Refactor MySQL class and develop param_analysis

This commit is contained in:
2020-12-14 00:12:27 +01:00
parent 855a12434e
commit 5aa2ea8984
5 changed files with 187 additions and 445 deletions

View File

@@ -7,26 +7,6 @@ title = "Best model results"
lengths = (30, 9, 11, 11, 11, 11)
def find_best(dataset, classifier):
cursor = database.cursor(buffered=True)
if classifier == "any":
command = (
f"select * from results r inner join reference e on "
f"r.dataset=e.dataset where r.dataset='{dataset}' "
)
else:
command = (
f"select * from results r inner join reference e on "
f"r.dataset=e.dataset where r.dataset='{dataset}' and classifier"
f"='{classifier}'"
)
command += (
" order by r.dataset, accuracy desc, classifier desc, type, date, time"
)
cursor.execute(command)
return cursor.fetchone()
def report_header_content(title):
length = sum(lengths) + len(lengths) - 1
output = "\n" + "*" * length + "\n"
@@ -99,10 +79,10 @@ for item in [
for dataset in dt:
find_one = False
line = {"dataset": color + dataset[0]}
record = find_best(dataset[0], "any")
record = dbh.find_best(dataset[0], "any")
max_accuracy = 0.0 if record is None else record[5]
for model in models:
record = find_best(dataset[0], model)
record = dbh.find_best(dataset[0], model)
if record is None:
line[model] = color + "-" * 9 + " "
else:

View File

@@ -12,7 +12,7 @@ from .Utils import TextColor
class MySQL:
def __init__(self):
self.server = None
self._server = None
def get_connection(self):
config_db = dict()
@@ -32,14 +32,35 @@ class MySQL:
config_tunnel["ssh_address_or_host"] = make_tuple(
config_tunnel["ssh_address_or_host"]
)
self.server = SSHTunnelForwarder(**config_tunnel)
self.server.daemon_forward_servers = True
self.server.start()
config_db["port"] = self.server.local_bind_port
return mysql.connector.connect(**config_db)
self._server = SSHTunnelForwarder(**config_tunnel)
self._server.daemon_forward_servers = True
self._server.start()
config_db["port"] = self._server.local_bind_port
self._database = mysql.connector.connect(**config_db)
return self._database
def find_best(self, dataset, classifier="any"):
cursor = self._database.cursor(buffered=True)
if classifier == "any":
command = (
f"select * from results r inner join reference e on "
f"r.dataset=e.dataset where r.dataset='{dataset}' "
)
else:
command = (
f"select * from results r inner join reference e on "
f"r.dataset=e.dataset where r.dataset='{dataset}' and "
f"classifier='{classifier}'"
)
command += (
" order by r.dataset, accuracy desc, classifier desc, "
"type, date, time"
)
cursor.execute(command)
return cursor.fetchone()
def close(self):
self.server.close()
self._server.close()
class BD(ABC):

