 1 0 0.9874350 0.9853850 +\n",
|
||||
"2020-11-13 12:21:14 crossval stree vertebral-column-2clases 1 0 0.8290320 0.8491530 -\n",
|
||||
"2020-06-26 11:03:03 gridsearch odte wine 0 0 0.9800000 0.9932810 -\n",
|
||||
"2020-11-13 12:21:14 crossval stree zoo 1 0 0.9704760 0.9603850 +\n",
|
||||
"we have better results 29 times\n",
|
||||
"we have worse results 15 times\n",
|
||||
"we have equal results 0 times"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
}
|
||||
]
|
||||
}
|
@@ -1,25 +1,4 @@
|
||||
{
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.2-final"
|
||||
},
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2,
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
@@ -63,7 +42,16 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/rmontanana/.virtualenvs/general/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
|
||||
" warnings.warn(\"Liblinear failed to converge, increase \"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"clf = Stree(**parameters)\n",
|
||||
"results = cross_validate(clf, X, y, n_jobs=1)"
|
||||
@@ -75,16 +63,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'fit_time': array([0.00772715, 0.03221297, 0.01418114, 0.06252027, 0.05369782]),\n",
|
||||
" 'score_time': array([0.00048399, 0.00044394, 0.00045371, 0.00051093, 0.00044894]),\n",
|
||||
"{'fit_time': array([0.0078361 , 0.03171897, 0.01422501, 0.06850815, 0.05387974]),\n",
|
||||
" 'score_time': array([0.0005939 , 0.00044203, 0.00043583, 0.00050902, 0.00044012]),\n",
|
||||
" 'test_score': array([0.4047619 , 0.61904762, 0.66666667, 0.92682927, 0.58536585])}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"execution_count": 5
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -97,14 +85,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0.640534262485482"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"execution_count": 6
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -118,11 +106,11 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# 864 modelos por cada dataset\n",
|
||||
"C = [0.05, 0.2, 0.55, 7, 55, 1e4]\n",
|
||||
"max_iter = [1e4, 1e5, 1e6]\n",
|
||||
"gamma = [1e-1, 1, 1e1]\n",
|
||||
"max_features = [None, \"auto\"]\n",
|
||||
"split_criteria = [\"impurity\", \"max_samples\"]\n",
|
||||
"C = [0.2, 7, 55]\n",
|
||||
"max_iter = [1e4]\n",
|
||||
"gamma = [\"scale\"] #[1e-1, 1, 1e1]\n",
|
||||
"max_features = [\"auto\"]\n",
|
||||
"split_criteria = [\"impurity\"]\n",
|
||||
"param_grid = [\n",
|
||||
" {\n",
|
||||
" \"random_state\": [1],\n",
|
||||
@@ -159,7 +147,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"param_grid = [\n",
|
||||
"param2_grid = [\n",
|
||||
" {\n",
|
||||
" \"random_state\": [1],\n",
|
||||
" \"kernel\": [\"poly\"],\n",
|
||||
@@ -177,33 +165,235 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Fitting 2 folds for each of 12 candidates, totalling 24 fits\n",
|
||||
"[CV] C=0.2, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=0.2, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.548, total= 6.4min\n",
|
||||
"[CV] C=0.2, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 6.4min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=0.2, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.346, total= 9.2min\n",
|
||||
"[CV] C=7, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 15.7min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=7, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.673, total=17.0min\n",
|
||||
"[CV] C=7, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 32.7min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=7, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.356, total=10.9min\n",
|
||||
"[CV] C=55, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 43.6min remaining: 0.0s\n",
|
||||
"/Users/rmontanana/.virtualenvs/general/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
|
||||
" warnings.warn(\"Liblinear failed to converge, increase \"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=55, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.538, total= 7.3min\n",
|
||||
"[CV] C=55, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 50.9min remaining: 0.0s\n",
|
||||
"/Users/rmontanana/.virtualenvs/general/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
|
||||
" warnings.warn(\"Liblinear failed to converge, increase \"\n",
|
||||
"/Users/rmontanana/.virtualenvs/general/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
|
||||
" warnings.warn(\"Liblinear failed to converge, increase \"\n",
|
||||
"/Users/rmontanana/.virtualenvs/general/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
|
||||
" warnings.warn(\"Liblinear failed to converge, increase \"\n",
|
||||
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 55.8min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=55, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.317, total= 4.9min\n",
|
||||
"[CV] C=0.2, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=0.2, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.462, total=33.4min\n",
|
||||
"[CV] C=0.2, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 89.2min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=0.2, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.413, total= 2.8min\n",
|
||||
"[CV] C=7, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 92.0min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=7, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.529, total= 1.9min\n",
|
||||
"[CV] C=7, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 93.8min remaining: 0.0s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[CV] C=7, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.433, total= 2.8min\n",
