Add stree default to analysis

add experiment to report_mysql
fix crosval experiment to get the best "gridsearch" parameters
This commit is contained in:
2021-03-26 00:06:48 +01:00
parent 66bceff179
commit 7f75115fa9
4 changed files with 46 additions and 22 deletions

View File

@@ -8,6 +8,7 @@ from experimentation.Database import MySQL
report_csv = "report.csv"
models_tree = [
"stree",
"stree_default",
"wodt",
"j48svm",
"oc1",
@@ -18,7 +19,7 @@ models_ensemble = ["odte", "adaBoost", "bagging", "TBRaF", "TBRoF", "TBRRoF"]
description = ["samp", "var", "cls"]
complexity = ["nodes", "leaves", "depth"]
title = "Best model results"
lengths = (30, 4, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12)
lengths = [30, 4, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12, 12]
def parse_arguments() -> Tuple[str, str, str, bool, bool]:
@@ -46,8 +47,15 @@ def parse_arguments() -> Tuple[str, str, str, bool, bool]:
required=False,
default=False,
)
ap.add_argument(
"-o",
"--compare",
type=bool,
required=False,
default=False,
)
args = ap.parse_args()
return (args.experiment, args.model, args.csv_output)
return (args.experiment, args.model, args.csv_output, args.compare)
def report_header_content(title, experiment, model_type):
@@ -102,7 +110,7 @@ def report_footer(agg):
)
(experiment, model_type, csv_output) = parse_arguments()
(experiment, model_type, csv_output, compare) = parse_arguments()
dbh = MySQL()
database = dbh.get_connection()
dt = Datasets(False, False, "tanveer")
@@ -115,6 +123,10 @@ fields = (
"Lea",
"Dep",
)
if not compare:
# remove stree_default from fields list and lengths
models_tree.pop(1)
lengths.pop(7)
models = models_tree if model_type == "tree" else models_ensemble
for item in models:
fields += (f"{item}",)

View File

@@ -46,7 +46,9 @@ class Experiment:
model = self._clf.get_model()
hyperparams = MySQL()
hyperparams.get_connection()
record = hyperparams.find_best(dataset, self._model_name)
record = hyperparams.find_best(
dataset, self._model_name, experiment="gridsearch"
)
hyperparams.close()
if record is None:
try:

