Files
stree_datasets/param_analysis.py

157 lines
5.3 KiB
Python

import json
import argparse
import collections
from typing import Tuple
from experimentation.Database import MySQL
from experimentation.Sets import Datasets
from experimentation.Utils import TextColor
kernel_names = ["linear", "rbf", "poly"]
class Aggregation:
def __init__(self, dbh):
self._dbh = dbh
self._report = {}
self._model_names = ["stree", "adaBoost", "bagging", "odte"]
self._kernel_names = kernel_names
def find_values(self, dataset, parameter):
result = []
for data in self._report[dataset]:
base_parameter = f"base_estimator__{parameter}"
if parameter in data.keys():
result.append(data[parameter])
if base_parameter in data.keys():
result.append(data[base_parameter])
try:
result_ordered = sorted(result)
return result_ordered
except TypeError:
return result
def load(self):
dt = Datasets(False, False, "tanveer")
print("Aggregating data of best results ...")
for dataset in dt:
if result := self._dbh.find_best(dataset[0]):
accuracy = result[5]
expected = result[10]
model = result[3]
json_result = json.loads(result[8])
if "kernel" in json_result.keys():
kernel = json_result["kernel"]
elif "base_estimator__kernel" in json_result.keys():
kernel = json_result["base_estimator__kernel"]
else:
kernel = "linear"
best = accuracy > expected
self._report[dataset[0]] = {
"model": model,
"kernel": kernel,
"parameters": json_result,
"best": best,
}
@staticmethod
def report_header(title, lengths, fields, parameter):
length = sum(lengths) + len(lengths) - 1
output = "\n" + "*" * length + "\n"
title = title + f" -- {parameter} parameter --"
num = (length - len(title) - 2) // 2
num2 = length - len(title) - 2 - 2 * num
output += "*" + " " * num + title + " " * (num + num2) + "*\n"
output += "*" * length + "\n\n"
lines = ""
for item, data in enumerate(fields):
output += f"{fields[item]:{lengths[item]}} "
lines += "=" * lengths[item] + " "
output += f"\n{lines}"
return output
def report(self, parameter):
agg = {}
agg_result = collections.OrderedDict()
title = "Best Hyperparameters found for datasets"
lengths = (32, 10, 7, 20)
fields = (
"Dataset",
"Classifier",
"Kernel",
"Parameter Value",
)
print(Aggregation.report_header(title, lengths, fields, parameter))
for i in self._kernel_names + self._model_names:
agg[i] = {}
agg[i]["total"] = 0
agg[i]["better"] = 0
agg[i]["worse"] = 0
for dataset, data in self._report.items():
kernel = data["kernel"]
model = data["model"]
if data["best"]:
key = "better"
sign = "+"
else:
key = "worse"
sign = "-"
base_parameter = f"base_estimator__{parameter}"
result = ""
if parameter in data["parameters"]:
result = data["parameters"][parameter]
try:
agg_result[result] += 1
except KeyError:
agg_result[result] = 1
elif base_parameter in data["parameters"]:
result = data["parameters"][base_parameter]
try:
agg_result[result] += 1
except KeyError:
agg_result[result] = 1
print(f"{sign} {dataset:30s} {model:10s} {kernel:7s} {result}")
agg[kernel]["total"] += 1
agg[kernel][key] += 1
agg[model]["total"] += 1
agg[model][key] += 1
print(TextColor.BOLD, "Models", TextColor.ENDC)
for i in self._model_names:
print(
f"{i:10} has {agg[i]['total']:2} results {agg[i]['better']:2} "
f"better {agg[i]['worse']:2} worse"
)
print(TextColor.BOLD, "Kernels", TextColor.ENDC)
for i in self._kernel_names:
print(
f"{i:10} has {agg[i]['total']:2} results {agg[i]['better']:2} "
f"better {agg[i]['worse']:2} worse"
)
print(TextColor.BOLD, f"{parameter} Values:", TextColor.ENDC)
try:
max_len = f"{len(max(agg_result.keys(), key=len))}s"
except TypeError:
max_len = "10.2f"
for key in sorted(agg_result):
print(f"{key:{max_len}} -> {agg_result[key]:2d} times")
def parse_arguments() -> Tuple[str, str, str, bool, bool]:
ap = argparse.ArgumentParser()
ap.add_argument(
"-p",
"--param",
type=str,
default="C",
)
args = ap.parse_args()
return (args.param,)
(param,) = parse_arguments()
dbh = MySQL()
dbh.get_connection()
agg = Aggregation(dbh)
agg.load()
agg.report(param)
dbh.close()