|
||||
"[CV] C=55, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=55, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.519, total= 55.6s\n",
|
||||
"[CV] C=55, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=55, gamma=scale, kernel=rbf, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.394, total= 55.7s\n",
|
||||
"[CV] C=0.2, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=0.2, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.567, total= 5.5min\n",
|
||||
"[CV] C=0.2, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=0.2, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.413, total= 3.7min\n",
|
||||
"[CV] C=0.2, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=0.2, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.538, total= 5.5min\n",
|
||||
"[CV] C=0.2, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=0.2, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.442, total= 4.6min\n",
|
||||
"[CV] C=7, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=7, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.577, total= 2.7min\n",
|
||||
"[CV] C=7, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=7, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.510, total=15.6min\n",
|
||||
"[CV] C=7, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=7, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.452, total= 2.8min\n",
|
||||
"[CV] C=7, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=7, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.462, total= 4.7min\n",
|
||||
"[CV] C=55, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=55, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.596, total= 56.0s\n",
|
||||
"[CV] C=55, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=55, degree=3, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.404, total= 2.8min\n",
|
||||
"[CV] C=55, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=55, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.538, total= 1.8min\n",
|
||||
"[CV] C=55, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity \n",
|
||||
"[CV] C=55, degree=5, gamma=scale, kernel=poly, max_features=auto, max_iter=10000.0, random_state=1, split_criteria=impurity, score=0.375, total= 2.7min\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Parallel(n_jobs=1)]: Done 24 out of 24 | elapsed: 151.8min finished\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"GridSearchCV(estimator=Stree(), n_jobs=1,\n",
|
||||
" param_grid=[{'C': [55], 'degree': [5, 7], 'kernel': ['poly'],\n",
|
||||
" 'max_features': [None, 'auto'], 'random_state': [1],\n",
|
||||
" 'split_criteria': ['impurity', 'max_samples']}])"
|
||||
"GridSearchCV(cv=2, estimator=Stree(), n_jobs=1,\n",
|
||||
" param_grid=[{'C': [0.2, 7, 55], 'max_features': ['auto'],\n",
|
||||
" 'max_iter': [10000.0], 'random_state': [1],\n",
|
||||
" 'split_criteria': ['impurity']},\n",
|
||||
" {'C': [0.2, 7, 55], 'gamma': ['scale'],\n",
|
||||
" 'kernel': ['rbf'], 'max_features': ['auto'],\n",
|
||||
" 'max_iter': [10000.0], 'random_state': [1],\n",
|
||||
" 'split_criteria': ['impurity']},\n",
|
||||
" {'C': [0.2, 7, 55], 'degree': [3, 5],\n",
|
||||
" 'gamma': ['scale'], 'kernel': ['poly'],\n",
|
||||
" 'max_features': ['auto'], 'max_iter': [10000.0],\n",
|
||||
" 'random_state': [1],\n",
|
||||
" 'split_criteria': ['impurity']}],\n",
|
||||
" verbose=10)"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"execution_count": 9
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"clf = Stree()\n",
|
||||
"model = GridSearchCV(clf, n_jobs=1, param_grid=param_grid)\n",
|
||||
"model = GridSearchCV(clf, n_jobs=1, verbose=10, param_grid=param_grid, cv=2)\n",
|
||||
"model.fit(X, y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"print(model.cv_results_['params'][model.best_index_])"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'C': 7, 'degree': 3, 'gamma': 'scale', 'kernel': 'poly', 'max_features': 'auto', 'max_iter': 10000.0, 'random_state': 1, 'split_criteria': 'impurity'}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(model.cv_results_['params'][model.best_index_])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
@@ -211,10 +401,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.6448315911730547\n"
|
||||
"0.5432692307692307\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -224,12 +414,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
@@ -410,7 +600,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'n_estimators': [50],\n",
|
||||
@@ -441,8 +630,9 @@
|
||||
" 'base_estimator__max_features': [None, 'auto']}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"execution_count": 3
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -455,8 +645,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'n_estimators': [50], 'algorithm': ['SAMME'], 'base_estimator__C': 7, 'base_estimator__degree': 7, 'base_estimator__gamma': 0.1, 'base_estimator__kernel': 'poly', 'base_estimator__max_features': 'auto', 'base_estimator__max_iter': 10000.0, 'base_estimator__random_state': 1, 'base_estimator__split_criteria': 'impurity'}\n"
|
||||
]
|
||||
@@ -473,14 +663,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'stree'"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"execution_count": 5
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -494,5 +684,26 @@
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
]
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Reference in New Issue
Block a user