View File

@@ -23,13 +23,13 @@ breast-cancer-wisc-prog, j48svm, 0.724038
breast-cancer-wisc-prog, oc1, 0.71
breast-cancer-wisc-prog, cart, 0.699833
breast-cancer-wisc-prog, baseRaF, 0.74485
breast-cancer-wisc, stree, 0.965802
breast-cancer-wisc, stree, 0.966661
breast-cancer-wisc, wodt, 0.946208
breast-cancer-wisc, j48svm, 0.967674
breast-cancer-wisc, oc1, 0.940194
breast-cancer-wisc, cart, 0.940629
breast-cancer-wisc, baseRaF, 0.942857
breast-cancer, stree, 0.733158
breast-cancer, stree, 0.734211
breast-cancer, wodt, 0.650236
breast-cancer, j48svm, 0.707719
breast-cancer, oc1, 0.649728
@@ -47,13 +47,13 @@ cardiotocography-3clases, j48svm, 0.927327
cardiotocography-3clases, oc1, 0.899811
cardiotocography-3clases, cart, 0.929258
cardiotocography-3clases, baseRaF, 0.896715
conn-bench-sonar-mines-rocks, stree, 0.71439
conn-bench-sonar-mines-rocks, stree, 0.755528
conn-bench-sonar-mines-rocks, wodt, 0.824959
conn-bench-sonar-mines-rocks, j48svm, 0.73892
conn-bench-sonar-mines-rocks, oc1, 0.710798
conn-bench-sonar-mines-rocks, cart, 0.728711
conn-bench-sonar-mines-rocks, baseRaF, 0.772981
cylinder-bands, stree, 0.687101
cylinder-bands, stree, 0.715049
cylinder-bands, wodt, 0.704074
cylinder-bands, j48svm, 0.726351
cylinder-bands, oc1, 0.67106
@@ -77,7 +77,7 @@ fertility, j48svm, 0.857
fertility, oc1, 0.793
fertility, cart, 0.8
fertility, baseRaF, 0.798
haberman-survival, stree, 0.727795
haberman-survival, stree, 0.735637
haberman-survival, wodt, 0.664707
haberman-survival, j48svm, 0.714056
haberman-survival, oc1, 0.651634
@@ -95,7 +95,7 @@ hepatitis, j48svm, 0.761935
hepatitis, oc1, 0.756774
hepatitis, cart, 0.765161
hepatitis, baseRaF, 0.773671
ilpd-indian-liver, stree, 0.719207
ilpd-indian-liver, stree, 0.723498
ilpd-indian-liver, wodt, 0.676176
ilpd-indian-liver, j48svm, 0.690339
ilpd-indian-liver, oc1, 0.660139
@@ -137,7 +137,7 @@ lymphography, j48svm, 0.778552
lymphography, oc1, 0.734634
lymphography, cart, 0.766276
lymphography, baseRaF, 0.761622
mammographic, stree, 0.817068
mammographic, stree, 0.81915
mammographic, wodt, 0.759839
mammographic, j48svm, 0.821435
mammographic, oc1, 0.768805
@@ -167,7 +167,7 @@ oocytes_merluccius_states_2f, j48svm, 0.901374
oocytes_merluccius_states_2f, oc1, 0.889223
oocytes_merluccius_states_2f, cart, 0.891193
oocytes_merluccius_states_2f, baseRaF, 0.910551
oocytes_trisopterus_nucleus_2f, stree, 0.799995
oocytes_trisopterus_nucleus_2f, stree, 0.800986
oocytes_trisopterus_nucleus_2f, wodt, 0.751431
oocytes_trisopterus_nucleus_2f, j48svm, 0.756587
oocytes_trisopterus_nucleus_2f, oc1, 0.747697
@@ -179,13 +179,13 @@ oocytes_trisopterus_states_5b, j48svm, 0.887943
oocytes_trisopterus_states_5b, oc1, 0.86393
oocytes_trisopterus_states_5b, cart, 0.870263
oocytes_trisopterus_states_5b, baseRaF, 0.922149
parkinsons, stree, 0.865641
parkinsons, stree, 0.882051
parkinsons, wodt, 0.901538
parkinsons, j48svm, 0.844615
parkinsons, oc1, 0.865641
parkinsons, cart, 0.855897
parkinsons, baseRaF, 0.87924
pima, stree, 0.764053
pima, stree, 0.766651
pima, wodt, 0.681591
pima, j48svm, 0.749876
pima, oc1, 0.693027
@@ -197,7 +197,7 @@ pittsburg-bridges-MATERIAL, j48svm, 0.855844
pittsburg-bridges-MATERIAL, oc1, 0.81026
pittsburg-bridges-MATERIAL, cart, 0.783593
pittsburg-bridges-MATERIAL, baseRaF, 0.81136
pittsburg-bridges-REL-L, stree, 0.564048
pittsburg-bridges-REL-L, stree, 0.62519
pittsburg-bridges-REL-L, wodt, 0.617143
pittsburg-bridges-REL-L, j48svm, 0.645048
pittsburg-bridges-REL-L, oc1, 0.604957
@@ -209,7 +209,7 @@ pittsburg-bridges-SPAN, j48svm, 0.621579
pittsburg-bridges-SPAN, oc1, 0.579333
pittsburg-bridges-SPAN, cart, 0.557544
pittsburg-bridges-SPAN, baseRaF, 0.630217
pittsburg-bridges-T-OR-D, stree, 0.849952
pittsburg-bridges-T-OR-D, stree, 0.861619
pittsburg-bridges-T-OR-D, wodt, 0.818429
pittsburg-bridges-T-OR-D, j48svm, 0.838333
pittsburg-bridges-T-OR-D, oc1, 0.831545
@@ -239,13 +239,13 @@ statlog-australian-credit, j48svm, 0.66029
statlog-australian-credit, oc1, 0.573913
statlog-australian-credit, cart, 0.595507
statlog-australian-credit, baseRaF, 0.678261
statlog-german-credit, stree, 0.7569
statlog-german-credit, stree, 0.7625
statlog-german-credit, wodt, 0.6929
statlog-german-credit, j48svm, 0.7244
statlog-german-credit, oc1, 0.6874
statlog-german-credit, cart, 0.6738
statlog-german-credit, baseRaF, 0.68762
statlog-heart, stree, 0.822222
statlog-heart, stree, 0.822963
statlog-heart, wodt, 0.777778
statlog-heart, j48svm, 0.795926
statlog-heart, oc1, 0.749259
@@ -275,13 +275,13 @@ tic-tac-toe, j48svm, 0.983295
tic-tac-toe, oc1, 0.91849
tic-tac-toe, cart, 0.951558
tic-tac-toe, baseRaF, 0.974906
vertebral-column-2clases, stree, 0.851936
vertebral-column-2clases, stree, 0.852903
vertebral-column-2clases, wodt, 0.801935
vertebral-column-2clases, j48svm, 0.84871
vertebral-column-2clases, oc1, 0.815161
vertebral-column-2clases, cart, 0.784839
vertebral-column-2clases, baseRaF, 0.822601
wine, stree, 0.949333
wine, stree, 0.97581
wine, wodt, 0.973048
wine, j48svm, 0.979143
wine, oc1, 0.916165
1 dataset classifier accuracy
23 breast-cancer-wisc-prog oc1 0.71
24 breast-cancer-wisc-prog cart 0.699833
25 breast-cancer-wisc-prog baseRaF 0.74485
26 breast-cancer-wisc stree 0.965802 0.966661
27 breast-cancer-wisc wodt 0.946208
28 breast-cancer-wisc j48svm 0.967674
29 breast-cancer-wisc oc1 0.940194
30 breast-cancer-wisc cart 0.940629
31 breast-cancer-wisc baseRaF 0.942857
32 breast-cancer stree 0.733158 0.734211
33 breast-cancer wodt 0.650236
34 breast-cancer j48svm 0.707719
35 breast-cancer oc1 0.649728
47 cardiotocography-3clases oc1 0.899811
48 cardiotocography-3clases cart 0.929258
49 cardiotocography-3clases baseRaF 0.896715
50 conn-bench-sonar-mines-rocks stree 0.71439 0.755528
51 conn-bench-sonar-mines-rocks wodt 0.824959
52 conn-bench-sonar-mines-rocks j48svm 0.73892
53 conn-bench-sonar-mines-rocks oc1 0.710798
54 conn-bench-sonar-mines-rocks cart 0.728711
55 conn-bench-sonar-mines-rocks baseRaF 0.772981
56 cylinder-bands stree 0.687101 0.715049
57 cylinder-bands wodt 0.704074
58 cylinder-bands j48svm 0.726351
59 cylinder-bands oc1 0.67106
77 fertility oc1 0.793
78 fertility cart 0.8
79 fertility baseRaF 0.798
80 haberman-survival stree 0.727795 0.735637
81 haberman-survival wodt 0.664707
82 haberman-survival j48svm 0.714056
83 haberman-survival oc1 0.651634
95 hepatitis oc1 0.756774
96 hepatitis cart 0.765161
97 hepatitis baseRaF 0.773671
98 ilpd-indian-liver stree 0.719207 0.723498
99 ilpd-indian-liver wodt 0.676176
100 ilpd-indian-liver j48svm 0.690339
101 ilpd-indian-liver oc1 0.660139
137 lymphography oc1 0.734634
138 lymphography cart 0.766276
139 lymphography baseRaF 0.761622
140 mammographic stree 0.817068 0.81915
141 mammographic wodt 0.759839
142 mammographic j48svm 0.821435
143 mammographic oc1 0.768805
167 oocytes_merluccius_states_2f oc1 0.889223
168 oocytes_merluccius_states_2f cart 0.891193
169 oocytes_merluccius_states_2f baseRaF 0.910551
170 oocytes_trisopterus_nucleus_2f stree 0.799995 0.800986
171 oocytes_trisopterus_nucleus_2f wodt 0.751431
172 oocytes_trisopterus_nucleus_2f j48svm 0.756587
173 oocytes_trisopterus_nucleus_2f oc1 0.747697
179 oocytes_trisopterus_states_5b oc1 0.86393
180 oocytes_trisopterus_states_5b cart 0.870263
181 oocytes_trisopterus_states_5b baseRaF 0.922149
182 parkinsons stree 0.865641 0.882051
183 parkinsons wodt 0.901538
184 parkinsons j48svm 0.844615
185 parkinsons oc1 0.865641
186 parkinsons cart 0.855897
187 parkinsons baseRaF 0.87924
188 pima stree 0.764053 0.766651
189 pima wodt 0.681591
190 pima j48svm 0.749876
191 pima oc1 0.693027
197 pittsburg-bridges-MATERIAL oc1 0.81026
198 pittsburg-bridges-MATERIAL cart 0.783593
199 pittsburg-bridges-MATERIAL baseRaF 0.81136
200 pittsburg-bridges-REL-L stree 0.564048 0.62519
201 pittsburg-bridges-REL-L wodt 0.617143
202 pittsburg-bridges-REL-L j48svm 0.645048
203 pittsburg-bridges-REL-L oc1 0.604957
209 pittsburg-bridges-SPAN oc1 0.579333
210 pittsburg-bridges-SPAN cart 0.557544
211 pittsburg-bridges-SPAN baseRaF 0.630217
212 pittsburg-bridges-T-OR-D stree 0.849952 0.861619
213 pittsburg-bridges-T-OR-D wodt 0.818429
214 pittsburg-bridges-T-OR-D j48svm 0.838333
215 pittsburg-bridges-T-OR-D oc1 0.831545
239 statlog-australian-credit oc1 0.573913
240 statlog-australian-credit cart 0.595507
241 statlog-australian-credit baseRaF 0.678261
242 statlog-german-credit stree 0.7569 0.7625
243 statlog-german-credit wodt 0.6929
244 statlog-german-credit j48svm 0.7244
245 statlog-german-credit oc1 0.6874
246 statlog-german-credit cart 0.6738
247 statlog-german-credit baseRaF 0.68762
248 statlog-heart stree 0.822222 0.822963
249 statlog-heart wodt 0.777778
250 statlog-heart j48svm 0.795926
251 statlog-heart oc1 0.749259
275 tic-tac-toe oc1 0.91849
276 tic-tac-toe cart 0.951558
277 tic-tac-toe baseRaF 0.974906
278 vertebral-column-2clases stree 0.851936 0.852903
279 vertebral-column-2clases wodt 0.801935
280 vertebral-column-2clases j48svm 0.84871
281 vertebral-column-2clases oc1 0.815161
282 vertebral-column-2clases cart 0.784839
283 vertebral-column-2clases baseRaF 0.822601
284 wine stree 0.949333 0.97581
285 wine wodt 0.973048
286 wine j48svm 0.979143
287 wine oc1 0.916165

View File

@@ -17,6 +17,14 @@ def parse_arguments() -> Tuple[str, str, str, bool, bool]:
required=False,
default="any",
)
ap.add_argument(
"-e",
"--experiment",
type=str,
choices=["gridsearch", "crossval"],
required=False,
default="crossval",
)
ap.add_argument(
"-x",
"--excludeparams",
@@ -29,6 +37,7 @@ def parse_arguments() -> Tuple[str, str, str, bool, bool]:
return (
args.model,
args.excludeparams,
args.experiment,
)
@@ -54,7 +63,7 @@ def report_header(exclude_params):
def report_line(record, agg):
accuracy = record[5]
expected = record[13]
expected = record[16]
if accuracy < expected:
agg["worse"] += 1
sign = "-"
@@ -94,6 +103,7 @@ def report_footer(agg):
(
classifier,
exclude_parameters,
experiment,
) = parse_arguments()
dbh = MySQL()
database = dbh.get_connection()
@@ -124,7 +134,7 @@ for item in [
] + models:
agg[item] = 0
for dataset in dt:
record = dbh.find_best(dataset[0], classifier)
record = dbh.find_best(dataset[0], classifier, experiment=experiment)
if record is None:
print(TextColor.FAIL + f"*No results found for {dataset[0]}")
else: