mirror of
https://github.com/Doctorado-ML/Stree_datasets.git
synced 2025-08-16 07:56:07 +00:00
Add nodes, leaves, depth to mysql
Add nodes, leaves, depth, samples, features and classes to analysis
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
import argparse
|
||||
from typing import Tuple
|
||||
import numpy as np
|
||||
from experimentation.Sets import Datasets
|
||||
from experimentation.Utils import TextColor
|
||||
from experimentation.Database import MySQL
|
||||
@@ -14,8 +15,10 @@ models_tree = [
|
||||
"baseRaF",
|
||||
]
|
||||
models_ensemble = ["odte", "adaBoost", "bagging", "TBRaF", "TBRoF", "TBRRoF"]
|
||||
description = ["samp", "var", "cls"]
|
||||
complexity = ["nodes", "leaves", "depth"]
|
||||
title = "Best model results"
|
||||
lengths = (30, 12, 12, 12, 12, 12, 12)
|
||||
lengths = (30, 4, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12)
|
||||
|
||||
|
||||
def parse_arguments() -> Tuple[str, str, str, bool, bool]:
|
||||
@@ -79,9 +82,11 @@ def report_header(title, experiment, model_type):
|
||||
|
||||
def report_line(line):
|
||||
output = f"{line['dataset']:{lengths[0] + 5}s} "
|
||||
for key, item in enumerate(description + complexity):
|
||||
output += f"{line[item]:{lengths[key + 1]}d} "
|
||||
data = models.copy()
|
||||
for key, model in enumerate(data):
|
||||
output += f"{line[model]:{lengths[key + 1]}s} "
|
||||
output += f"{line[model]:{lengths[key + 7]}s} "
|
||||
return output
|
||||
|
||||
|
||||
@@ -101,7 +106,15 @@ def report_footer(agg):
|
||||
dbh = MySQL()
|
||||
database = dbh.get_connection()
|
||||
dt = Datasets(False, False, "tanveer")
|
||||
fields = ("Dataset",)
|
||||
fields = (
|
||||
"Dataset",
|
||||
"Samp",
|
||||
"Var",
|
||||
"Cls",
|
||||
"Nod",
|
||||
"Lea",
|
||||
"Dep",
|
||||
)
|
||||
models = models_tree if model_type == "tree" else models_ensemble
|
||||
for item in models:
|
||||
fields += (f"{item}",)
|
||||
@@ -121,13 +134,23 @@ for dataset in dt:
|
||||
find_one = False
|
||||
# Look for max accuracy for any given dataset
|
||||
line = {"dataset": color + dataset[0]}
|
||||
X, y = dt.load(dataset[0]) # type: ignore
|
||||
line["samp"], line["var"] = X.shape
|
||||
line["cls"] = len(np.unique(y))
|
||||
record = dbh.find_best(dataset[0], models, experiment)
|
||||
max_accuracy = 0.0 if record is None else record[5]
|
||||
line["nodes"] = 0
|
||||
line["leaves"] = 0
|
||||
line["depth"] = 0
|
||||
for model in models:
|
||||
record = dbh.find_best(dataset[0], model, experiment)
|
||||
if record is None:
|
||||
line[model] = color + "-" * 12
|
||||
else:
|
||||
if model == "stree":
|
||||
line["nodes"] = record[12]
|
||||
line["leaves"] = record[13]
|
||||
line["depth"] = record[14]
|
||||
reference = record[13]
|
||||
accuracy = record[5]
|
||||
acc_std = record[11]
|
||||
|
@@ -176,6 +176,7 @@ class BD(ABC):
|
||||
accuracy,
|
||||
time_spent,
|
||||
parameters,
|
||||
complexity,
|
||||
) -> None:
|
||||
"""Create a record in MySQL database
|
||||
|
||||
@@ -187,8 +188,8 @@ class BD(ABC):
|
||||
command_insert = (
|
||||
"replace into results (date, time, type, accuracy, "
|
||||
"dataset, classifier, norm, stand, parameters, accuracy_std, "
|
||||
"time_spent, time_spent_std) values (%s, %s, "
|
||||
"%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
|
||||
"time_spent, time_spent_std, nodes, leaves, depth) values (%s, %s,"
|
||||
" %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
|
||||
)
|
||||
now = datetime.now()
|
||||
date = now.strftime("%Y-%m-%d")
|
||||
@@ -206,6 +207,9 @@ class BD(ABC):
|
||||
accuracy[1],
|
||||
time_spent[0],
|
||||
time_spent[1],
|
||||
complexity["nodes"],
|
||||
complexity["leaves"],
|
||||
complexity["depth"],
|
||||
)
|
||||
cursor = database.cursor()
|
||||
cursor.execute(command_insert, values)
|
||||
@@ -319,7 +323,9 @@ class Outcomes(BD):
|
||||
self._table = "outcomes"
|
||||
super().__init__(host=host, model=model)
|
||||
|
||||
def store(self, dataset, normalize, standardize, parameters, results):
|
||||
def store(
|
||||
self, dataset, normalize, standardize, parameters, results, complexity
|
||||
):
|
||||
outcomes = ["fit_time", "score_time", "train_score", "test_score"]
|
||||
data = ""
|
||||
for index in outcomes:
|
||||
@@ -350,6 +356,7 @@ class Outcomes(BD):
|
||||
float(np.std(results["fit_time"])),
|
||||
],
|
||||
parameters,
|
||||
complexity,
|
||||
)
|
||||
|
||||
def report(self, dataset, exclude_params):
|
||||
|
@@ -2,9 +2,8 @@ import json
|
||||
import os
|
||||
import time
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from sklearn.model_selection import GridSearchCV, cross_validate
|
||||
|
||||
from . import Models
|
||||
from .Database import Hyperparameters, MySQL, Outcomes
|
||||
from .Sets import Datasets
|
||||
@@ -94,15 +93,25 @@ class Experiment:
|
||||
X,
|
||||
y,
|
||||
return_train_score=True,
|
||||
return_estimator=True,
|
||||
n_jobs=self._threads,
|
||||
cv=kfold,
|
||||
)
|
||||
for item in outcomes:
|
||||
total[item].append(results[item])
|
||||
print("end")
|
||||
if type(model).__name__ == "Stree":
|
||||
best_model = results["estimator"][np.argmax(results["test_score"])]
|
||||
nodes, leaves = best_model.nodes_leaves()
|
||||
depth = best_model.depth_
|
||||
else:
|
||||
nodes = leaves = depth = 0
|
||||
complexity = dict(nodes=nodes, leaves=leaves, depth=depth)
|
||||
outcomes = Outcomes(host=self._host, model=self._model_name)
|
||||
parameters = json.dumps(parameters, sort_keys=True)
|
||||
outcomes.store(dataset, normalize, standardize, parameters, total)
|
||||
outcomes.store(
|
||||
dataset, normalize, standardize, parameters, total, complexity