View File

@@ -1,395 +0,0 @@
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import sqlite3\n",
"import mysql.connector\n",
"from experimentation.Database import MySQL\n",
"from experimentation.Sets import Datasets\n",
"dbh = MySQL()\n",
"database = dbh.get_connection()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"classifier = 'bagging'\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def find_best(dataset):\n",
" cursor = database.cursor(buffered=True)\n",
" if classifier == \"any\":\n",
" command = (\n",
" f\"select * from results r inner join reference e on \"\n",
" f\"r.dataset=e.dataset where r.dataset='{dataset}' \"\n",
" )\n",
" else:\n",
" command = (\n",
" f\"select * from results r inner join reference e on \"\n",
" f\"r.dataset=e.dataset where r.dataset='{dataset}' and classifier\"\n",
" f\"='{classifier}'\"\n",
" )\n",
" command += (\n",
" \" order by r.dataset, accuracy desc, classifier desc, type, date, time\"\n",
" )\n",
" cursor.execute(command)\n",
" return cursor.fetchone()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def find_values(parameter, kernel_chosen):\n",
" result = []\n",
" for data in agg[kernel_chosen]:\n",
" base_parameter = f\"base_estimator__{parameter}\"\n",
" if parameter in data.keys():\n",
" result.append(data[parameter])\n",
" if base_parameter in data.keys():\n",
" result.append(data[base_parameter])\n",
" try:\n",
" result_ordered = sorted(result)\n",
" return result_ordered\n",
" except TypeError:\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Aggregating data ..................................................\n",
"stree has 0 results\n",
"adaBoost has 0 results\n",
"bagging has 43 results\n",
"odte has 0 results\n"
]
}
],
"source": [
"dt = Datasets(False, False, 'tanveer')\n",
"models = ['stree', 'adaBoost', 'bagging', 'odte']\n",
"agg_models = {}\n",
"for i in models:\n",
" agg_models[i] = 0\n",
"agg = {'linear': [], 'rbf': [], 'poly': []}\n",
"print(\"Aggregating data .\", end='')\n",
"for dataset in dt:\n",
" result = find_best(dataset[0])\n",
" print('.', end='')\n",
" if result:\n",
" agg_models[result[3]] += 1\n",
" json_result = json.loads(result[8])\n",
" key = json_result['kernel'] if 'kernel' in json_result.keys() else 'linear'\n",
" agg[key].append(json_result)\n",
"print('')\n",
"for i in models:\n",
" print(f\"{i:10} has {agg_models[i]:2} results\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Used kernel linear: 43 times\nUsed kernel poly: 0 times\nUsed kernel rbf: 0 times\n"
]
}
],
"source": [
"print(\"Used kernel linear: \", len(agg['linear']), ' times')\n",
"print(\"Used kernel poly: \", len(agg['poly']), ' times')\n",
"print(\"Used kernel rbf: \", len(agg['rbf']), ' times')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[]"
]
},
"metadata": {},
"execution_count": 7
}
],
"source": [
"find_values('gamma', 'poly')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[0.05,\n",
" 0.05,\n",
" 0.05,\n",
" 0.05,\n",
" 0.05,\n",
" 0.05,\n",
" 0.2,\n",
" 0.2,\n",
" 0.2,\n",
" 0.2,\n",
" 0.2,\n",
" 0.2,\n",
" 0.2,\n",
" 0.55,\n",
" 0.55,\n",
" 0.55,\n",
" 1.0,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 7,\n",
" 55,\n",
" 55,\n",
" 55,\n",
" 55,\n",
" 55,\n",
" 55,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0,\n",
" 10000.0]"
]
},
"metadata": {},
"execution_count": 8
}
],
"source": [
"find_values('C', 'linear')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[]"
]
},
"metadata": {},
"execution_count": 9
}
],
"source": [
"find_values('C', 'poly')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[]"
]
},
"metadata": {},
"execution_count": 10
}
],
"source": [
"find_values('C', 'rbf')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.2,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.2,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.2,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.2,\n",
" None,\n",
" 0.6,\n",
" None,\n",
" 0.6,\n",
" 'auto',\n",
" 0.6,\n",
" 'auto']"
]
},
"metadata": {},
"execution_count": 11
}
],
"source": [
"find_values('max_features', 'linear')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"dbh.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}