|
||||
)
|
||||
if self._num_warnings > 0:
|
||||
print(f"{self._num_warnings} warnings have happend")
|
||||
|
||||
|
94
report.csv
94
report.csv
@@ -1,107 +1,107 @@
|
||||
dataset, classifier, accuracy
|
||||
balance-scale, stree, 0.91184
|
||||
balance-scale, stree, 0.97056
|
||||
balance-scale, wodt, 0.912
|
||||
balance-scale, j48svm, 0.94
|
||||
balance-scale, oc1, 0.9192
|
||||
balance-scale, cart, 0.78816
|
||||
balance-scale, baseRaF, 0.706738
|
||||
balloons, stree, 0.653333
|
||||
balloons, stree, 0.86
|
||||
balloons, wodt, 0.688333
|
||||
balloons, j48svm, 0.595
|
||||
balloons, oc1, 0.62
|
||||
balloons, cart, 0.671667
|
||||
balloons, baseRaF, 0.605
|
||||
breast-cancer-wisc-diag, stree, 0.968898
|
||||
breast-cancer-wisc-diag, stree, 0.972764
|
||||
breast-cancer-wisc-diag, wodt, 0.967317
|
||||
breast-cancer-wisc-diag, j48svm, 0.952878
|
||||
breast-cancer-wisc-diag, oc1, 0.933477
|
||||
breast-cancer-wisc-diag, cart, 0.93953
|
||||
breast-cancer-wisc-diag, baseRaF, 0.965694
|
||||
breast-cancer-wisc-prog, stree, 0.802051
|
||||
breast-cancer-wisc-prog, stree, 0.811128
|
||||
breast-cancer-wisc-prog, wodt, 0.710141
|
||||
breast-cancer-wisc-prog, j48svm, 0.724038
|
||||
breast-cancer-wisc-prog, oc1, 0.71
|
||||
breast-cancer-wisc-prog, cart, 0.699833
|
||||
breast-cancer-wisc-prog, baseRaF, 0.74485
|
||||
breast-cancer-wisc, stree, 0.966661
|
||||
breast-cancer-wisc, stree, 0.965802
|
||||
breast-cancer-wisc, wodt, 0.946208
|
||||
breast-cancer-wisc, j48svm, 0.967674
|
||||
breast-cancer-wisc, oc1, 0.940194
|
||||
breast-cancer-wisc, cart, 0.940629
|
||||
breast-cancer-wisc, baseRaF, 0.942857
|
||||
breast-cancer, stree, 0.734211
|
||||
breast-cancer, stree, 0.733158
|
||||
breast-cancer, wodt, 0.650236
|
||||
breast-cancer, j48svm, 0.707719
|
||||
breast-cancer, oc1, 0.649728
|
||||
breast-cancer, cart, 0.65444
|
||||
breast-cancer, baseRaF, 0.656438
|
||||
cardiotocography-10clases, stree, 0.552558
|
||||
cardiotocography-10clases, stree, 0.712009
|
||||
cardiotocography-10clases, wodt, 0.773706
|
||||
cardiotocography-10clases, j48svm, 0.830812
|
||||
cardiotocography-10clases, oc1, 0.795528
|
||||
cardiotocography-10clases, cart, 0.818864
|
||||
cardiotocography-10clases, baseRaF, 0.774788
|
||||
cardiotocography-3clases, stree, 0.35207
|
||||
cardiotocography-3clases, stree, 0.891956
|
||||
cardiotocography-3clases, wodt, 0.897509
|
||||
cardiotocography-3clases, j48svm, 0.927327
|
||||
cardiotocography-3clases, oc1, 0.899811
|
||||
cardiotocography-3clases, cart, 0.929258
|
||||
cardiotocography-3clases, baseRaF, 0.896715
|
||||
conn-bench-sonar-mines-rocks, stree, 0.755528
|
||||
conn-bench-sonar-mines-rocks, stree, 0.71439
|
||||
conn-bench-sonar-mines-rocks, wodt, 0.824959
|
||||
conn-bench-sonar-mines-rocks, j48svm, 0.73892
|
||||
conn-bench-sonar-mines-rocks, oc1, 0.710798
|
||||
conn-bench-sonar-mines-rocks, cart, 0.728711
|
||||
conn-bench-sonar-mines-rocks, baseRaF, 0.772981
|
||||
cylinder-bands, stree, 0.715049
|
||||
cylinder-bands, stree, 0.687101
|
||||
cylinder-bands, wodt, 0.704074
|
||||
cylinder-bands, j48svm, 0.726351
|
||||
cylinder-bands, oc1, 0.67106
|
||||
cylinder-bands, cart, 0.712703
|
||||
cylinder-bands, baseRaF, 0.675117
|
||||
dermatology, stree, 0.966087
|
||||
dermatology, stree, 0.971833
|
||||
dermatology, wodt, 0.965557
|
||||
dermatology, j48svm, 0.955735
|
||||
dermatology, oc1, 0.916087
|
||||
dermatology, cart, 0.932766
|
||||
dermatology, baseRaF, 0.970723
|
||||
echocardiogram, stree, 0.808832
|
||||
echocardiogram, stree, 0.814758
|
||||
echocardiogram, wodt, 0.733875
|
||||
echocardiogram, j48svm, 0.805527
|
||||
echocardiogram, oc1, 0.748291
|
||||
echocardiogram, cart, 0.745043
|
||||
echocardiogram, baseRaF, 0.753522
|
||||
fertility, stree, 0.866
|
||||
fertility, stree, 0.88
|
||||
fertility, wodt, 0.785
|
||||
fertility, j48svm, 0.857
|
||||
fertility, oc1, 0.793
|
||||
fertility, cart, 0.8
|
||||
fertility, baseRaF, 0.798
|
||||
haberman-survival, stree, 0.735637
|
||||
haberman-survival, stree, 0.727795
|
||||
haberman-survival, wodt, 0.664707
|
||||
haberman-survival, j48svm, 0.714056
|
||||
haberman-survival, oc1, 0.651634
|
||||
haberman-survival, cart, 0.65
|
||||
haberman-survival, baseRaF, 0.720133
|
||||
heart-hungarian, stree, 0.817674
|
||||
heart-hungarian, stree, 0.827522
|
||||
heart-hungarian, wodt, 0.764909
|
||||
heart-hungarian, j48svm, 0.785026
|
||||
heart-hungarian, oc1, 0.758298
|
||||
heart-hungarian, cart, 0.760508
|
||||
heart-hungarian, baseRaF, 0.779804
|
||||
hepatitis, stree, 0.796129
|
||||
hepatitis, stree, 0.824516
|
||||
hepatitis, wodt, 0.785806
|
||||
hepatitis, j48svm, 0.761935
|
||||
hepatitis, oc1, 0.756774
|
||||
hepatitis, cart, 0.765161
|
||||
hepatitis, baseRaF, 0.773671
|
||||
ilpd-indian-liver, stree, 0.723498
|
||||
ilpd-indian-liver, stree, 0.719207
|
||||
ilpd-indian-liver, wodt, 0.676176
|
||||
ilpd-indian-liver, j48svm, 0.690339
|
||||
ilpd-indian-liver, oc1, 0.660139
|
||||
ilpd-indian-liver, cart, 0.663423
|
||||
ilpd-indian-liver, baseRaF, 0.696685
|
||||
ionosphere, stree, 0.866056
|
||||
ionosphere, stree, 0.953276
|
||||
ionosphere, wodt, 0.88008
|
||||
ionosphere, j48svm, 0.891984
|
||||
ionosphere, oc1, 0.879742
|
||||
@@ -113,49 +113,49 @@ iris, j48svm, 0.947333
|
||||
iris, oc1, 0.948
|
||||
iris, cart, 0.938667
|
||||
iris, baseRaF, 0.953413
|
||||
led-display, stree, 0.7007
|
||||
led-display, stree, 0.703
|
||||
led-display, wodt, 0.7049
|
||||
led-display, j48svm, 0.7204
|
||||
led-display, oc1, 0.6993
|
||||
led-display, cart, 0.7037
|
||||
led-display, baseRaF, 0.70178
|
||||
libras, stree, 0.747778
|
||||
libras, stree, 0.788333
|
||||
libras, wodt, 0.764167
|
||||
libras, j48svm, 0.66
|
||||
libras, oc1, 0.645
|
||||
libras, cart, 0.655
|
||||
libras, baseRaF, 0.726722
|
||||
low-res-spect, stree, 0.853102
|
||||
low-res-spect, stree, 0.865713
|
||||
low-res-spect, wodt, 0.856459
|
||||
low-res-spect, j48svm, 0.83358
|
||||
low-res-spect, oc1, 0.824671
|
||||
low-res-spect, cart, 0.829206
|
||||
low-res-spect, baseRaF, 0.790875
|
||||
lymphography, stree, 0.77046
|
||||
lymphography, stree, 0.823425
|
||||
lymphography, wodt, 0.808782
|
||||
lymphography, j48svm, 0.778552
|
||||
lymphography, oc1, 0.734634
|
||||
lymphography, cart, 0.766276
|
||||
lymphography, baseRaF, 0.761622
|
||||
mammographic, stree, 0.81915
|
||||
mammographic, stree, 0.817068
|
||||
mammographic, wodt, 0.759839
|
||||
mammographic, j48svm, 0.821435
|
||||
mammographic, oc1, 0.768805
|
||||
mammographic, cart, 0.757131
|
||||
mammographic, baseRaF, 0.780206
|
||||
molec-biol-promoter, stree, 0.764416
|
||||
molec-biol-promoter, stree, 0.767056
|
||||
molec-biol-promoter, wodt, 0.798528
|
||||
molec-biol-promoter, j48svm, 0.744935
|
||||
molec-biol-promoter, oc1, 0.734805
|
||||
molec-biol-promoter, cart, 0.748701
|
||||
molec-biol-promoter, baseRaF, 0.667239
|
||||
musk-1, stree, 0.843463
|
||||
musk-1, stree, 0.916388
|
||||
musk-1, wodt, 0.838914
|
||||
musk-1, j48svm, 0.82693
|
||||
musk-1, oc1, 0.776401
|
||||
musk-1, cart, 0.780215
|
||||
musk-1, baseRaF, 0.834034
|
||||
oocytes_merluccius_nucleus_4d, stree, 0.810657
|
||||
oocytes_merluccius_nucleus_4d, stree, 0.835125
|
||||
oocytes_merluccius_nucleus_4d, wodt, 0.737673
|
||||
oocytes_merluccius_nucleus_4d, j48svm, 0.741766
|
||||
oocytes_merluccius_nucleus_4d, oc1, 0.743199
|
||||
@@ -167,127 +167,127 @@ oocytes_merluccius_states_2f, j48svm, 0.901374
|
||||
oocytes_merluccius_states_2f, oc1, 0.889223
|
||||
oocytes_merluccius_states_2f, cart, 0.891193
|
||||
oocytes_merluccius_states_2f, baseRaF, 0.910551
|
||||
oocytes_trisopterus_nucleus_2f, stree, 0.800986
|
||||
oocytes_trisopterus_nucleus_2f, stree, 0.799995
|
||||
oocytes_trisopterus_nucleus_2f, wodt, 0.751431
|
||||
oocytes_trisopterus_nucleus_2f, j48svm, 0.756587
|
||||
oocytes_trisopterus_nucleus_2f, oc1, 0.747697
|
||||
oocytes_trisopterus_nucleus_2f, cart, 0.734313
|
||||
oocytes_trisopterus_nucleus_2f, baseRaF, 0.76193
|
||||
oocytes_trisopterus_states_5b, stree, 0.9023
|
||||
oocytes_trisopterus_states_5b, stree, 0.924441
|
||||
oocytes_trisopterus_states_5b, wodt, 0.89165
|
||||
oocytes_trisopterus_states_5b, j48svm, 0.887943
|
||||
oocytes_trisopterus_states_5b, oc1, 0.86393
|
||||
oocytes_trisopterus_states_5b, cart, 0.870263
|
||||
oocytes_trisopterus_states_5b, baseRaF, 0.922149
|
||||
parkinsons, stree, 0.882051
|
||||
parkinsons, stree, 0.865641
|
||||
parkinsons, wodt, 0.901538
|
||||
parkinsons, j48svm, 0.844615
|
||||
parkinsons, oc1, 0.865641
|
||||
parkinsons, cart, 0.855897
|
||||
parkinsons, baseRaF, 0.87924
|
||||
pima, stree, 0.766651
|
||||
pima, stree, 0.764053
|
||||
pima, wodt, 0.681591
|
||||
pima, j48svm, 0.749876
|
||||
pima, oc1, 0.693027
|
||||
pima, cart, 0.701172
|
||||
pima, baseRaF, 0.697005
|
||||
pittsburg-bridges-MATERIAL, stree, 0.787446
|
||||
pittsburg-bridges-MATERIAL, stree, 0.867749
|
||||
pittsburg-bridges-MATERIAL, wodt, 0.79961
|
||||
pittsburg-bridges-MATERIAL, j48svm, 0.855844
|
||||
pittsburg-bridges-MATERIAL, oc1, 0.81026
|
||||
pittsburg-bridges-MATERIAL, cart, 0.783593
|
||||
pittsburg-bridges-MATERIAL, baseRaF, 0.81136
|
||||
pittsburg-bridges-REL-L, stree, 0.62519
|
||||
pittsburg-bridges-REL-L, stree, 0.564048
|
||||
pittsburg-bridges-REL-L, wodt, 0.617143
|
||||
pittsburg-bridges-REL-L, j48svm, 0.645048
|
||||
pittsburg-bridges-REL-L, oc1, 0.604957
|
||||
pittsburg-bridges-REL-L, cart, 0.625333
|
||||
pittsburg-bridges-REL-L, baseRaF, 0.622107
|
||||
pittsburg-bridges-SPAN, stree, 0.630234
|
||||
pittsburg-bridges-SPAN, stree, 0.658713
|
||||
pittsburg-bridges-SPAN, wodt, 0.606959
|
||||
pittsburg-bridges-SPAN, j48svm, 0.621579
|
||||
pittsburg-bridges-SPAN, oc1, 0.579333
|
||||
pittsburg-bridges-SPAN, cart, 0.557544
|
||||
pittsburg-bridges-SPAN, baseRaF, 0.630217
|
||||
pittsburg-bridges-T-OR-D, stree, 0.861619
|
||||
pittsburg-bridges-T-OR-D, stree, 0.849952
|
||||
pittsburg-bridges-T-OR-D, wodt, 0.818429
|
||||
pittsburg-bridges-T-OR-D, j48svm, 0.838333
|
||||
pittsburg-bridges-T-OR-D, oc1, 0.831545
|
||||
pittsburg-bridges-T-OR-D, cart, 0.821619
|
||||
pittsburg-bridges-T-OR-D, baseRaF, 0.821007
|
||||
planning, stree, 0.70455
|
||||
planning, stree, 0.73527
|
||||
planning, wodt, 0.576847
|
||||
planning, j48svm, 0.711381
|
||||
planning, oc1, 0.566988
|
||||
planning, cart, 0.586712
|
||||
planning, baseRaF, 0.590586
|
||||
post-operative, stree, 0.573333
|
||||
post-operative, stree, 0.703333
|
||||
post-operative, wodt, 0.535556
|
||||
post-operative, j48svm, 0.701111
|
||||
post-operative, oc1, 0.542222
|
||||
post-operative, cart, 0.567778
|
||||
post-operative, baseRaF, 0.539375
|
||||
seeds, stree, 0.949048
|
||||
seeds, stree, 0.952857
|
||||
seeds, wodt, 0.940476
|
||||
seeds, j48svm, 0.909524
|
||||
seeds, oc1, 0.932381
|
||||
seeds, cart, 0.900476
|
||||
seeds, baseRaF, 0.942518
|
||||
statlog-australian-credit, stree, 0.667246
|
||||
statlog-australian-credit, stree, 0.678261
|
||||
statlog-australian-credit, wodt, 0.561594
|
||||
statlog-australian-credit, j48svm, 0.66029
|
||||
statlog-australian-credit, oc1, 0.573913
|
||||
statlog-australian-credit, cart, 0.595507
|
||||
statlog-australian-credit, baseRaF, 0.678261
|
||||
statlog-german-credit, stree, 0.7625
|
||||
statlog-german-credit, stree, 0.7569
|
||||
statlog-german-credit, wodt, 0.6929
|
||||
statlog-german-credit, j48svm, 0.7244
|
||||
statlog-german-credit, oc1, 0.6874
|
||||
statlog-german-credit, cart, 0.6738
|
||||
statlog-german-credit, baseRaF, 0.68762
|
||||
statlog-heart, stree, 0.822963
|
||||
statlog-heart, stree, 0.822222
|
||||
statlog-heart, wodt, 0.777778
|
||||
statlog-heart, j48svm, 0.795926
|
||||
statlog-heart, oc1, 0.749259
|
||||
statlog-heart, cart, 0.762222
|
||||
statlog-heart, baseRaF, 0.747605
|
||||
statlog-image, stree, 0.850649
|
||||
statlog-image, stree, 0.956623
|
||||
statlog-image, wodt, 0.954632
|
||||
statlog-image, j48svm, 0.967403
|
||||
statlog-image, oc1, 0.95013
|
||||
statlog-image, cart, 0.964892
|
||||
statlog-image, baseRaF, 0.953604
|
||||
statlog-vehicle, stree, 0.695151
|
||||
statlog-vehicle, stree, 0.788537
|
||||
statlog-vehicle, wodt, 0.726492
|
||||
statlog-vehicle, j48svm, 0.729651
|
||||
statlog-vehicle, oc1, 0.708496
|
||||
statlog-vehicle, cart, 0.728367
|
||||
statlog-vehicle, baseRaF, 0.789572
|
||||
synthetic-control, stree, 0.938833
|
||||
synthetic-control, stree, 0.95
|
||||
synthetic-control, wodt, 0.973167
|
||||
synthetic-control, j48svm, 0.922333
|
||||
synthetic-control, oc1, 0.863167
|
||||
synthetic-control, cart, 0.908333
|
||||
synthetic-control, baseRaF, 0.971567
|
||||
tic-tac-toe, stree, 0.983296
|
||||
tic-tac-toe, stree, 0.984444
|
||||
tic-tac-toe, wodt, 0.93905
|
||||
tic-tac-toe, j48svm, 0.983295
|
||||
tic-tac-toe, oc1, 0.91849
|
||||
tic-tac-toe, cart, 0.951558
|
||||
tic-tac-toe, baseRaF, 0.974906
|
||||
vertebral-column-2clases, stree, 0.852903
|
||||
vertebral-column-2clases, stree, 0.851936
|
||||
vertebral-column-2clases, wodt, 0.801935
|
||||
vertebral-column-2clases, j48svm, 0.84871
|
||||
vertebral-column-2clases, oc1, 0.815161
|
||||
vertebral-column-2clases, cart, 0.784839
|
||||
vertebral-column-2clases, baseRaF, 0.822601
|
||||
wine, stree, 0.97581
|
||||
wine, stree, 0.949333
|
||||
wine, wodt, 0.973048
|
||||
wine, j48svm, 0.979143
|
||||
wine, oc1, 0.916165
|
||||
wine, cart, 0.921937
|
||||
wine, baseRaF, 0.97748
|
||||
zoo, stree, 0.947619
|
||||
zoo, stree, 0.955524
|
||||
zoo, wodt, 0.954429
|
||||
zoo, j48svm, 0.92381
|
||||
zoo, oc1, 0.890952
|
||||
|
|
@@ -55,22 +55,30 @@ def parse_arguments():
|
||||
return (args.set_of_files, args.model, args.dataset, args.sql, args.param)
|
||||
|
||||
|
||||
def nodes_leaves(clf):
|
||||
nodes = 0
|
||||
leaves = 0
|
||||
for node in clf:
|
||||
if node.is_leaf():
|
||||
leaves += 1
|
||||
else:
|
||||
nodes += 1
|
||||
return nodes, leaves
|
||||
|
||||
|
||||
def compute_auto_hyperparams(X, y):
|
||||
params = {"max_iter": 1e4, "C": 0.1}
|
||||
classes = len(np.unique(y))
|
||||
if classes > 2:
|
||||
params["split_criteria"] = "max_samples"
|
||||
"""Propuesta de auto configuración de hiperparámetros
|
||||
max_it = 10e4
|
||||
(1 valor)
|
||||
split = impurity si clases==2 y split=max_samples si clases > 2
|
||||
(1 valor)
|
||||
kernel=linear o polinómico
|
||||
(2 valores)
|
||||
C = 0.1, 0.5 y 1.0
|
||||
(3 valores)
|
||||
Caso 1: C=1, max_iter=1e4 + condicional split_max kernel lineal
|
||||
Caso 2: C=0.5, max_iter=1e4 + condicional split_max kernel lineal
|
||||
Caso 3: C=0.1, max_iter=1e4 + condicional split_max kernel lineal
|
||||
Caso 4: C=1, max_iter=1e4 + condicional split_max kernel poly
|
||||
Caso 5: C=0.5, max_iter=1e4 + condicional split_max kernel poly
|
||||
Caso 6: C=0.1, max_iter=1e4 + condicional split_max kernel poly
|
||||
Caso 7: C=1, max_iter=1e4 + condicional + kernel rbf
|
||||
Caso 8: kernel rbf
|
||||
"""
|
||||
# params = {"max_iter": 1e4, "kernel": "rbf"}
|
||||
# classes = len(np.unique(y))
|
||||
# if classes > 2:
|
||||
# params["split_criteria"] = "max_samples"
|
||||
params = {"kernel": "rbf"}
|
||||
return params
|
||||
|
||||
|
||||
@@ -97,7 +105,7 @@ def process_dataset(dataset, verbose, model, auto_params):
|
||||
clf = Stree(random_state=random_state)
|
||||
clf.set_params(**hyperparameters)
|
||||
res = cross_validate(clf, X, y, cv=kfold, return_estimator=True)
|
||||
nodes, leaves = nodes_leaves(res["estimator"][0])
|
||||
nodes, leaves = res["estimator"][0].nodes_leaves()
|
||||
depth = res["estimator"][0].depth_
|
||||
scores.append(res["test_score"])
|
||||
times.append(res["fit_time"])
|
||||
@@ -222,6 +230,9 @@ if dataset == "all":
|
||||
parameters = json.loads("{}")
|
||||
accuracy_best = 0.0
|
||||
acc_best_std = 0.0
|
||||
if auto_params:
|
||||
# show parameters computed
|
||||
parameters = json.loads(hyperparameters)
|
||||
accuracy_computed = np.mean(scores)
|
||||
diff = accuracy_best - accuracy_computed
|
||||
print(
|
||||
@@ -243,12 +254,12 @@ else:
|
||||
accuracy_best = record[5] if record is not None else 0.0
|
||||
acc_best_std = record[11] if record is not None else 0.0
|
||||
print(
|
||||
f"* Accuracy Computed : {accuracy:6.4f}±{np.std(scores):6.4f} "
|
||||
f"* Accuracy Computed .: {accuracy:6.4f}±{np.std(scores):6.4f} "
|
||||
f"{np.mean(times):5.3f}s"
|
||||
)
|
||||
print(f"* Accuracy Best .....: {accuracy_best:6.4f}±{acc_best_std:6.4f}")
|
||||
print(f"* Difference ........: {accuracy_best - accuracy:6.4f}")
|
||||
print(f"* Nodes/Leaves/Depth :{nodes:2d} {leaves:2d} " f"{depth:2d} ")
|
||||
print(f"* Nodes/Leaves/Depth : {nodes:2d} {leaves:2d} " f"{depth:2d} ")
|
||||
stop = time.time()
|
||||
print(f"- Auto Hyperparams ..: {hyperparameters}")
|
||||
hours, rem = divmod(stop - start, 3600)
|
||||
|
Reference in New Issue
Block a user