156
param_analysis.py Normal file
View File

@@ -0,0 +1,156 @@
import json
import argparse
import collections
from typing import Tuple
from experimentation.Database import MySQL
from experimentation.Sets import Datasets
from experimentation.Utils import TextColor
kernel_names = ["linear", "rbf", "poly"]
class Aggregation:
def __init__(self, dbh):
self._dbh = dbh
self._report = {}
self._model_names = ["stree", "adaBoost", "bagging", "odte"]
self._kernel_names = kernel_names
def find_values(self, dataset, parameter):
result = []
for data in self._report[dataset]:
base_parameter = f"base_estimator__{parameter}"
if parameter in data.keys():
result.append(data[parameter])
if base_parameter in data.keys():
result.append(data[base_parameter])
try:
result_ordered = sorted(result)
return result_ordered
except TypeError:
return result
def load(self):
dt = Datasets(False, False, "tanveer")
print("Aggregating data of best results ...")
for dataset in dt:
if result := self._dbh.find_best(dataset[0]):
accuracy = result[5]
expected = result[10]
model = result[3]
json_result = json.loads(result[8])
if "kernel" in json_result.keys():
kernel = json_result["kernel"]
elif "base_estimator__kernel" in json_result.keys():
kernel = json_result["base_estimator__kernel"]
else:
kernel = "linear"
best = accuracy > expected
self._report[dataset[0]] = {
"model": model,
"kernel": kernel,
"parameters": json_result,
"best": best,
}
@staticmethod
def report_header(title, lengths, fields, parameter):
length = sum(lengths) + len(lengths) - 1
output = "\n" + "*" * length + "\n"
title = title + f" -- {parameter} parameter --"
num = (length - len(title) - 2) // 2
num2 = length - len(title) - 2 - 2 * num
output += "*" + " " * num + title + " " * (num + num2) + "*\n"
output += "*" * length + "\n\n"
lines = ""
for item, data in enumerate(fields):
output += f"{fields[item]:{lengths[item]}} "
lines += "=" * lengths[item] + " "
output += f"\n{lines}"
return output
def report(self, parameter):
agg = {}
agg_result = collections.OrderedDict()
title = "Best Hyperparameters found for datasets"
lengths = (32, 10, 7, 20)
fields = (
"Dataset",
"Classifier",
"Kernel",
"Parameter Value",
)
print(Aggregation.report_header(title, lengths, fields, parameter))
for i in self._kernel_names + self._model_names:
agg[i] = {}
agg[i]["total"] = 0
agg[i]["better"] = 0
agg[i]["worse"] = 0
for dataset, data in self._report.items():
kernel = data["kernel"]
model = data["model"]
if data["best"]:
key = "better"
sign = "+"
else:
key = "worse"
sign = "-"
base_parameter = f"base_estimator__{parameter}"
result = ""
if parameter in data["parameters"]:
result = data["parameters"][parameter]
try:
agg_result[result] += 1
except KeyError:
agg_result[result] = 1
elif base_parameter in data["parameters"]:
result = data["parameters"][base_parameter]
try:
agg_result[result] += 1
except KeyError:
agg_result[result] = 1
print(f"{sign} {dataset:30s} {model:10s} {kernel:7s} {result}")
agg[kernel]["total"] += 1
agg[kernel][key] += 1
agg[model]["total"] += 1
agg[model][key] += 1
print(TextColor.BOLD, "Models", TextColor.ENDC)
for i in self._model_names:
print(
f"{i:10} has {agg[i]['total']:2} results {agg[i]['better']:2} "
f"better {agg[i]['worse']:2} worse"
)
print(TextColor.BOLD, "Kernels", TextColor.ENDC)
for i in self._kernel_names:
print(
f"{i:10} has {agg[i]['total']:2} results {agg[i]['better']:2} "
f"better {agg[i]['worse']:2} worse"
)
print(TextColor.BOLD, f"{parameter} Values:", TextColor.ENDC)
try:
max_len = f"{len(max(agg_result.keys(), key=len))}s"
except TypeError:
max_len = "10.2f"
for key in sorted(agg_result):
print(f"{key:{max_len}} -> {agg_result[key]:2d} times")
def parse_arguments() -> Tuple[str, str, str, bool, bool]:
ap = argparse.ArgumentParser()
ap.add_argument(
"-p",
"--param",
type=str,
default="C",
)
args = ap.parse_args()
return (args.param,)
(param,) = parse_arguments()
dbh = MySQL()
dbh.get_connection()
agg = Aggregation(dbh)
agg.load()
agg.report(param)
dbh.close()

View File

@@ -32,26 +32,6 @@ def parse_arguments() -> Tuple[str, str, str, bool, bool]:
)
def find_best(dataset):
cursor = database.cursor(buffered=True)
if classifier == "any":
command = (
f"select * from results r inner join reference e on "
f"r.dataset=e.dataset where r.dataset='{dataset}' "
)
else:
command = (
f"select * from results r inner join reference e on "
f"r.dataset=e.dataset where r.dataset='{dataset}' and classifier"
f"='{classifier}'"
)
command += (
" order by r.dataset, accuracy desc, classifier desc, type, date, time"
)
cursor.execute(command)
return cursor.fetchone()
def report_header_content(title):
length = sum(lengths) + len(lengths) - 1
output = "\n" + "*" * length + "\n"
@@ -144,7 +124,7 @@ for item in [
] + models:
agg[item] = 0
for dataset in dt:
record = find_best(dataset[0])
record = dbh.find_best(dataset[0], classifier)
if record is None:
print(TextColor.FAIL + f"*No results found for {dataset[0]}")
else: