mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-18 08:55:51 +00:00
Compare commits
53 Commits
submodule
...
join_fit_i
Author | SHA1 | Date | |
---|---|---|---|
f65efe3dfd
|
|||
e9d19d41da
|
|||
6450ccb9bd
|
|||
5d2f32bb0e
|
|||
|
8249e55b0c | ||
40871f128d
|
|||
718c9d0e63
|
|||
e0b7cae9a0
|
|||
31d79a77fa
|
|||
2d495293bb
|
|||
9899781640
|
|||
f20496203e
|
|||
cf09d92ccc
|
|||
1186e4ad53
|
|||
7913f5151e
|
|||
050b923631
|
|||
29fc88cecc
|
|||
16b31ec293
|
|||
ca7d158ac8
|
|||
|
34cd54f77e
|
||
70bf03155c
|
|||
77b571af71
|
|||
ff7a91a7ec
|
|||
621c19d00c
|
|||
|
790da5cc60 | ||
2775698063
|
|||
9db16d9d3c
|
|||
edd464311f
|
|||
fe32ed4b2a
|
|||
1d95311a7d
|
|||
d8066ea274
|
|||
a2c1b07525
|
|||
05c12561ac
|
|||
8f4bdd262a
|
|||
0740d1f515
|
|||
eb7f3dc092
|
|||
cfc18adf06
|
|||
3ae0d67884
|
|||
0ca507c692
|
|||
|
70b3af94cc | ||
9d66bd6fd0
|
|||
9039139a32
|
|||
a5dc2d7162
|
|||
67726bf219
|
|||
2cb15cadbc
|
|||
630ea1dfdb
|
|||
74d420dbce
|
|||
707432cc28
|
|||
6bddb3ac43
|
|||
d29a5c6caf
|
|||
e5b09f1610
|
|||
|
75c5a095c5 | ||
|
4d1ce5d743 |
82
.github/workflows/codeql.yml
vendored
Normal file
82
.github/workflows/codeql.yml
vendored
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
# For most projects, this workflow file will not need changing; you simply need
|
||||||
|
# to commit it to your repository.
|
||||||
|
#
|
||||||
|
# You may wish to alter this file to override the set of languages analyzed,
|
||||||
|
# or to provide custom queries or build logic.
|
||||||
|
#
|
||||||
|
# ******** NOTE ********
|
||||||
|
# We have attempted to detect the languages in your repository. Please check
|
||||||
|
# the `language` matrix defined below to confirm you have the correct set of
|
||||||
|
# supported CodeQL languages.
|
||||||
|
#
|
||||||
|
name: "CodeQL"
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: ["main"]
|
||||||
|
pull_request:
|
||||||
|
# The branches below must be a subset of the branches above
|
||||||
|
branches: ["main"]
|
||||||
|
schedule:
|
||||||
|
- cron: "16 22 * * 0"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
analyze:
|
||||||
|
name: Analyze
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
actions: read
|
||||||
|
contents: read
|
||||||
|
security-events: write
|
||||||
|
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
language: ["python"]
|
||||||
|
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
|
||||||
|
# Learn more about CodeQL language support at https://aka.ms/codeql-docs/language-support
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
submodules: recursive
|
||||||
|
|
||||||
|
# Initializes the CodeQL tools for scanning.
|
||||||
|
- name: Initialize CodeQL
|
||||||
|
uses: github/codeql-action/init@v2
|
||||||
|
with:
|
||||||
|
languages: ${{ matrix.language }}
|
||||||
|
# If you wish to specify custom queries, you can do so here or in a config file.
|
||||||
|
# By default, queries listed here will override any specified in a config file.
|
||||||
|
# Prefix the list here with "+" to use these queries and those in the config file.
|
||||||
|
|
||||||
|
# Details on CodeQL's query packs refer to : https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
|
||||||
|
# queries: security-extended,security-and-quality
|
||||||
|
|
||||||
|
# Autobuild attempts to build any compiled languages (C/C++, C#, Go, or Java).
|
||||||
|
# If this step fails, then you should remove it and run the build manually (see below)
|
||||||
|
- if: matrix.language == 'python'
|
||||||
|
name: Autobuild
|
||||||
|
uses: github/codeql-action/autobuild@v2
|
||||||
|
|
||||||
|
- if: matrix.language == 'cpp'
|
||||||
|
name: Build CPP
|
||||||
|
run: |
|
||||||
|
pip install -q --upgrade pip
|
||||||
|
pip install -q scikit-learn cython
|
||||||
|
make install
|
||||||
|
# ℹ️ Command-line programs to run using the OS shell.
|
||||||
|
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
|
||||||
|
|
||||||
|
# If the Autobuild fails above, remove it and uncomment the following three lines.
|
||||||
|
# modify them (or add more) to build your code if your project, please refer to the EXAMPLE below for guidance.
|
||||||
|
|
||||||
|
# - run: |
|
||||||
|
# echo "Run, Build Application using script"
|
||||||
|
# ./location_of_script_within_repo/buildscript.sh
|
||||||
|
|
||||||
|
- name: Perform CodeQL Analysis
|
||||||
|
uses: github/codeql-action/analyze@v2
|
||||||
|
with:
|
||||||
|
category: "/language:${{matrix.language}}"
|
14
.github/workflows/main.yml
vendored
14
.github/workflows/main.yml
vendored
@@ -2,9 +2,9 @@ name: CI
|
|||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches: [master]
|
branches: [main]
|
||||||
pull_request:
|
pull_request:
|
||||||
branches: [master]
|
branches: [main]
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
@@ -12,11 +12,13 @@ jobs:
|
|||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [macos-latest, ubuntu-latest, windows-latest]
|
os: [ubuntu-latest]
|
||||||
python: [3.9, "3.10"]
|
python: ["3.10"]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
submodules: recursive
|
||||||
- name: Set up Python ${{ matrix.python }}
|
- name: Set up Python ${{ matrix.python }}
|
||||||
uses: actions/setup-python@v2
|
uses: actions/setup-python@v2
|
||||||
with:
|
with:
|
||||||
@@ -24,10 +26,10 @@ jobs:
|
|||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run: |
|
run: |
|
||||||
pip install -q --upgrade pip
|
pip install -q --upgrade pip
|
||||||
|
pip install -q scikit-learn cython
|
||||||
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
|
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
|
||||||
- name: Build and install
|
- name: Build and install
|
||||||
run: |
|
run: |
|
||||||
cd FImdlp
|
|
||||||
make install
|
make install
|
||||||
- name: Lint
|
- name: Lint
|
||||||
run: |
|
run: |
|
||||||
|
8
.gitignore
vendored
8
.gitignore
vendored
@@ -33,8 +33,8 @@ MANIFEST
|
|||||||
*.manifest
|
*.manifest
|
||||||
*.spec
|
*.spec
|
||||||
|
|
||||||
# Installer log2s
|
# Installer logs
|
||||||
pip-log2.txt
|
pip-log.txt
|
||||||
pip-delete-this-directory.txt
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
# Unit test / coverage reports
|
# Unit test / coverage reports
|
||||||
@@ -56,7 +56,7 @@ coverage.xml
|
|||||||
*.pot
|
*.pot
|
||||||
|
|
||||||
# Django stuff:
|
# Django stuff:
|
||||||
*.log2
|
*.log
|
||||||
local_settings.py
|
local_settings.py
|
||||||
db.sqlite3
|
db.sqlite3
|
||||||
db.sqlite3-journal
|
db.sqlite3-journal
|
||||||
@@ -135,3 +135,5 @@ cmake-build-debug/**
|
|||||||
**/lcoverage/**
|
**/lcoverage/**
|
||||||
**/x/*
|
**/x/*
|
||||||
**/*.so
|
**/*.so
|
||||||
|
**/CMakeFiles
|
||||||
|
wheelhouse
|
||||||
|
6
.gitmodules
vendored
6
.gitmodules
vendored
@@ -1,3 +1,3 @@
|
|||||||
[submodule "fimdlp/cppmdlp"]
|
[submodule "src/cppmdlp"]
|
||||||
path = src/cppfimdlp
|
path = src/cppmdlp
|
||||||
url = https://github.com/rmontanana/mdlp
|
url = https://github.com/rmontanana/mdlp.git
|
||||||
|
BIN
Ejemplo.xlsx
BIN
Ejemplo.xlsx
Binary file not shown.
4
MANIFEST.in
Normal file
4
MANIFEST.in
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
include src/cppmdlp/CPPFImdlp.h
|
||||||
|
include src/cppmdlp/typesFImdlp.h
|
||||||
|
include src/cppmdlp/Metrics.h
|
||||||
|
include src/fimdlp/Factorize.h
|
9
Makefile
9
Makefile
@@ -15,6 +15,10 @@ coverage:
|
|||||||
make test
|
make test
|
||||||
coverage report -m
|
coverage report -m
|
||||||
|
|
||||||
|
submodule:
|
||||||
|
git submodule update --remote src/cppmdlp
|
||||||
|
git submodule update --merge
|
||||||
|
|
||||||
lint: ## Lint and static-check
|
lint: ## Lint and static-check
|
||||||
black src
|
black src
|
||||||
flake8 --per-file-ignores="__init__.py:F401" src
|
flake8 --per-file-ignores="__init__.py:F401" src
|
||||||
@@ -33,6 +37,11 @@ install: ## Build extension
|
|||||||
audit: ## Audit pip
|
audit: ## Audit pip
|
||||||
pip-audit
|
pip-audit
|
||||||
|
|
||||||
|
version:
|
||||||
|
@echo "Current Python version .: $(shell python --version)"
|
||||||
|
@echo "Current FImdlp version .: $(shell python -c "from fimdlp import _version; print(_version.__version__)")"
|
||||||
|
@echo "Installed FImdlp version: $(shell pip show fimdlp | grep Version | cut -d' ' -f2)"
|
||||||
|
|
||||||
help: ## Show help message
|
help: ## Show help message
|
||||||
@IFS=$$'\n' ; \
|
@IFS=$$'\n' ; \
|
||||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||||
|
18
README.md
18
README.md
@@ -1,11 +1,21 @@
|
|||||||
# FImdlp
|
# FImdlp
|
||||||
|
[](https://github.com/Doctorado-ML/FImdlp/actions/workflows/main.yml)
|
||||||
|
[](https://github.com/Doctorado-ML/FImdlp/actions/workflows/codeql.yml)
|
||||||
[](https://www.codacy.com/gh/Doctorado-ML/FImdlp/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/FImdlp&utm_campaign=Badge_Grade)
|
[](https://www.codacy.com/gh/Doctorado-ML/FImdlp/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/FImdlp&utm_campaign=Badge_Grade)
|
||||||
|
[](https://codecov.io/gh/Doctorado-ML/FImdlp)
|
||||||
|
[](https://pypi.org/project/FImdlp)
|
||||||
|

|
||||||
|
|
||||||
Discretization algorithm based on the paper by Usama M. Fayyad and Keki B. Irani
|
Discretization algorithm based on the paper by Usama M. Fayyad and Keki B. Irani
|
||||||
|
|
||||||
```
|
|
||||||
Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1022-1027, Montreal, Canada, August 1995.
|
Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1022-1027, Montreal, Canada, August 1995.
|
||||||
|
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone --recurse-submodules https://github.com/doctorado-ml/FImdlp.git
|
||||||
```
|
```
|
||||||
|
|
||||||
## Build and usage sample
|
## Build and usage sample
|
||||||
@@ -14,8 +24,8 @@ Multi-Interval Discretization of Continuous-Valued Attributes for Classification
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install -e .
|
pip install -e .
|
||||||
python samples/sample.py iris --original
|
python samples/sample.py iris
|
||||||
python samples/sample.py iris --proposal
|
python samples/sample.py iris --alternative
|
||||||
python samples/sample.py -h # for more options
|
python samples/sample.py -h # for more options
|
||||||
```
|
```
|
||||||
|
|
||||||
|
152
feature0.txt
152
feature0.txt
@@ -1,152 +0,0 @@
|
|||||||
+++++++++++++++++++++++
|
|
||||||
( 0, 13) -> (4.3, 0)
|
|
||||||
( 1, 8) -> (4.4, 0)
|
|
||||||
( 2, 38) -> (4.4, 0)
|
|
||||||
( 3, 42) -> (4.4, 0)
|
|
||||||
( 4, 41) -> (4.5, 0)
|
|
||||||
( 5, 3) -> (4.6, 0)
|
|
||||||
( 6, 6) -> (4.6, 0)
|
|
||||||
( 7, 22) -> (4.6, 0)
|
|
||||||
( 8, 47) -> (4.6, 0)
|
|
||||||
( 9, 2) -> (4.7, 0)
|
|
||||||
( 10, 29) -> (4.7, 0)
|
|
||||||
( 11, 11) -> (4.8, 0)
|
|
||||||
( 12, 12) -> (4.8, 0)
|
|
||||||
( 13, 24) -> (4.8, 0)
|
|
||||||
( 14, 30) -> (4.8, 0)
|
|
||||||
( 15, 45) -> (4.8, 0)
|
|
||||||
( 16, 1) -> (4.9, 0)
|
|
||||||
( 17, 9) -> (4.9, 0)
|
|
||||||
( 18, 34) -> (4.9, 0)
|
|
||||||
( 19, 37) -> (4.9, 0)
|
|
||||||
( 20, 57) -> (4.9, 1)
|
|
||||||
( 21, 106) -> (4.9, 2)
|
|
||||||
( 22, 4) -> (5.0, 0)
|
|
||||||
( 23, 7) -> (5.0, 0)
|
|
||||||
( 24, 25) -> (5.0, 0)
|
|
||||||
( 25, 26) -> (5.0, 0)
|
|
||||||
( 26, 35) -> (5.0, 0)
|
|
||||||
( 27, 40) -> (5.0, 0)
|
|
||||||
( 28, 43) -> (5.0, 0)
|
|
||||||
( 29, 49) -> (5.0, 0)
|
|
||||||
( 30, 60) -> (5.0, 1)
|
|
||||||
( 31, 93) -> (5.0, 1)
|
|
||||||
( 32, 0) -> (5.1, 0)
|
|
||||||
( 33, 17) -> (5.1, 0)
|
|
||||||
( 34, 19) -> (5.1, 0)
|
|
||||||
( 35, 21) -> (5.1, 0)
|
|
||||||
( 36, 23) -> (5.1, 0)
|
|
||||||
( 37, 39) -> (5.1, 0)
|
|
||||||
( 38, 44) -> (5.1, 0)
|
|
||||||
( 39, 46) -> (5.1, 0)
|
|
||||||
( 40, 98) -> (5.1, 1)
|
|
||||||
( 41, 27) -> (5.2, 0)
|
|
||||||
( 42, 28) -> (5.2, 0)
|
|
||||||
( 43, 32) -> (5.2, 0)
|
|
||||||
( 44, 59) -> (5.2, 1)
|
|
||||||
( 45, 48) -> (5.3, 0)
|
|
||||||
( 46, 5) -> (5.4, 0)
|
|
||||||
( 47, 10) -> (5.4, 0)
|
|
||||||
( 48, 16) -> (5.4, 0)
|
|
||||||
( 49, 20) -> (5.4, 0)
|
|
||||||
( 50, 31) -> (5.4, 0)
|
|
||||||
( 51, 84) -> (5.4, 1)
|
|
||||||
( 52, 33) -> (5.5, 0)
|
|
||||||
( 53, 36) -> (5.5, 0)
|
|
||||||
( 54, 53) -> (5.5, 1)
|
|
||||||
( 55, 80) -> (5.5, 1)
|
|
||||||
( 56, 81) -> (5.5, 1)
|
|
||||||
( 57, 89) -> (5.5, 1)
|
|
||||||
( 58, 90) -> (5.5, 1)
|
|
||||||
( 59, 64) -> (5.6, 1)
|
|
||||||
( 60, 66) -> (5.6, 1)
|
|
||||||
( 61, 69) -> (5.6, 1)
|
|
||||||
( 62, 88) -> (5.6, 1)
|
|
||||||
( 63, 94) -> (5.6, 1)
|
|
||||||
( 64, 121) -> (5.6, 2)
|
|
||||||
( 65, 15) -> (5.7, 0)
|
|
||||||
( 66, 18) -> (5.7, 0)
|
|
||||||
( 67, 55) -> (5.7, 1)
|
|
||||||
( 68, 79) -> (5.7, 1)
|
|
||||||
( 69, 95) -> (5.7, 1)
|
|
||||||
( 70, 96) -> (5.7, 1)
|
|
||||||
( 71, 99) -> (5.7, 1)
|
|
||||||
( 72, 113) -> (5.7, 2)
|
|
||||||
( 73, 14) -> (5.8, 0)
|
|
||||||
( 74, 67) -> (5.8, 1)
|
|
||||||
( 75, 82) -> (5.8, 1)
|
|
||||||
( 76, 92) -> (5.8, 1)
|
|
||||||
( 77, 101) -> (5.8, 2)
|
|
||||||
( 78, 114) -> (5.8, 2)
|
|
||||||
( 79, 142) -> (5.8, 2)
|
|
||||||
( 80, 61) -> (5.9, 1)
|
|
||||||
( 81, 70) -> (5.9, 1)
|
|
||||||
( 82, 149) -> (5.9, 2)
|
|
||||||
( 83, 62) -> (6.0, 1)
|
|
||||||
( 84, 78) -> (6.0, 1)
|
|
||||||
( 85, 83) -> (6.0, 1)
|
|
||||||
( 86, 85) -> (6.0, 1)
|
|
||||||
( 87, 119) -> (6.0, 2)
|
|
||||||
( 88, 138) -> (6.0, 2)
|
|
||||||
( 89, 63) -> (6.1, 1)
|
|
||||||
( 90, 71) -> (6.1, 1)
|
|
||||||
( 91, 73) -> (6.1, 1)
|
|
||||||
( 92, 91) -> (6.1, 1)
|
|
||||||
( 93, 127) -> (6.1, 2)
|
|
||||||
( 94, 134) -> (6.1, 2)
|
|
||||||
( 95, 68) -> (6.2, 1)
|
|
||||||
( 96, 97) -> (6.2, 1)
|
|
||||||
( 97, 126) -> (6.2, 2)
|
|
||||||
( 98, 148) -> (6.2, 2)
|
|
||||||
( 99, 56) -> (6.3, 1)
|
|
||||||
(100, 72) -> (6.3, 1)
|
|
||||||
(101, 87) -> (6.3, 1)
|
|
||||||
(102, 100) -> (6.3, 2)
|
|
||||||
(103, 103) -> (6.3, 2)
|
|
||||||
(104, 123) -> (6.3, 2)
|
|
||||||
(105, 133) -> (6.3, 2)
|
|
||||||
(106, 136) -> (6.3, 2)
|
|
||||||
(107, 146) -> (6.3, 2)
|
|
||||||
(108, 51) -> (6.4, 1)
|
|
||||||
(109, 74) -> (6.4, 1)
|
|
||||||
(110, 111) -> (6.4, 2)
|
|
||||||
(111, 115) -> (6.4, 2)
|
|
||||||
(112, 128) -> (6.4, 2)
|
|
||||||
(113, 132) -> (6.4, 2)
|
|
||||||
(114, 137) -> (6.4, 2)
|
|
||||||
(115, 54) -> (6.5, 1)
|
|
||||||
(116, 104) -> (6.5, 2)
|
|
||||||
(117, 110) -> (6.5, 2)
|
|
||||||
(118, 116) -> (6.5, 2)
|
|
||||||
(119, 147) -> (6.5, 2)
|
|
||||||
(120, 58) -> (6.6, 1)
|
|
||||||
(121, 75) -> (6.6, 1)
|
|
||||||
(122, 65) -> (6.7, 1)
|
|
||||||
(123, 77) -> (6.7, 1)
|
|
||||||
(124, 86) -> (6.7, 1)
|
|
||||||
(125, 108) -> (6.7, 2)
|
|
||||||
(126, 124) -> (6.7, 2)
|
|
||||||
(127, 140) -> (6.7, 2)
|
|
||||||
(128, 144) -> (6.7, 2)
|
|
||||||
(129, 145) -> (6.7, 2)
|
|
||||||
(130, 76) -> (6.8, 1)
|
|
||||||
(131, 112) -> (6.8, 2)
|
|
||||||
(132, 143) -> (6.8, 2)
|
|
||||||
(133, 52) -> (6.9, 1)
|
|
||||||
(134, 120) -> (6.9, 2)
|
|
||||||
(135, 139) -> (6.9, 2)
|
|
||||||
(136, 141) -> (6.9, 2)
|
|
||||||
(137, 50) -> (7.0, 1)
|
|
||||||
(138, 102) -> (7.1, 2)
|
|
||||||
(139, 109) -> (7.2, 2)
|
|
||||||
(140, 125) -> (7.2, 2)
|
|
||||||
(141, 129) -> (7.2, 2)
|
|
||||||
(142, 107) -> (7.3, 2)
|
|
||||||
(143, 130) -> (7.4, 2)
|
|
||||||
(144, 105) -> (7.6, 2)
|
|
||||||
(145, 117) -> (7.7, 2)
|
|
||||||
(146, 118) -> (7.7, 2)
|
|
||||||
(147, 122) -> (7.7, 2)
|
|
||||||
(148, 135) -> (7.7, 2)
|
|
||||||
(149, 131) -> (7.9, 2)
|
|
||||||
+++++++++++++++++++++++
|
|
12
k.py
Normal file
12
k.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from sklearn.datasets import load_wine
|
||||||
|
from fimdlp.mdlp import FImdlp
|
||||||
|
|
||||||
|
X, y = load_wine(return_X_y=True)
|
||||||
|
trans = FImdlp()
|
||||||
|
Xt = trans.join_transform(X, y, 12)
|
||||||
|
print("X shape = ", X.shape)
|
||||||
|
print("Xt.shape=", Xt.shape)
|
||||||
|
print("Xt ", Xt[:10])
|
||||||
|
print("trans.X_ shape = ", trans.X_.shape)
|
||||||
|
print("trans.y_ ", trans.y_[:10])
|
||||||
|
print("y_join ", trans.y_join_[:10])
|
@@ -18,7 +18,7 @@ authors = [
|
|||||||
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
|
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
|
||||||
]
|
]
|
||||||
dynamic = ['version']
|
dynamic = ['version']
|
||||||
dependencies = ["numpy", "joblib"]
|
dependencies = ["numpy", "joblib", "scikit-learn"]
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
classifiers = [
|
classifiers = [
|
||||||
"Development Status :: 3 - Alpha",
|
"Development Status :: 3 - Alpha",
|
||||||
|
@@ -1,117 +0,0 @@
|
|||||||
#include "ArffFiles.h"
|
|
||||||
|
|
||||||
#include <fstream>
|
|
||||||
#include <sstream>
|
|
||||||
#include <map>
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
|
|
||||||
ArffFiles::ArffFiles()
|
|
||||||
{
|
|
||||||
}
|
|
||||||
vector<string> ArffFiles::getLines()
|
|
||||||
{
|
|
||||||
return lines;
|
|
||||||
}
|
|
||||||
unsigned long int ArffFiles::getSize()
|
|
||||||
{
|
|
||||||
return lines.size();
|
|
||||||
}
|
|
||||||
vector<tuple<string, string>> ArffFiles::getAttributes()
|
|
||||||
{
|
|
||||||
return attributes;
|
|
||||||
}
|
|
||||||
string ArffFiles::getClassName()
|
|
||||||
{
|
|
||||||
return className;
|
|
||||||
}
|
|
||||||
string ArffFiles::getClassType()
|
|
||||||
{
|
|
||||||
return classType;
|
|
||||||
}
|
|
||||||
vector<vector<float>>& ArffFiles::getX()
|
|
||||||
{
|
|
||||||
return X;
|
|
||||||
}
|
|
||||||
vector<int>& ArffFiles::getY()
|
|
||||||
{
|
|
||||||
return y;
|
|
||||||
}
|
|
||||||
void ArffFiles::load(string fileName, bool classLast)
|
|
||||||
{
|
|
||||||
ifstream file(fileName);
|
|
||||||
string keyword, attribute, type;
|
|
||||||
if (file.is_open()) {
|
|
||||||
string line;
|
|
||||||
while (getline(file, line)) {
|
|
||||||
if (line[0] == '%' || line.empty() || line == "\r" || line == " ") {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
|
||||||
stringstream ss(line);
|
|
||||||
ss >> keyword >> attribute >> type;
|
|
||||||
attributes.push_back(make_tuple(attribute, type));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line[0] == '@') {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
lines.push_back(line);
|
|
||||||
}
|
|
||||||
file.close();
|
|
||||||
if (attributes.empty())
|
|
||||||
throw invalid_argument("No attributes found");
|
|
||||||
if (classLast) {
|
|
||||||
className = get<0>(attributes.back());
|
|
||||||
classType = get<1>(attributes.back());
|
|
||||||
attributes.pop_back();
|
|
||||||
} else {
|
|
||||||
className = get<0>(attributes.front());
|
|
||||||
classType = get<1>(attributes.front());
|
|
||||||
attributes.erase(attributes.begin());
|
|
||||||
}
|
|
||||||
generateDataset(classLast);
|
|
||||||
} else
|
|
||||||
throw invalid_argument("Unable to open file");
|
|
||||||
}
|
|
||||||
void ArffFiles::generateDataset(bool classLast)
|
|
||||||
{
|
|
||||||
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
|
|
||||||
vector<string> yy = vector<string>(lines.size(), "");
|
|
||||||
int labelIndex = classLast ? attributes.size() : 0;
|
|
||||||
for (int i = 0; i < lines.size(); i++) {
|
|
||||||
stringstream ss(lines[i]);
|
|
||||||
string value;
|
|
||||||
int pos = 0, xIndex = 0;
|
|
||||||
while (getline(ss, value, ',')) {
|
|
||||||
if (pos++ == labelIndex) {
|
|
||||||
yy[i] = value;
|
|
||||||
} else {
|
|
||||||
X[xIndex++][i] = stof(value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
y = factorize(yy);
|
|
||||||
}
|
|
||||||
string ArffFiles::trim(const string& source)
|
|
||||||
{
|
|
||||||
string s(source);
|
|
||||||
s.erase(0, s.find_first_not_of(" \n\r\t"));
|
|
||||||
s.erase(s.find_last_not_of(" \n\r\t") + 1);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
|
||||||
{
|
|
||||||
vector<int> yy;
|
|
||||||
yy.reserve(labels_t.size());
|
|
||||||
map<string, int> labelMap;
|
|
||||||
int i = 0;
|
|
||||||
for (string label : labels_t) {
|
|
||||||
if (labelMap.find(label) == labelMap.end()) {
|
|
||||||
labelMap[label] = i++;
|
|
||||||
}
|
|
||||||
yy.push_back(labelMap[label]);
|
|
||||||
}
|
|
||||||
return yy;
|
|
||||||
}
|
|
@@ -1,28 +0,0 @@
|
|||||||
#ifndef ARFFFILES_H
|
|
||||||
#define ARFFFILES_H
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
#include <tuple>
|
|
||||||
using namespace std;
|
|
||||||
class ArffFiles {
|
|
||||||
private:
|
|
||||||
vector<string> lines;
|
|
||||||
vector<tuple<string, string>> attributes;
|
|
||||||
string className, classType;
|
|
||||||
vector<vector<float>> X;
|
|
||||||
vector<int> y;
|
|
||||||
void generateDataset(bool);
|
|
||||||
public:
|
|
||||||
ArffFiles();
|
|
||||||
void load(string, bool = true);
|
|
||||||
vector<string> getLines();
|
|
||||||
unsigned long int getSize();
|
|
||||||
string getClassName();
|
|
||||||
string getClassType();
|
|
||||||
string trim(const string&);
|
|
||||||
vector<vector<float>>& getX();
|
|
||||||
vector<int>& getY();
|
|
||||||
vector<tuple<string, string>> getAttributes();
|
|
||||||
vector<int> factorize(const vector<string>& labels_t);
|
|
||||||
};
|
|
||||||
#endif
|
|
@@ -3,4 +3,4 @@ project(main)
|
|||||||
|
|
||||||
set(CMAKE_CXX_STANDARD 14)
|
set(CMAKE_CXX_STANDARD 14)
|
||||||
|
|
||||||
add_executable(sample sample.cpp ArffFiles.cpp ../src/fimdlp/cppmdlp/Metrics.cpp ../src/fimdlp/cppmdlp/CPPFImdlp.cpp)
|
add_executable(sample sample.cpp ../src/cppmdlp/tests/ArffFiles.cpp ../src/cppmdlp/Metrics.cpp ../src/cppmdlp/CPPFImdlp.cpp)
|
||||||
|
@@ -1,4 +1,4 @@
|
|||||||
#include "ArffFiles.h"
|
#include "../src/cppmdlp/tests/ArffFiles.h"
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <iomanip>
|
#include <iomanip>
|
||||||
@@ -41,7 +41,7 @@ int main(int argc, char** argv)
|
|||||||
}
|
}
|
||||||
cout << y[i] << endl;
|
cout << y[i] << endl;
|
||||||
}
|
}
|
||||||
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(false);
|
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(0);
|
||||||
for (auto i = 0; i < attributes.size(); i++) {
|
for (auto i = 0; i < attributes.size(); i++) {
|
||||||
cout << "Cut points for " << get<0>(attributes[i]) << endl;
|
cout << "Cut points for " << get<0>(attributes[i]) << endl;
|
||||||
cout << "--------------------------" << setprecision(3) << endl;
|
cout << "--------------------------" << setprecision(3) << endl;
|
||||||
|
@@ -14,8 +14,9 @@ datasets = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
ap = argparse.ArgumentParser()
|
ap = argparse.ArgumentParser()
|
||||||
ap.add_argument("--proposal", action="store_true")
|
ap.add_argument(
|
||||||
ap.add_argument("--original", dest="proposal", action="store_false")
|
"--alternative", dest="proposal", action="store_const", const=1
|
||||||
|
)
|
||||||
ap.add_argument("dataset", type=str, choices=datasets.keys())
|
ap.add_argument("dataset", type=str, choices=datasets.keys())
|
||||||
args = ap.parse_args()
|
args = ap.parse_args()
|
||||||
relative = "" if os.path.isdir("src") else ".."
|
relative = "" if os.path.isdir("src") else ".."
|
||||||
@@ -29,7 +30,7 @@ class_name = df.columns.to_list()[class_column]
|
|||||||
X = df.drop(class_name, axis=1)
|
X = df.drop(class_name, axis=1)
|
||||||
y, _ = pd.factorize(df[class_name])
|
y, _ = pd.factorize(df[class_name])
|
||||||
X = X.to_numpy()
|
X = X.to_numpy()
|
||||||
test = FImdlp(proposal=args.proposal)
|
test = FImdlp(algorithm=args.proposal if args.proposal is not None else 0)
|
||||||
now = time.time()
|
now = time.time()
|
||||||
test.fit(X, y)
|
test.fit(X, y)
|
||||||
fit_time = time.time()
|
fit_time = time.time()
|
||||||
|
5
setup.py
5
setup.py
@@ -14,10 +14,13 @@ setup(
|
|||||||
"src/fimdlp/cfimdlp.pyx",
|
"src/fimdlp/cfimdlp.pyx",
|
||||||
"src/cppmdlp/CPPFImdlp.cpp",
|
"src/cppmdlp/CPPFImdlp.cpp",
|
||||||
"src/cppmdlp/Metrics.cpp",
|
"src/cppmdlp/Metrics.cpp",
|
||||||
|
"src/fimdlp/Factorize.cpp",
|
||||||
],
|
],
|
||||||
language="c++",
|
language="c++",
|
||||||
include_dirs=["fimdlp"],
|
include_dirs=["fimdlp"],
|
||||||
extra_compile_args=["-std=c++2a"],
|
extra_compile_args=[
|
||||||
|
"-std=c++11",
|
||||||
|
],
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
1
src/cppmdlp
Submodule
1
src/cppmdlp
Submodule
Submodule src/cppmdlp added at 32a6fd9ba0
36
src/cppmdlp/.gitignore
vendored
36
src/cppmdlp/.gitignore
vendored
@@ -1,36 +0,0 @@
|
|||||||
# Prerequisites
|
|
||||||
*.d
|
|
||||||
|
|
||||||
# Compiled Object files
|
|
||||||
*.slo
|
|
||||||
*.lo
|
|
||||||
*.o
|
|
||||||
*.obj
|
|
||||||
|
|
||||||
# Precompiled Headers
|
|
||||||
*.gch
|
|
||||||
*.pch
|
|
||||||
|
|
||||||
# Compiled Dynamic libraries
|
|
||||||
*.so
|
|
||||||
*.dylib
|
|
||||||
*.dll
|
|
||||||
|
|
||||||
# Fortran module files
|
|
||||||
*.mod
|
|
||||||
*.smod
|
|
||||||
|
|
||||||
# Compiled Static libraries
|
|
||||||
*.lai
|
|
||||||
*.la
|
|
||||||
*.a
|
|
||||||
*.lib
|
|
||||||
|
|
||||||
# Executables
|
|
||||||
*.exe
|
|
||||||
*.out
|
|
||||||
*.app
|
|
||||||
**/build
|
|
||||||
**/lcoverage
|
|
||||||
.idea
|
|
||||||
cmake-*
|
|
@@ -1,7 +0,0 @@
|
|||||||
cmake_minimum_required(VERSION 3.24)
|
|
||||||
project(mdlp)
|
|
||||||
|
|
||||||
set(CMAKE_CXX_STANDARD 17)
|
|
||||||
|
|
||||||
add_library(mdlp CPPFImdlp.cpp Metrics.cpp)
|
|
||||||
|
|
@@ -1,160 +0,0 @@
|
|||||||
#include <numeric>
|
|
||||||
#include <algorithm>
|
|
||||||
#include <set>
|
|
||||||
#include <cmath>
|
|
||||||
#include "CPPFImdlp.h"
|
|
||||||
#include "Metrics.h"
|
|
||||||
|
|
||||||
namespace mdlp {
|
|
||||||
CPPFImdlp::CPPFImdlp(bool proposal):proposal(proposal), indices(indices_t()), X(samples_t()), y(labels_t()), metrics(Metrics(y, indices))
|
|
||||||
{
|
|
||||||
}
|
|
||||||
CPPFImdlp::~CPPFImdlp()
|
|
||||||
= default;
|
|
||||||
|
|
||||||
CPPFImdlp& CPPFImdlp::fit(samples_t& X_, labels_t& y_)
|
|
||||||
{
|
|
||||||
X = X_;
|
|
||||||
y = y_;
|
|
||||||
cutPoints.clear();
|
|
||||||
if (X.size() != y.size()) {
|
|
||||||
throw invalid_argument("X and y must have the same size");
|
|
||||||
}
|
|
||||||
if (X.size() == 0 || y.size() == 0) {
|
|
||||||
throw invalid_argument("X and y must have at least one element");
|
|
||||||
}
|
|
||||||
indices = sortIndices(X_);
|
|
||||||
metrics.setData(y, indices);
|
|
||||||
if (proposal)
|
|
||||||
computeCutPointsProposal();
|
|
||||||
else
|
|
||||||
computeCutPoints(0, X.size());
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
|
|
||||||
{
|
|
||||||
int cut;
|
|
||||||
if (end - start < 2)
|
|
||||||
return;
|
|
||||||
cut = getCandidate(start, end);
|
|
||||||
if (cut == -1 || !mdlp(start, cut, end)) {
|
|
||||||
// cut.value == -1 means that there is no candidate in the interval
|
|
||||||
// No boundary found, so we add both ends of the interval as cutpoints
|
|
||||||
// because they were selected by the algorithm before
|
|
||||||
if (start != 0)
|
|
||||||
cutPoints.push_back((X[indices[start]] + X[indices[start - 1]]) / 2);
|
|
||||||
if (end != X.size())
|
|
||||||
cutPoints.push_back((X[indices[end]] + X[indices[end - 1]]) / 2);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
computeCutPoints(start, cut);
|
|
||||||
computeCutPoints(cut, end);
|
|
||||||
}
|
|
||||||
void CPPFImdlp::computeCutPointsOriginal(size_t start, size_t end)
|
|
||||||
{
|
|
||||||
precision_t cut;
|
|
||||||
if (end - start < 2)
|
|
||||||
return;
|
|
||||||
cut = getCandidate(start, end);
|
|
||||||
if (cut == -1)
|
|
||||||
return;
|
|
||||||
if (mdlp(start, cut, end)) {
|
|
||||||
cutPoints.push_back((X[indices[cut]] + X[indices[cut - 1]]) / 2);
|
|
||||||
}
|
|
||||||
computeCutPointsOriginal(start, cut);
|
|
||||||
computeCutPointsOriginal(cut, end);
|
|
||||||
}
|
|
||||||
void CPPFImdlp::computeCutPointsProposal()
|
|
||||||
{
|
|
||||||
precision_t xPrev, xCur, xPivot, cutPoint;
|
|
||||||
int yPrev, yCur, yPivot;
|
|
||||||
size_t idx, numElements, start;
|
|
||||||
|
|
||||||
xCur = xPrev = X[indices[0]];
|
|
||||||
yCur = yPrev = y[indices[0]];
|
|
||||||
numElements = indices.size() - 1;
|
|
||||||
idx = start = 0;
|
|
||||||
while (idx < numElements) {
|
|
||||||
xPivot = xCur;
|
|
||||||
yPivot = yCur;
|
|
||||||
// Read the same values and check class changes
|
|
||||||
do {
|
|
||||||
idx++;
|
|
||||||
xCur = X[indices[idx]];
|
|
||||||
yCur = y[indices[idx]];
|
|
||||||
if (yCur != yPivot && xCur == xPivot) {
|
|
||||||
yPivot = -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
while (idx < numElements && xCur == xPivot);
|
|
||||||
// Check if the class changed and there are more than 1 element
|
|
||||||
if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && mdlp(start, idx, indices.size())) {
|
|
||||||
start = idx;
|
|
||||||
cutPoint = (xPrev + xCur) / 2;
|
|
||||||
cutPoints.push_back(cutPoint);
|
|
||||||
}
|
|
||||||
yPrev = yPivot;
|
|
||||||
xPrev = xPivot;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
long int CPPFImdlp::getCandidate(size_t start, size_t end)
|
|
||||||
{
|
|
||||||
long int candidate = -1, elements = end - start;
|
|
||||||
precision_t entropy_left, entropy_right, minEntropy = numeric_limits<precision_t>::max();
|
|
||||||
for (auto idx = start + 1; idx < end; idx++) {
|
|
||||||
// Cutpoints are always on boudndaries
|
|
||||||
if (y[indices[idx]] == y[indices[idx - 1]])
|
|
||||||
continue;
|
|
||||||
entropy_left = precision_t(idx - start) / elements * metrics.entropy(start, idx);
|
|
||||||
entropy_right = precision_t(end - idx) / elements * metrics.entropy(idx, end);
|
|
||||||
if (entropy_left + entropy_right < minEntropy) {
|
|
||||||
minEntropy = entropy_left + entropy_right;
|
|
||||||
candidate = idx;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return candidate;
|
|
||||||
}
|
|
||||||
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
|
|
||||||
{
|
|
||||||
int k, k1, k2;
|
|
||||||
precision_t ig, delta;
|
|
||||||
precision_t ent, ent1, ent2;
|
|
||||||
auto N = precision_t(end - start);
|
|
||||||
if (N < 2) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
k = metrics.computeNumClasses(start, end);
|
|
||||||
k1 = metrics.computeNumClasses(start, cut);
|
|
||||||
k2 = metrics.computeNumClasses(cut, end);
|
|
||||||
ent = metrics.entropy(start, end);
|
|
||||||
ent1 = metrics.entropy(start, cut);
|
|
||||||
ent2 = metrics.entropy(cut, end);
|
|
||||||
ig = metrics.informationGain(start, cut, end);
|
|
||||||
delta = log2(pow(3, precision_t(k)) - 2) -
|
|
||||||
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2);
|
|
||||||
precision_t term = 1 / N * (log2(N - 1) + delta);
|
|
||||||
return ig > term;
|
|
||||||
}
|
|
||||||
cutPoints_t CPPFImdlp::getCutPoints()
|
|
||||||
{
|
|
||||||
// Remove duplicates and sort
|
|
||||||
cutPoints_t output(cutPoints.size());
|
|
||||||
set<precision_t> s;
|
|
||||||
unsigned size = cutPoints.size();
|
|
||||||
for (unsigned i = 0; i < size; i++)
|
|
||||||
s.insert(cutPoints[i]);
|
|
||||||
output.assign(s.begin(), s.end());
|
|
||||||
sort(output.begin(), output.end());
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
|
||||||
indices_t CPPFImdlp::sortIndices(samples_t& X_)
|
|
||||||
{
|
|
||||||
indices_t idx(X_.size());
|
|
||||||
iota(idx.begin(), idx.end(), 0);
|
|
||||||
for (size_t i = 0; i < X_.size(); i++)
|
|
||||||
sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
|
|
||||||
{ return X_[i1] < X_[i2]; });
|
|
||||||
return idx;
|
|
||||||
}
|
|
||||||
}
|
|
@@ -1,33 +0,0 @@
|
|||||||
#ifndef CPPFIMDLP_H
|
|
||||||
#define CPPFIMDLP_H
|
|
||||||
#include "typesFImdlp.h"
|
|
||||||
#include "Metrics.h"
|
|
||||||
#include <utility>
|
|
||||||
namespace mdlp {
|
|
||||||
class CPPFImdlp {
|
|
||||||
protected:
|
|
||||||
bool proposal;
|
|
||||||
indices_t indices; // sorted indices to use with X and y
|
|
||||||
samples_t X;
|
|
||||||
labels_t y;
|
|
||||||
Metrics metrics;
|
|
||||||
cutPoints_t cutPoints;
|
|
||||||
|
|
||||||
static indices_t sortIndices(samples_t&);
|
|
||||||
void computeCutPoints(size_t, size_t);
|
|
||||||
long int getCandidate(size_t, size_t);
|
|
||||||
bool mdlp(size_t, size_t, size_t);
|
|
||||||
|
|
||||||
// Original algorithm
|
|
||||||
void computeCutPointsOriginal(size_t, size_t);
|
|
||||||
bool goodCut(size_t, size_t, size_t);
|
|
||||||
void computeCutPointsProposal();
|
|
||||||
|
|
||||||
public:
|
|
||||||
CPPFImdlp(bool);
|
|
||||||
~CPPFImdlp();
|
|
||||||
CPPFImdlp& fit(samples_t&, labels_t&);
|
|
||||||
samples_t getCutPoints();
|
|
||||||
};
|
|
||||||
}
|
|
||||||
#endif
|
|
@@ -1,21 +0,0 @@
|
|||||||
MIT License
|
|
||||||
|
|
||||||
Copyright (c) 2022 Ricardo Montañana Gómez
|
|
||||||
|
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
||||||
of this software and associated documentation files (the "Software"), to deal
|
|
||||||
in the Software without restriction, including without limitation the rights
|
|
||||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
||||||
copies of the Software, and to permit persons to whom the Software is
|
|
||||||
furnished to do so, subject to the following conditions:
|
|
||||||
|
|
||||||
The above copyright notice and this permission notice shall be included in all
|
|
||||||
copies or substantial portions of the Software.
|
|
||||||
|
|
||||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
||||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
||||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
||||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
||||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
||||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
||||||
SOFTWARE.
|
|
@@ -1,65 +0,0 @@
|
|||||||
#include "Metrics.h"
|
|
||||||
#include <set>
|
|
||||||
#include <cmath>
|
|
||||||
using namespace std;
|
|
||||||
namespace mdlp {
|
|
||||||
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_), numClasses(computeNumClasses(0, indices.size())), entropyCache(cacheEnt_t()), igCache(cacheIg_t())
|
|
||||||
{
|
|
||||||
}
|
|
||||||
int Metrics::computeNumClasses(size_t start, size_t end)
|
|
||||||
{
|
|
||||||
set<int> nClasses;
|
|
||||||
for (auto i = start; i < end; ++i) {
|
|
||||||
nClasses.insert(y[indices[i]]);
|
|
||||||
}
|
|
||||||
return nClasses.size();
|
|
||||||
}
|
|
||||||
void Metrics::setData(labels_t& y_, indices_t& indices_)
|
|
||||||
{
|
|
||||||
indices = indices_;
|
|
||||||
y = y_;
|
|
||||||
numClasses = computeNumClasses(0, indices.size());
|
|
||||||
entropyCache.clear();
|
|
||||||
igCache.clear();
|
|
||||||
}
|
|
||||||
precision_t Metrics::entropy(size_t start, size_t end)
|
|
||||||
{
|
|
||||||
precision_t p, ventropy = 0;
|
|
||||||
int nElements = 0;
|
|
||||||
labels_t counts(numClasses + 1, 0);
|
|
||||||
if (end - start < 2)
|
|
||||||
return 0;
|
|
||||||
if (entropyCache.find(make_tuple(start, end)) != entropyCache.end()) {
|
|
||||||
return entropyCache[make_tuple(start, end)];
|
|
||||||
}
|
|
||||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
|
||||||
counts[y[*i]]++;
|
|
||||||
nElements++;
|
|
||||||
}
|
|
||||||
for (auto count : counts) {
|
|
||||||
if (count > 0) {
|
|
||||||
p = (precision_t)count / nElements;
|
|
||||||
ventropy -= p * log2(p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
entropyCache[make_tuple(start, end)] = ventropy;
|
|
||||||
return ventropy;
|
|
||||||
}
|
|
||||||
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
|
|
||||||
{
|
|
||||||
precision_t iGain;
|
|
||||||
precision_t entropyInterval, entropyLeft, entropyRight;
|
|
||||||
int nElementsLeft = cut - start, nElementsRight = end - cut;
|
|
||||||
int nElements = end - start;
|
|
||||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
|
||||||
return igCache[make_tuple(start, cut, end)];
|
|
||||||
}
|
|
||||||
entropyInterval = entropy(start, end);
|
|
||||||
entropyLeft = entropy(start, cut);
|
|
||||||
entropyRight = entropy(cut, end);
|
|
||||||
iGain = entropyInterval - ((precision_t)nElementsLeft * entropyLeft + (precision_t)nElementsRight * entropyRight) / nElements;
|
|
||||||
igCache[make_tuple(start, cut, end)] = iGain;
|
|
||||||
return iGain;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@@ -1,20 +0,0 @@
|
|||||||
#ifndef CCMETRICS_H
|
|
||||||
#define CCMETRICS_H
|
|
||||||
#include "typesFImdlp.h"
|
|
||||||
namespace mdlp {
|
|
||||||
class Metrics {
|
|
||||||
protected:
|
|
||||||
labels_t& y;
|
|
||||||
indices_t& indices;
|
|
||||||
int numClasses;
|
|
||||||
cacheEnt_t entropyCache;
|
|
||||||
cacheIg_t igCache;
|
|
||||||
public:
|
|
||||||
Metrics(labels_t&, indices_t&);
|
|
||||||
void setData(labels_t&, indices_t&);
|
|
||||||
int computeNumClasses(size_t, size_t);
|
|
||||||
precision_t entropy(size_t, size_t);
|
|
||||||
precision_t informationGain(size_t, size_t, size_t);
|
|
||||||
};
|
|
||||||
}
|
|
||||||
#endif
|
|
@@ -1,2 +0,0 @@
|
|||||||
# mdlp
|
|
||||||
Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning
|
|
@@ -1,117 +0,0 @@
|
|||||||
#include "ArffFiles.h"
|
|
||||||
|
|
||||||
#include <fstream>
|
|
||||||
#include <sstream>
|
|
||||||
#include <map>
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
|
|
||||||
ArffFiles::ArffFiles()
|
|
||||||
{
|
|
||||||
}
|
|
||||||
vector<string> ArffFiles::getLines()
|
|
||||||
{
|
|
||||||
return lines;
|
|
||||||
}
|
|
||||||
unsigned long int ArffFiles::getSize()
|
|
||||||
{
|
|
||||||
return lines.size();
|
|
||||||
}
|
|
||||||
vector<tuple<string, string>> ArffFiles::getAttributes()
|
|
||||||
{
|
|
||||||
return attributes;
|
|
||||||
}
|
|
||||||
string ArffFiles::getClassName()
|
|
||||||
{
|
|
||||||
return className;
|
|
||||||
}
|
|
||||||
string ArffFiles::getClassType()
|
|
||||||
{
|
|
||||||
return classType;
|
|
||||||
}
|
|
||||||
vector<vector<float>>& ArffFiles::getX()
|
|
||||||
{
|
|
||||||
return X;
|
|
||||||
}
|
|
||||||
vector<int>& ArffFiles::getY()
|
|
||||||
{
|
|
||||||
return y;
|
|
||||||
}
|
|
||||||
void ArffFiles::load(string fileName, bool classLast)
|
|
||||||
{
|
|
||||||
ifstream file(fileName);
|
|
||||||
string keyword, attribute, type;
|
|
||||||
if (file.is_open()) {
|
|
||||||
string line;
|
|
||||||
while (getline(file, line)) {
|
|
||||||
if (line[0] == '%' || line.empty() || line == "\r" || line == " ") {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
|
||||||
stringstream ss(line);
|
|
||||||
ss >> keyword >> attribute >> type;
|
|
||||||
attributes.push_back(make_tuple(attribute, type));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line[0] == '@') {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
lines.push_back(line);
|
|
||||||
}
|
|
||||||
file.close();
|
|
||||||
if (attributes.empty())
|
|
||||||
throw invalid_argument("No attributes found");
|
|
||||||
if (classLast) {
|
|
||||||
className = get<0>(attributes.back());
|
|
||||||
classType = get<1>(attributes.back());
|
|
||||||
attributes.pop_back();
|
|
||||||
} else {
|
|
||||||
className = get<0>(attributes.front());
|
|
||||||
classType = get<1>(attributes.front());
|
|
||||||
attributes.erase(attributes.begin());
|
|
||||||
}
|
|
||||||
generateDataset(classLast);
|
|
||||||
} else
|
|
||||||
throw invalid_argument("Unable to open file");
|
|
||||||
}
|
|
||||||
void ArffFiles::generateDataset(bool classLast)
|
|
||||||
{
|
|
||||||
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
|
|
||||||
vector<string> yy = vector<string>(lines.size(), "");
|
|
||||||
int labelIndex = classLast ? attributes.size() : 0;
|
|
||||||
for (int i = 0; i < lines.size(); i++) {
|
|
||||||
stringstream ss(lines[i]);
|
|
||||||
string value;
|
|
||||||
int pos = 0, xIndex = 0;
|
|
||||||
while (getline(ss, value, ',')) {
|
|
||||||
if (pos++ == labelIndex) {
|
|
||||||
yy[i] = value;
|
|
||||||
} else {
|
|
||||||
X[xIndex++][i] = stof(value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
y = factorize(yy);
|
|
||||||
}
|
|
||||||
string ArffFiles::trim(const string& source)
|
|
||||||
{
|
|
||||||
string s(source);
|
|
||||||
s.erase(0, s.find_first_not_of(" \n\r\t"));
|
|
||||||
s.erase(s.find_last_not_of(" \n\r\t") + 1);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
|
||||||
{
|
|
||||||
vector<int> yy;
|
|
||||||
yy.reserve(labels_t.size());
|
|
||||||
map<string, int> labelMap;
|
|
||||||
int i = 0;
|
|
||||||
for (string label : labels_t) {
|
|
||||||
if (labelMap.find(label) == labelMap.end()) {
|
|
||||||
labelMap[label] = i++;
|
|
||||||
}
|
|
||||||
yy.push_back(labelMap[label]);
|
|
||||||
}
|
|
||||||
return yy;
|
|
||||||
}
|
|
@@ -1,28 +0,0 @@
|
|||||||
#ifndef ARFFFILES_H
|
|
||||||
#define ARFFFILES_H
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
#include <tuple>
|
|
||||||
using namespace std;
|
|
||||||
class ArffFiles {
|
|
||||||
private:
|
|
||||||
vector<string> lines;
|
|
||||||
vector<tuple<string, string>> attributes;
|
|
||||||
string className, classType;
|
|
||||||
vector<vector<float>> X;
|
|
||||||
vector<int> y;
|
|
||||||
void generateDataset(bool);
|
|
||||||
public:
|
|
||||||
ArffFiles();
|
|
||||||
void load(string, bool = true);
|
|
||||||
vector<string> getLines();
|
|
||||||
unsigned long int getSize();
|
|
||||||
string getClassName();
|
|
||||||
string getClassType();
|
|
||||||
string trim(const string&);
|
|
||||||
vector<vector<float>>& getX();
|
|
||||||
vector<int>& getY();
|
|
||||||
vector<tuple<string, string>> getAttributes();
|
|
||||||
vector<int> factorize(const vector<string>& labels_t);
|
|
||||||
};
|
|
||||||
#endif
|
|
@@ -1,6 +0,0 @@
|
|||||||
cmake_minimum_required(VERSION 3.24)
|
|
||||||
project(main)
|
|
||||||
|
|
||||||
set(CMAKE_CXX_STANDARD 17)
|
|
||||||
|
|
||||||
add_executable(sample sample.cpp ArffFiles.cpp ../Metrics.cpp ../CPPFImdlp.cpp)
|
|
@@ -1,54 +0,0 @@
|
|||||||
#include "ArffFiles.h"
|
|
||||||
#include <iostream>
|
|
||||||
#include <vector>
|
|
||||||
#include <iomanip>
|
|
||||||
#include "../CPPFImdlp.h"
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
|
|
||||||
int main(int argc, char** argv)
|
|
||||||
{
|
|
||||||
ArffFiles file;
|
|
||||||
vector<string> lines;
|
|
||||||
string path = "../../tests/datasets/";
|
|
||||||
map<string, bool > datasets = {
|
|
||||||
{"mfeat-factors", true},
|
|
||||||
{"iris", true},
|
|
||||||
{"letter", true},
|
|
||||||
{"kdd_JapaneseVowels", false}
|
|
||||||
};
|
|
||||||
if (argc != 2 || datasets.find(argv[1]) == datasets.end()) {
|
|
||||||
cout << "Usage: " << argv[0] << " {mfeat-factors, iris, letter, kdd_JapaneseVowels}" << endl;
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
file.load(path + argv[1] + ".arff", datasets[argv[1]]);
|
|
||||||
auto attributes = file.getAttributes();
|
|
||||||
int items = file.getSize();
|
|
||||||
cout << "Number of lines: " << items << endl;
|
|
||||||
cout << "Attributes: " << endl;
|
|
||||||
for (auto attribute : attributes) {
|
|
||||||
cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << endl;
|
|
||||||
}
|
|
||||||
cout << "Class name: " << file.getClassName() << endl;
|
|
||||||
cout << "Class type: " << file.getClassType() << endl;
|
|
||||||
cout << "Data: " << endl;
|
|
||||||
vector<vector<float>>& X = file.getX();
|
|
||||||
vector<int>& y = file.getY();
|
|
||||||
for (int i = 0; i < 50; i++) {
|
|
||||||
for (auto feature : X) {
|
|
||||||
cout << fixed << setprecision(1) << feature[i] << " ";
|
|
||||||
}
|
|
||||||
cout << y[i] << endl;
|
|
||||||
}
|
|
||||||
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(false);
|
|
||||||
for (auto i = 0; i < attributes.size(); i++) {
|
|
||||||
cout << "Cut points for " << get<0>(attributes[i]) << endl;
|
|
||||||
cout << "--------------------------" << setprecision(3) << endl;
|
|
||||||
test.fit(X[i], y);
|
|
||||||
for (auto item : test.getCutPoints()) {
|
|
||||||
cout << item << endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
2
src/cppmdlp/tests/.gitignore
vendored
2
src/cppmdlp/tests/.gitignore
vendored
@@ -1,2 +0,0 @@
|
|||||||
build
|
|
||||||
build/*
|
|
@@ -1,32 +0,0 @@
|
|||||||
cmake_minimum_required(VERSION 3.14)
|
|
||||||
project(FImdlp)
|
|
||||||
|
|
||||||
# GoogleTest requires at least C++14
|
|
||||||
set(CMAKE_CXX_STANDARD 14)
|
|
||||||
include(FetchContent)
|
|
||||||
|
|
||||||
include_directories(${GTEST_INCLUDE_DIRS})
|
|
||||||
|
|
||||||
FetchContent_Declare(
|
|
||||||
googletest
|
|
||||||
URL https://github.com/google/googletest/archive/03597a01ee50ed33e9dfd640b249b4be3799d395.zip
|
|
||||||
)
|
|
||||||
# For Windows: Prevent overriding the parent project's compiler/linker settings
|
|
||||||
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
|
|
||||||
FetchContent_MakeAvailable(googletest)
|
|
||||||
|
|
||||||
enable_testing()
|
|
||||||
|
|
||||||
add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp)
|
|
||||||
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ../Metrics.cpp FImdlp_unittest.cpp)
|
|
||||||
target_link_libraries(Metrics_unittest GTest::gtest_main)
|
|
||||||
target_link_libraries(FImdlp_unittest GTest::gtest_main)
|
|
||||||
target_compile_options(Metrics_unittest PRIVATE --coverage)
|
|
||||||
target_compile_options(FImdlp_unittest PRIVATE --coverage)
|
|
||||||
target_link_options(Metrics_unittest PRIVATE --coverage)
|
|
||||||
target_link_options(FImdlp_unittest PRIVATE --coverage)
|
|
||||||
|
|
||||||
include(GoogleTest)
|
|
||||||
gtest_discover_tests(Metrics_unittest)
|
|
||||||
gtest_discover_tests(FImdlp_unittest)
|
|
||||||
|
|
@@ -1,141 +0,0 @@
|
|||||||
#include "gtest/gtest.h"
|
|
||||||
#include "../Metrics.h"
|
|
||||||
#include "../CPPFImdlp.h"
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
namespace mdlp {
|
|
||||||
class TestFImdlp : public CPPFImdlp, public testing::Test {
|
|
||||||
public:
|
|
||||||
precision_t precision = 0.000001;
|
|
||||||
|
|
||||||
TestFImdlp() : CPPFImdlp(false) {}
|
|
||||||
|
|
||||||
void SetUp() {
|
|
||||||
// 5.0, 5.1, 5.1, 5.1, 5.2, 5.3, 5.6, 5.7, 5.9, 6.0]
|
|
||||||
//(5.0, 1) (5.1, 1) (5.1, 2) (5.1, 2) (5.2, 1) (5.3, 1) (5.6, 2) (5.7, 1) (5.9, 2) (6.0, 2)
|
|
||||||
X = {5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9};
|
|
||||||
y = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
|
|
||||||
proposal = false;
|
|
||||||
fit(X, y);
|
|
||||||
}
|
|
||||||
|
|
||||||
void setProposal(bool value) {
|
|
||||||
proposal = value;
|
|
||||||
}
|
|
||||||
|
|
||||||
// void initIndices()
|
|
||||||
// {
|
|
||||||
// indices = indices_t();
|
|
||||||
// }
|
|
||||||
void checkSortedVector() {
|
|
||||||
indices_t testSortedIndices = sortIndices(X);
|
|
||||||
precision_t prev = X[testSortedIndices[0]];
|
|
||||||
for (auto i = 0; i < X.size(); ++i) {
|
|
||||||
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
|
||||||
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
|
||||||
prev = X[testSortedIndices[i]];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void checkCutPoints(cutPoints_t &expected) {
|
|
||||||
int expectedSize = expected.size();
|
|
||||||
EXPECT_EQ(cutPoints.size(), expectedSize);
|
|
||||||
for (auto i = 0; i < cutPoints.size(); i++) {
|
|
||||||
EXPECT_NEAR(cutPoints[i], expected[i], precision);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename T, typename A>
|
|
||||||
void checkVectors(std::vector<T, A> const &expected, std::vector<T, A> const &computed) {
|
|
||||||
EXPECT_EQ(expected.size(), computed.size());
|
|
||||||
ASSERT_EQ(expected.size(), computed.size());
|
|
||||||
for (auto i = 0; i < expected.size(); i++) {
|
|
||||||
EXPECT_NEAR(expected[i], computed[i],precision);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, FitErrorEmptyDataset) {
|
|
||||||
X = samples_t();
|
|
||||||
y = labels_t();
|
|
||||||
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, FitErrorDifferentSize) {
|
|
||||||
X = {1, 2, 3};
|
|
||||||
y = {1, 2};
|
|
||||||
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, SortIndices) {
|
|
||||||
X = {5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9};
|
|
||||||
indices = {4, 3, 6, 8, 2, 1, 5, 0, 9, 7};
|
|
||||||
checkSortedVector();
|
|
||||||
X = {5.77, 5.88, 5.99};
|
|
||||||
indices = {0, 1, 2};
|
|
||||||
checkSortedVector();
|
|
||||||
X = {5.33, 5.22, 5.11};
|
|
||||||
indices = {2, 1, 0};
|
|
||||||
checkSortedVector();
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, TestDataset) {
|
|
||||||
proposal = false;
|
|
||||||
fit(X, y);
|
|
||||||
computeCutPointsOriginal(0, 10);
|
|
||||||
cutPoints_t expected = {5.6499996185302734};
|
|
||||||
vector<precision_t> computed = getCutPoints();
|
|
||||||
computed = getCutPoints();
|
|
||||||
int expectedSize = expected.size();
|
|
||||||
EXPECT_EQ(computed.size(), expected.size());
|
|
||||||
for (auto i = 0; i < expectedSize; i++) {
|
|
||||||
EXPECT_NEAR(computed[i], expected[i], precision);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, ComputeCutPointsOriginal) {
|
|
||||||
cutPoints_t expected = {5.65};
|
|
||||||
proposal = false;
|
|
||||||
computeCutPointsOriginal(0, 10);
|
|
||||||
checkCutPoints(expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, ComputeCutPointsOriginalGCase) {
|
|
||||||
cutPoints_t expected;
|
|
||||||
proposal = false;
|
|
||||||
expected = {2};
|
|
||||||
samples_t X_ = {0, 1, 2, 2};
|
|
||||||
labels_t y_ = {1, 1, 1, 2};
|
|
||||||
fit(X_, y_);
|
|
||||||
checkCutPoints(expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, ComputeCutPointsProposal) {
|
|
||||||
proposal = true;
|
|
||||||
cutPoints_t expected;
|
|
||||||
expected = {};
|
|
||||||
fit(X, y);
|
|
||||||
computeCutPointsProposal();
|
|
||||||
checkCutPoints(expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, ComputeCutPointsProposalGCase) {
|
|
||||||
cutPoints_t expected;
|
|
||||||
expected = {1.5};
|
|
||||||
proposal = true;
|
|
||||||
samples_t X_ = {0, 1, 2, 2};
|
|
||||||
labels_t y_ = {1, 1, 1, 2};
|
|
||||||
fit(X_, y_);
|
|
||||||
checkCutPoints(expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_F(TestFImdlp, GetCutPoints) {
|
|
||||||
samples_t computed, expected = {5.65};
|
|
||||||
proposal = false;
|
|
||||||
computeCutPointsOriginal(0, 10);
|
|
||||||
computed = getCutPoints();
|
|
||||||
for (auto item: cutPoints)
|
|
||||||
cout << setprecision(6) << item << endl;
|
|
||||||
checkVectors(expected, computed);
|
|
||||||
}
|
|
||||||
}
|
|
@@ -1,43 +0,0 @@
|
|||||||
#include "gtest/gtest.h"
|
|
||||||
#include "../Metrics.h"
|
|
||||||
|
|
||||||
|
|
||||||
namespace mdlp {
|
|
||||||
class TestMetrics: public Metrics, public testing::Test {
|
|
||||||
public:
|
|
||||||
labels_t y;
|
|
||||||
samples_t X;
|
|
||||||
indices_t indices;
|
|
||||||
precision_t precision = 0.000001;
|
|
||||||
|
|
||||||
TestMetrics(): Metrics(y, indices) {}
|
|
||||||
void SetUp()
|
|
||||||
{
|
|
||||||
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
|
||||||
indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
|
||||||
setData(y, indices);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
TEST_F(TestMetrics, NumClasses)
|
|
||||||
{
|
|
||||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
|
||||||
EXPECT_EQ(1, computeNumClasses(4, 8));
|
|
||||||
EXPECT_EQ(2, computeNumClasses(0, 10));
|
|
||||||
EXPECT_EQ(2, computeNumClasses(8, 10));
|
|
||||||
}
|
|
||||||
TEST_F(TestMetrics, Entropy)
|
|
||||||
{
|
|
||||||
EXPECT_EQ(1, entropy(0, 10));
|
|
||||||
EXPECT_EQ(0, entropy(0, 5));
|
|
||||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
|
||||||
setData(y, indices);
|
|
||||||
ASSERT_NEAR(0.468996, entropy(0, 10), precision);
|
|
||||||
}
|
|
||||||
TEST_F(TestMetrics, InformationGain)
|
|
||||||
{
|
|
||||||
ASSERT_NEAR(1, informationGain(0, 5, 10), precision);
|
|
||||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
|
||||||
setData(y, indices);
|
|
||||||
ASSERT_NEAR(0.108032, informationGain(0, 5, 10), precision);
|
|
||||||
}
|
|
||||||
}
|
|
@@ -1,4 +0,0 @@
|
|||||||
rm -fr lcoverage/*
|
|
||||||
lcov --capture --directory ./ --output-file lcoverage/main_coverage.info
|
|
||||||
genhtml lcoverage/main_coverage.info --output-directory lcoverage
|
|
||||||
open lcoverage/index.html
|
|
@@ -1,225 +0,0 @@
|
|||||||
% 1. Title: Iris Plants Database
|
|
||||||
%
|
|
||||||
% 2. Sources:
|
|
||||||
% (a) Creator: R.A. Fisher
|
|
||||||
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
|
|
||||||
% (c) Date: July, 1988
|
|
||||||
%
|
|
||||||
% 3. Past Usage:
|
|
||||||
% - Publications: too many to mention!!! Here are a few.
|
|
||||||
% 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
|
|
||||||
% Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
|
|
||||||
% to Mathematical Statistics" (John Wiley, NY, 1950).
|
|
||||||
% 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
|
|
||||||
% (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
|
|
||||||
% 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
|
|
||||||
% Structure and Classification Rule for Recognition in Partially Exposed
|
|
||||||
% Environments". IEEE Transactions on Pattern Analysis and Machine
|
|
||||||
% Intelligence, Vol. PAMI-2, No. 1, 67-71.
|
|
||||||
% -- Results:
|
|
||||||
% -- very low misclassification rates (0% for the setosa class)
|
|
||||||
% 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
|
|
||||||
% Transactions on Information Theory, May 1972, 431-433.
|
|
||||||
% -- Results:
|
|
||||||
% -- very low misclassification rates again
|
|
||||||
% 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
|
|
||||||
% conceptual clustering system finds 3 classes in the data.
|
|
||||||
%
|
|
||||||
% 4. Relevant Information:
|
|
||||||
% --- This is perhaps the best known database to be found in the pattern
|
|
||||||
% recognition literature. Fisher's paper is a classic in the field
|
|
||||||
% and is referenced frequently to this day. (See Duda & Hart, for
|
|
||||||
% example.) The data set contains 3 classes of 50 instances each,
|
|
||||||
% where each class refers to a type of iris plant. One class is
|
|
||||||
% linearly separable from the other 2; the latter are NOT linearly
|
|
||||||
% separable from each other.
|
|
||||||
% --- Predicted attribute: class of iris plant.
|
|
||||||
% --- This is an exceedingly simple domain.
|
|
||||||
%
|
|
||||||
% 5. Number of Instances: 150 (50 in each of three classes)
|
|
||||||
%
|
|
||||||
% 6. Number of Attributes: 4 numeric, predictive attributes and the class
|
|
||||||
%
|
|
||||||
% 7. Attribute Information:
|
|
||||||
% 1. sepal length in cm
|
|
||||||
% 2. sepal width in cm
|
|
||||||
% 3. petal length in cm
|
|
||||||
% 4. petal width in cm
|
|
||||||
% 5. class:
|
|
||||||
% -- Iris Setosa
|
|
||||||
% -- Iris Versicolour
|
|
||||||
% -- Iris Virginica
|
|
||||||
%
|
|
||||||
% 8. Missing Attribute Values: None
|
|
||||||
%
|
|
||||||
% Summary Statistics:
|
|
||||||
% Min Max Mean SD Class Correlation
|
|
||||||
% sepal length: 4.3 7.9 5.84 0.83 0.7826
|
|
||||||
% sepal width: 2.0 4.4 3.05 0.43 -0.4194
|
|
||||||
% petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
|
|
||||||
% petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
|
|
||||||
%
|
|
||||||
% 9. Class Distribution: 33.3% for each of 3 classes.
|
|
||||||
|
|
||||||
@RELATION iris
|
|
||||||
|
|
||||||
@ATTRIBUTE sepallength REAL
|
|
||||||
@ATTRIBUTE sepalwidth REAL
|
|
||||||
@ATTRIBUTE petallength REAL
|
|
||||||
@ATTRIBUTE petalwidth REAL
|
|
||||||
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
|
|
||||||
|
|
||||||
@DATA
|
|
||||||
5.1,3.5,1.4,0.2,Iris-setosa
|
|
||||||
4.9,3.0,1.4,0.2,Iris-setosa
|
|
||||||
4.7,3.2,1.3,0.2,Iris-setosa
|
|
||||||
4.6,3.1,1.5,0.2,Iris-setosa
|
|
||||||
5.0,3.6,1.4,0.2,Iris-setosa
|
|
||||||
5.4,3.9,1.7,0.4,Iris-setosa
|
|
||||||
4.6,3.4,1.4,0.3,Iris-setosa
|
|
||||||
5.0,3.4,1.5,0.2,Iris-setosa
|
|
||||||
4.4,2.9,1.4,0.2,Iris-setosa
|
|
||||||
4.9,3.1,1.5,0.1,Iris-setosa
|
|
||||||
5.4,3.7,1.5,0.2,Iris-setosa
|
|
||||||
4.8,3.4,1.6,0.2,Iris-setosa
|
|
||||||
4.8,3.0,1.4,0.1,Iris-setosa
|
|
||||||
4.3,3.0,1.1,0.1,Iris-setosa
|
|
||||||
5.8,4.0,1.2,0.2,Iris-setosa
|
|
||||||
5.7,4.4,1.5,0.4,Iris-setosa
|
|
||||||
5.4,3.9,1.3,0.4,Iris-setosa
|
|
||||||
5.1,3.5,1.4,0.3,Iris-setosa
|
|
||||||
5.7,3.8,1.7,0.3,Iris-setosa
|
|
||||||
5.1,3.8,1.5,0.3,Iris-setosa
|
|
||||||
5.4,3.4,1.7,0.2,Iris-setosa
|
|
||||||
5.1,3.7,1.5,0.4,Iris-setosa
|
|
||||||
4.6,3.6,1.0,0.2,Iris-setosa
|
|
||||||
5.1,3.3,1.7,0.5,Iris-setosa
|
|
||||||
4.8,3.4,1.9,0.2,Iris-setosa
|
|
||||||
5.0,3.0,1.6,0.2,Iris-setosa
|
|
||||||
5.0,3.4,1.6,0.4,Iris-setosa
|
|
||||||
5.2,3.5,1.5,0.2,Iris-setosa
|
|
||||||
5.2,3.4,1.4,0.2,Iris-setosa
|
|
||||||
4.7,3.2,1.6,0.2,Iris-setosa
|
|
||||||
4.8,3.1,1.6,0.2,Iris-setosa
|
|
||||||
5.4,3.4,1.5,0.4,Iris-setosa
|
|
||||||
5.2,4.1,1.5,0.1,Iris-setosa
|
|
||||||
5.5,4.2,1.4,0.2,Iris-setosa
|
|
||||||
4.9,3.1,1.5,0.1,Iris-setosa
|
|
||||||
5.0,3.2,1.2,0.2,Iris-setosa
|
|
||||||
5.5,3.5,1.3,0.2,Iris-setosa
|
|
||||||
4.9,3.1,1.5,0.1,Iris-setosa
|
|
||||||
4.4,3.0,1.3,0.2,Iris-setosa
|
|
||||||
5.1,3.4,1.5,0.2,Iris-setosa
|
|
||||||
5.0,3.5,1.3,0.3,Iris-setosa
|
|
||||||
4.5,2.3,1.3,0.3,Iris-setosa
|
|
||||||
4.4,3.2,1.3,0.2,Iris-setosa
|
|
||||||
5.0,3.5,1.6,0.6,Iris-setosa
|
|
||||||
5.1,3.8,1.9,0.4,Iris-setosa
|
|
||||||
4.8,3.0,1.4,0.3,Iris-setosa
|
|
||||||
5.1,3.8,1.6,0.2,Iris-setosa
|
|
||||||
4.6,3.2,1.4,0.2,Iris-setosa
|
|
||||||
5.3,3.7,1.5,0.2,Iris-setosa
|
|
||||||
5.0,3.3,1.4,0.2,Iris-setosa
|
|
||||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
|
||||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
|
||||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
|
||||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
|
||||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
|
||||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
|
||||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
|
||||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
|
||||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
|
||||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
|
||||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
|
||||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
|
||||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
|
||||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
|
||||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
|
||||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
|
||||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
|
||||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
|
||||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
|
||||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
|
||||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
|
||||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
|
||||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
|
||||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
|
||||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
|
||||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
|
||||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
|
||||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
|
||||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
|
||||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
|
||||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
|
||||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
|
||||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
|
||||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
|
||||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
|
||||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
|
||||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
|
||||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
|
||||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
|
||||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
|
||||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
|
||||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
|
||||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
|
||||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
|
||||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
|
||||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
|
||||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
|
||||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
|
||||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
|
||||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
|
||||||
6.3,3.3,6.0,2.5,Iris-virginica
|
|
||||||
5.8,2.7,5.1,1.9,Iris-virginica
|
|
||||||
7.1,3.0,5.9,2.1,Iris-virginica
|
|
||||||
6.3,2.9,5.6,1.8,Iris-virginica
|
|
||||||
6.5,3.0,5.8,2.2,Iris-virginica
|
|
||||||
7.6,3.0,6.6,2.1,Iris-virginica
|
|
||||||
4.9,2.5,4.5,1.7,Iris-virginica
|
|
||||||
7.3,2.9,6.3,1.8,Iris-virginica
|
|
||||||
6.7,2.5,5.8,1.8,Iris-virginica
|
|
||||||
7.2,3.6,6.1,2.5,Iris-virginica
|
|
||||||
6.5,3.2,5.1,2.0,Iris-virginica
|
|
||||||
6.4,2.7,5.3,1.9,Iris-virginica
|
|
||||||
6.8,3.0,5.5,2.1,Iris-virginica
|
|
||||||
5.7,2.5,5.0,2.0,Iris-virginica
|
|
||||||
5.8,2.8,5.1,2.4,Iris-virginica
|
|
||||||
6.4,3.2,5.3,2.3,Iris-virginica
|
|
||||||
6.5,3.0,5.5,1.8,Iris-virginica
|
|
||||||
7.7,3.8,6.7,2.2,Iris-virginica
|
|
||||||
7.7,2.6,6.9,2.3,Iris-virginica
|
|
||||||
6.0,2.2,5.0,1.5,Iris-virginica
|
|
||||||
6.9,3.2,5.7,2.3,Iris-virginica
|
|
||||||
5.6,2.8,4.9,2.0,Iris-virginica
|
|
||||||
7.7,2.8,6.7,2.0,Iris-virginica
|
|
||||||
6.3,2.7,4.9,1.8,Iris-virginica
|
|
||||||
6.7,3.3,5.7,2.1,Iris-virginica
|
|
||||||
7.2,3.2,6.0,1.8,Iris-virginica
|
|
||||||
6.2,2.8,4.8,1.8,Iris-virginica
|
|
||||||
6.1,3.0,4.9,1.8,Iris-virginica
|
|
||||||
6.4,2.8,5.6,2.1,Iris-virginica
|
|
||||||
7.2,3.0,5.8,1.6,Iris-virginica
|
|
||||||
7.4,2.8,6.1,1.9,Iris-virginica
|
|
||||||
7.9,3.8,6.4,2.0,Iris-virginica
|
|
||||||
6.4,2.8,5.6,2.2,Iris-virginica
|
|
||||||
6.3,2.8,5.1,1.5,Iris-virginica
|
|
||||||
6.1,2.6,5.6,1.4,Iris-virginica
|
|
||||||
7.7,3.0,6.1,2.3,Iris-virginica
|
|
||||||
6.3,3.4,5.6,2.4,Iris-virginica
|
|
||||||
6.4,3.1,5.5,1.8,Iris-virginica
|
|
||||||
6.0,3.0,4.8,1.8,Iris-virginica
|
|
||||||
6.9,3.1,5.4,2.1,Iris-virginica
|
|
||||||
6.7,3.1,5.6,2.4,Iris-virginica
|
|
||||||
6.9,3.1,5.1,2.3,Iris-virginica
|
|
||||||
5.8,2.7,5.1,1.9,Iris-virginica
|
|
||||||
6.8,3.2,5.9,2.3,Iris-virginica
|
|
||||||
6.7,3.3,5.7,2.5,Iris-virginica
|
|
||||||
6.7,3.0,5.2,2.3,Iris-virginica
|
|
||||||
6.3,2.5,5.0,1.9,Iris-virginica
|
|
||||||
6.5,3.0,5.2,2.0,Iris-virginica
|
|
||||||
6.2,3.4,5.4,2.3,Iris-virginica
|
|
||||||
5.9,3.0,5.1,1.8,Iris-virginica
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,12 +0,0 @@
|
|||||||
cmake -S . -B build -Wno-dev
|
|
||||||
if test $? -ne 0; then
|
|
||||||
echo "Error in creating build commands."
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
cmake --build build
|
|
||||||
if test $? -ne 0; then
|
|
||||||
echo "Error in build command."
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
cd build
|
|
||||||
ctest --output-on-failure
|
|
@@ -1,16 +0,0 @@
|
|||||||
#ifndef TYPES_H
|
|
||||||
#define TYPES_H
|
|
||||||
#include <vector>
|
|
||||||
#include <map>
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
namespace mdlp {
|
|
||||||
typedef float precision_t;
|
|
||||||
typedef vector<precision_t> samples_t;
|
|
||||||
typedef vector<int> labels_t;
|
|
||||||
typedef vector<size_t> indices_t;
|
|
||||||
typedef vector<precision_t> cutPoints_t;
|
|
||||||
typedef map<tuple<int, int>, precision_t> cacheEnt_t;
|
|
||||||
typedef map<tuple<int, int, int>, precision_t> cacheIg_t;
|
|
||||||
}
|
|
||||||
#endif
|
|
18
src/fimdlp/Factorize.cpp
Normal file
18
src/fimdlp/Factorize.cpp
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
#include "Factorize.h"
|
||||||
|
|
||||||
|
namespace utils {
|
||||||
|
vector<int> cppFactorize(const vector<string>& labels_t)
|
||||||
|
{
|
||||||
|
vector<int> yy;
|
||||||
|
yy.reserve(labels_t.size());
|
||||||
|
map<string, int> labelMap;
|
||||||
|
int i = 0;
|
||||||
|
for (string label : labels_t) {
|
||||||
|
if (labelMap.find(label) == labelMap.end()) {
|
||||||
|
labelMap[label] = i++;
|
||||||
|
}
|
||||||
|
yy.push_back(labelMap[label]);
|
||||||
|
}
|
||||||
|
return yy;
|
||||||
|
}
|
||||||
|
}
|
10
src/fimdlp/Factorize.h
Normal file
10
src/fimdlp/Factorize.h
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
#ifndef FACTORIZE_H
|
||||||
|
#define FACTORIZE_H
|
||||||
|
#include <vector>
|
||||||
|
#include <map>
|
||||||
|
#include <string>
|
||||||
|
namespace utils {
|
||||||
|
using namespace std;
|
||||||
|
vector<int> cppFactorize(const vector<string>&);
|
||||||
|
}
|
||||||
|
#endif
|
@@ -1,8 +1,4 @@
|
|||||||
from ._version import __version__
|
from ._version import __version__
|
||||||
|
|
||||||
|
|
||||||
def version():
|
|
||||||
return __version__
|
|
||||||
|
|
||||||
|
|
||||||
all = ["FImdlp", "__version__"]
|
all = ["FImdlp", "__version__"]
|
||||||
|
@@ -1 +1 @@
|
|||||||
__version__ = "0.9.1"
|
__version__ = "0.9.3"
|
||||||
|
@@ -1,20 +1,20 @@
|
|||||||
# distutils: language = c++
|
# distutils: language = c++
|
||||||
# cython: language_level = 3
|
# cython: language_level = 3
|
||||||
from libcpp.vector cimport vector
|
from libcpp.vector cimport vector
|
||||||
from libcpp cimport bool
|
from libcpp.string cimport string
|
||||||
|
|
||||||
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
||||||
ctypedef float precision_t
|
ctypedef float precision_t
|
||||||
cdef cppclass CPPFImdlp:
|
cdef cppclass CPPFImdlp:
|
||||||
CPPFImdlp(bool) except +
|
CPPFImdlp() except +
|
||||||
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
||||||
vector[precision_t] getCutPoints()
|
vector[precision_t] getCutPoints()
|
||||||
|
string version()
|
||||||
|
|
||||||
cdef class CFImdlp:
|
cdef class CFImdlp:
|
||||||
cdef CPPFImdlp *thisptr
|
cdef CPPFImdlp *thisptr
|
||||||
def __cinit__(self, proposal):
|
def __cinit__(self):
|
||||||
self.thisptr = new CPPFImdlp(proposal)
|
self.thisptr = new CPPFImdlp()
|
||||||
def __dealloc__(self):
|
def __dealloc__(self):
|
||||||
del self.thisptr
|
del self.thisptr
|
||||||
def fit(self, X, y):
|
def fit(self, X, y):
|
||||||
@@ -22,4 +22,12 @@ cdef class CFImdlp:
|
|||||||
return self
|
return self
|
||||||
def get_cut_points(self):
|
def get_cut_points(self):
|
||||||
return self.thisptr.getCutPoints()
|
return self.thisptr.getCutPoints()
|
||||||
|
def get_version(self):
|
||||||
|
return self.thisptr.version()
|
||||||
|
def __reduce__(self):
|
||||||
|
return (CFImdlp, ())
|
||||||
|
|
||||||
|
cdef extern from "Factorize.h" namespace "utils":
|
||||||
|
vector[int] cppFactorize(vector[string] &input_vector)
|
||||||
|
def factorize(input_vector):
|
||||||
|
return cppFactorize(input_vector)
|
@@ -1,15 +1,17 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from .cppfimdlp import CFImdlp
|
from .cppfimdlp import CFImdlp, factorize
|
||||||
from sklearn.base import BaseEstimator, TransformerMixin
|
from sklearn.base import BaseEstimator, TransformerMixin
|
||||||
from sklearn.utils.multiclass import unique_labels
|
from sklearn.utils.multiclass import unique_labels
|
||||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||||
from joblib import Parallel, delayed
|
from joblib import Parallel, delayed
|
||||||
|
from ._version import __version__
|
||||||
|
|
||||||
|
# from ._version import __version__
|
||||||
|
|
||||||
|
|
||||||
class FImdlp(TransformerMixin, BaseEstimator):
|
class FImdlp(TransformerMixin, BaseEstimator):
|
||||||
def __init__(self, n_jobs=-1, proposal=False):
|
def __init__(self, n_jobs=-1):
|
||||||
self.n_jobs = n_jobs
|
self.n_jobs = n_jobs
|
||||||
self.proposal = proposal
|
|
||||||
|
|
||||||
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
||||||
|
|
||||||
@@ -22,27 +24,26 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
|
|
||||||
Attributes
|
Attributes
|
||||||
----------
|
----------
|
||||||
n_features_ : int
|
n_features_in_ : int
|
||||||
The number of features of the data passed to :meth:`fit`.
|
The number of features of the data passed to :meth:`fit`.
|
||||||
discretizer_ : list
|
discretizer_ : list
|
||||||
The list of discretizers, one for each feature.
|
The list of discretizers, one for each feature.
|
||||||
cut_points_ : list
|
cut_points_ : list
|
||||||
The list of cut points for each feature.
|
The list of cut points for each feature.
|
||||||
X_ : array
|
X_ : array, shape (n_samples, n_features)
|
||||||
the samples used to fit, shape (n_samples, n_features)
|
the samples used to fit
|
||||||
y_ : array
|
y_ : array, shape(n_samples,)
|
||||||
the labels used to fit, shape (n_samples,)
|
the labels used to fit
|
||||||
features_ : list
|
features_ : list
|
||||||
the list of features to be discretized
|
the list of features to be discretized
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def _check_params_fit(self, X, y, expected_args, kwargs):
|
def _more_tags(self):
|
||||||
"""Check the common parameters passed to fit"""
|
return {"preserves_dtype": [np.int32], "requires_y": True}
|
||||||
|
|
||||||
|
def _check_args(self, X, y, expected_args, kwargs):
|
||||||
# Check that X and y have correct shape
|
# Check that X and y have correct shape
|
||||||
X, y = check_X_y(X, y)
|
X, y = check_X_y(X, y)
|
||||||
# Store the classes seen during fit
|
|
||||||
self.classes_ = unique_labels(y)
|
|
||||||
self.n_classes_ = self.classes_.shape[0]
|
|
||||||
# Default values
|
# Default values
|
||||||
self.features_ = [i for i in range(X.shape[1])]
|
self.features_ = [i for i in range(X.shape[1])]
|
||||||
for key, value in kwargs.items():
|
for key, value in kwargs.items():
|
||||||
@@ -63,15 +64,24 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
raise ValueError("Feature index out of range")
|
raise ValueError("Feature index out of range")
|
||||||
return X, y
|
return X, y
|
||||||
|
|
||||||
|
def _update_params(self, X, y):
|
||||||
|
# Store the classes seen during fit
|
||||||
|
self.classes_ = unique_labels(y)
|
||||||
|
self.n_classes_ = self.classes_.shape[0]
|
||||||
|
self.n_features_in_ = X.shape[1]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_version():
|
||||||
|
return f"{__version__}({CFImdlp().get_version().decode()})"
|
||||||
|
|
||||||
def fit(self, X, y, **kwargs):
|
def fit(self, X, y, **kwargs):
|
||||||
"""A reference implementation of a fitting function for a transformer.
|
"""A reference implementation of a fitting function for a transformer.
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
X : array, shape (n_samples, n_features)
|
||||||
The training input samples.
|
The training input samples.
|
||||||
y : None
|
y : array, shape (n_samples,)
|
||||||
There is no need of a target in a transformer, yet the pipeline API
|
the labels used to fit
|
||||||
requires this parameter.
|
|
||||||
features : list, default=[i for i in range(n_features)]
|
features : list, default=[i for i in range(n_features)]
|
||||||
The list of features to be discretized.
|
The list of features to be discretized.
|
||||||
Returns
|
Returns
|
||||||
@@ -79,24 +89,30 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
self : object
|
self : object
|
||||||
Returns self.
|
Returns self.
|
||||||
"""
|
"""
|
||||||
X, y = self._check_params_fit(
|
X, y = self._check_args(
|
||||||
X, y, expected_args=["features"], kwargs=kwargs
|
X, y, expected_args=["features"], kwargs=kwargs
|
||||||
)
|
)
|
||||||
self.n_features_ = X.shape[1]
|
self._update_params(X, y)
|
||||||
self.X_ = X
|
self.X_ = X
|
||||||
self.y_ = y
|
self.y_ = y
|
||||||
self.discretizer_ = [None] * self.n_features_
|
self.discretizer_ = [None] * self.n_features_in_
|
||||||
self.cut_points_ = [None] * self.n_features_
|
self.cut_points_ = [None] * self.n_features_in_
|
||||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||||
delayed(self._fit_discretizer)(feature)
|
delayed(self._fit_discretizer)(feature)
|
||||||
for feature in range(self.n_features_)
|
for feature in range(self.n_features_in_)
|
||||||
)
|
)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def _fit_discretizer(self, feature):
|
def _fit_discretizer(self, feature):
|
||||||
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
|
if feature in self.features_:
|
||||||
|
self.discretizer_[feature] = CFImdlp()
|
||||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||||
self.cut_points_[feature] = self.discretizer_[feature].get_cut_points()
|
self.cut_points_[feature] = self.discretizer_[
|
||||||
|
feature
|
||||||
|
].get_cut_points()
|
||||||
|
else:
|
||||||
|
self.discretizer_[feature] = None
|
||||||
|
self.cut_points_[feature] = []
|
||||||
|
|
||||||
def _discretize_feature(self, feature, X, result):
|
def _discretize_feature(self, feature, X, result):
|
||||||
if feature in self.features_:
|
if feature in self.features_:
|
||||||
@@ -108,7 +124,7 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
"""Discretize X values.
|
"""Discretize X values.
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
X : {array-like}, shape (n_samples, n_features)
|
X : array, shape (n_samples, n_features)
|
||||||
The input samples.
|
The input samples.
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@@ -116,22 +132,41 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
The array containing the discretized values of ``X``.
|
The array containing the discretized values of ``X``.
|
||||||
"""
|
"""
|
||||||
# Check is fit had been called
|
# Check is fit had been called
|
||||||
check_is_fitted(self, "n_features_")
|
check_is_fitted(self, "n_features_in_")
|
||||||
# Input validation
|
# Input validation
|
||||||
X = check_array(X)
|
X = check_array(X)
|
||||||
# Check that the input is of the same shape as the one passed
|
# Check that the input is of the same shape as the one passed
|
||||||
# during fit.
|
# during fit.
|
||||||
if X.shape[1] != self.n_features_:
|
if X.shape[1] != self.n_features_in_:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Shape of input is different from what was seen in `fit`"
|
"Shape of input is different from what was seen in `fit`"
|
||||||
)
|
)
|
||||||
|
if len(self.features_) == self.n_features_in_:
|
||||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||||
|
else:
|
||||||
|
result = np.zeros_like(X) - 1
|
||||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||||
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
||||||
for feature in range(self.n_features_)
|
for feature in range(self.n_features_in_)
|
||||||
)
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def factorize(yy):
|
||||||
|
"""Factorize the input labels
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
yy : array, shape (n_samples,)
|
||||||
|
Labels to be factorized, MUST be bytes, i.e. b"0", b"1", ...
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
array, shape (n_samples,)
|
||||||
|
Factorized labels
|
||||||
|
"""
|
||||||
|
return factorize(yy)
|
||||||
|
|
||||||
def get_cut_points(self):
|
def get_cut_points(self):
|
||||||
"""Get the cut points for each feature.
|
"""Get the cut points for each feature.
|
||||||
Returns
|
Returns
|
||||||
@@ -140,6 +175,70 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
|||||||
The list of cut points for each feature.
|
The list of cut points for each feature.
|
||||||
"""
|
"""
|
||||||
result = []
|
result = []
|
||||||
for feature in range(self.n_features_):
|
for feature in range(self.n_features_in_):
|
||||||
result.append(self.cut_points_[feature])
|
result.append(self.cut_points_[feature])
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def get_states_feature(self, feature):
|
||||||
|
"""Return the states a feature can take
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
feature : int
|
||||||
|
feature to get the states
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
list
|
||||||
|
states of the feature
|
||||||
|
"""
|
||||||
|
if feature in self.features_:
|
||||||
|
return list(range(len(self.cut_points_[feature]) + 1))
|
||||||
|
return None
|
||||||
|
|
||||||
|
def join_fit(self, features, target, data):
|
||||||
|
"""Join the selected features with the labels and fit the discretizer
|
||||||
|
of the target variable
|
||||||
|
join - fit - transform
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
features : [list]
|
||||||
|
index of the features to join with the labels
|
||||||
|
target : [int]
|
||||||
|
index of the target variable to discretize
|
||||||
|
data: [array] shape (n_samples, n_features)
|
||||||
|
dataset that contains the features to join
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
result: np.array
|
||||||
|
The target variable newly discretized
|
||||||
|
"""
|
||||||
|
check_is_fitted(self, "n_features_in_")
|
||||||
|
if len(features) < 1 or len(features) > self.n_features_in_:
|
||||||
|
raise ValueError(
|
||||||
|
"Number of features must be in range [1, "
|
||||||
|
f"{self.n_features_in_}]"
|
||||||
|
)
|
||||||
|
for feature in features:
|
||||||
|
if feature < 0 or feature >= self.n_features_in_:
|
||||||
|
raise ValueError(
|
||||||
|
f"Feature {feature} not in range [0, "
|
||||||
|
f"{self.n_features_in_})"
|
||||||
|
)
|
||||||
|
if target < 0 or target >= self.n_features_in_:
|
||||||
|
raise ValueError(
|
||||||
|
f"Target {target} not in range [0, {self.n_features_in_})"
|
||||||
|
)
|
||||||
|
if target in features:
|
||||||
|
raise ValueError("Target cannot in features to join")
|
||||||
|
y_join = [
|
||||||
|
f"{str(item_y)}{''.join([str(x) for x in items_x])}".encode()
|
||||||
|
for item_y, items_x in zip(self.y_, data[:, features])
|
||||||
|
]
|
||||||
|
self.y_join_ = y_join
|
||||||
|
self.discretizer_[target].fit(self.X_[:, target], factorize(y_join))
|
||||||
|
self.cut_points_[target] = self.discretizer_[target].get_cut_points()
|
||||||
|
# return the discretized target variable with the new cut points
|
||||||
|
return np.searchsorted(self.cut_points_[target], self.X_[:, target])
|
||||||
|
@@ -1,72 +1,46 @@
|
|||||||
import unittest
|
import unittest
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn.datasets import load_iris
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from sklearn.datasets import load_iris
|
||||||
|
from sklearn.utils.estimator_checks import check_estimator
|
||||||
|
from ..cppfimdlp import CFImdlp, factorize
|
||||||
from ..mdlp import FImdlp
|
from ..mdlp import FImdlp
|
||||||
from .. import version
|
from .. import __version__
|
||||||
from .._version import __version__
|
|
||||||
|
# from .._version import __version__
|
||||||
|
|
||||||
|
|
||||||
class FImdlpTest(unittest.TestCase):
|
class FImdlpTest(unittest.TestCase):
|
||||||
def test_version(self):
|
def test_version(self):
|
||||||
self.assertEqual(version(), __version__)
|
clf = FImdlp()
|
||||||
|
self.assertEqual(
|
||||||
|
clf.get_version(),
|
||||||
|
f"{__version__}({CFImdlp().get_version().decode()})",
|
||||||
|
)
|
||||||
|
|
||||||
def test_init(self):
|
def test_init(self):
|
||||||
clf = FImdlp()
|
clf = FImdlp()
|
||||||
self.assertEqual(-1, clf.n_jobs)
|
self.assertEqual(-1, clf.n_jobs)
|
||||||
self.assertFalse(clf.proposal)
|
clf = FImdlp(n_jobs=7)
|
||||||
clf = FImdlp(proposal=True, n_jobs=7)
|
|
||||||
self.assertTrue(clf.proposal)
|
|
||||||
self.assertEqual(7, clf.n_jobs)
|
self.assertEqual(7, clf.n_jobs)
|
||||||
|
|
||||||
def test_fit_proposal(self):
|
def test_fit_definitive(self):
|
||||||
clf = FImdlp(proposal=True)
|
clf = FImdlp()
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
|
||||||
self.assertEqual(clf.n_features_, 2)
|
|
||||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
|
||||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
|
||||||
self.assertListEqual([[], []], clf.get_cut_points())
|
|
||||||
X, y = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(clf.n_features_, 4)
|
self.assertEqual(clf.n_features_in_, 4)
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
self.assertTrue(np.array_equal(X, clf.X_))
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
self.assertTrue(np.array_equal(y, clf.y_))
|
||||||
expected = [
|
expected = [
|
||||||
[
|
[5.449999809265137, 5.75],
|
||||||
4.900000095367432,
|
[2.75, 2.8499999046325684, 2.95, 3.05, 3.3499999046325684],
|
||||||
5.0,
|
[2.45, 4.75, 5.050000190734863],
|
||||||
5.099999904632568,
|
[0.8, 1.75],
|
||||||
5.400000095367432,
|
|
||||||
5.699999809265137,
|
|
||||||
],
|
|
||||||
[2.6999998092651367, 2.9000000953674316, 3.1999998092651367],
|
|
||||||
[2.3499999046325684, 4.5, 4.800000190734863],
|
|
||||||
[0.75, 1.399999976158142, 1.5, 1.7000000476837158],
|
|
||||||
]
|
]
|
||||||
self.assertListEqual(expected, clf.get_cut_points())
|
computed = clf.get_cut_points()
|
||||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
for item_computed, item_expected in zip(computed, expected):
|
||||||
clf.fit(X, y, features=[0, 2, 3])
|
for x_, y_ in zip(item_computed, item_expected):
|
||||||
self.assertListEqual([0, 2, 3], clf.features_)
|
self.assertAlmostEqual(x_, y_)
|
||||||
|
|
||||||
def test_fit_original(self):
|
|
||||||
clf = FImdlp(proposal=False)
|
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
|
||||||
self.assertEqual(clf.n_features_, 2)
|
|
||||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
|
||||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
|
||||||
self.assertListEqual([[], []], clf.get_cut_points())
|
|
||||||
X, y = load_iris(return_X_y=True)
|
|
||||||
clf.fit(X, y)
|
|
||||||
self.assertEqual(clf.n_features_, 4)
|
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
|
||||||
expected = [
|
|
||||||
[5.5, 5.800000190734863],
|
|
||||||
[3.0999999046325684],
|
|
||||||
[2.450000047683716, 4.800000190734863, 5.099999904632568],
|
|
||||||
[0.800000011920929, 1.7000000476837158],
|
|
||||||
]
|
|
||||||
self.assertListEqual(expected, clf.get_cut_points())
|
|
||||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||||
clf.fit(X, y, features=[0, 2, 3])
|
clf.fit(X, y, features=[0, 2, 3])
|
||||||
self.assertListEqual([0, 2, 3], clf.features_)
|
self.assertListEqual([0, 2, 3], clf.features_)
|
||||||
@@ -87,67 +61,169 @@ class FImdlpTest(unittest.TestCase):
|
|||||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0, 2])
|
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0, 2])
|
||||||
|
|
||||||
def test_fit_features(self):
|
def test_fit_features(self):
|
||||||
|
clf = FImdlp(n_jobs=-1)
|
||||||
|
# Two samples doesn't have enough information to split
|
||||||
|
clf.fit([[1, -2], [3, 4]], [1, 2], features=[0])
|
||||||
|
self.assertListEqual(clf.get_cut_points(), [[], []])
|
||||||
|
clf.fit([[1, -2], [3, 4], [5, 6]], [1, 2, 2], features=[0])
|
||||||
|
self.assertListEqual(clf.get_cut_points(), [[2], []])
|
||||||
|
res = clf.transform([[1, -2], [3, 4]])
|
||||||
|
self.assertListEqual(res.tolist(), [[0, -2], [1, 4]])
|
||||||
|
X, y = load_iris(return_X_y=True)
|
||||||
|
X_expected = X[:, [0, 2]].copy()
|
||||||
|
clf.fit(X, y, features=[1, 3])
|
||||||
|
X_computed = clf.transform(X)
|
||||||
|
self.assertListEqual(
|
||||||
|
X_expected[:, 0].tolist(), X_computed[:, 0].tolist()
|
||||||
|
)
|
||||||
|
self.assertListEqual(
|
||||||
|
X_expected[:, 1].tolist(), X_computed[:, 2].tolist()
|
||||||
|
)
|
||||||
|
self.assertEqual(X_computed.dtype, np.float64)
|
||||||
|
|
||||||
|
def test_transform(self):
|
||||||
clf = FImdlp()
|
clf = FImdlp()
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0])
|
clf.fit([[1, 2], [3, 4], [5, 6]], [1, 2, 2])
|
||||||
res = clf.transform([[1, 2], [3, 4]])
|
|
||||||
self.assertListEqual(res.tolist(), [[0, 2], [0, 4]])
|
|
||||||
|
|
||||||
def test_transform_original(self):
|
|
||||||
clf = FImdlp(proposal=False)
|
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
||||||
)
|
)
|
||||||
X, y = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(clf.n_features_, 4)
|
self.assertEqual(clf.n_features_in_, 4)
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
self.assertTrue(np.array_equal(X, clf.X_))
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
self.assertTrue(np.array_equal(y, clf.y_))
|
||||||
|
X_transformed = clf.transform(X)
|
||||||
self.assertListEqual(
|
self.assertListEqual(
|
||||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
X_transformed.tolist(), clf.fit(X, y).transform(X).tolist()
|
||||||
)
|
)
|
||||||
|
self.assertEqual(X_transformed.dtype, np.int32)
|
||||||
expected = [
|
expected = [
|
||||||
[0, 0, 1, 1],
|
[1, 0, 1, 1],
|
||||||
|
[2, 3, 1, 1],
|
||||||
[2, 0, 1, 1],
|
[2, 0, 1, 1],
|
||||||
[1, 0, 1, 1],
|
|
||||||
[0, 0, 1, 1],
|
[0, 0, 1, 1],
|
||||||
[1, 0, 1, 1],
|
[1, 0, 1, 1],
|
||||||
[1, 0, 1, 1],
|
[1, 3, 1, 1],
|
||||||
[1, 0, 1, 1],
|
[1, 2, 1, 1],
|
||||||
]
|
]
|
||||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||||
clf = FImdlp(proposal=False)
|
clf = FImdlp()
|
||||||
clf.transform([[1, 2], [3, 4]])
|
clf.transform([[1, 2], [3, 4]])
|
||||||
|
|
||||||
def test_transform_proposal(self):
|
def test_cppfactorize(self):
|
||||||
clf = FImdlp(proposal=True)
|
source = [
|
||||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
b"f0",
|
||||||
self.assertEqual(
|
b"f1",
|
||||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
b"f2",
|
||||||
|
b"f3",
|
||||||
|
b"f4",
|
||||||
|
b"f5",
|
||||||
|
b"f6",
|
||||||
|
b"f1",
|
||||||
|
b"f1",
|
||||||
|
b"f7",
|
||||||
|
b"f8",
|
||||||
|
]
|
||||||
|
expected = [0, 1, 2, 3, 4, 5, 6, 1, 1, 7, 8]
|
||||||
|
computed = factorize(source)
|
||||||
|
self.assertListEqual(expected, computed)
|
||||||
|
|
||||||
|
def test_join_fit(self):
|
||||||
|
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||||
|
x = np.array(
|
||||||
|
[
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[1, 2, 3, 4, 5],
|
||||||
|
[2, 3, 4, 5, 6],
|
||||||
|
[3, 4, 5, 6, 7],
|
||||||
|
]
|
||||||
)
|
)
|
||||||
|
expected = [0, 0, 1, 2, 2]
|
||||||
|
clf = FImdlp()
|
||||||
|
clf.fit(x, factorize(y))
|
||||||
|
computed = clf.join_fit([0, 2], 1, x)
|
||||||
|
self.assertListEqual(computed.tolist(), expected)
|
||||||
|
expected_y = [b"002", b"002", b"113", b"224", b"335"]
|
||||||
|
self.assertListEqual(expected_y, clf.y_join_)
|
||||||
|
|
||||||
|
def test_join_fit_error(self):
|
||||||
|
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||||
|
x = np.array(
|
||||||
|
[
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[0, 1, 2, 3, 4],
|
||||||
|
[1, 2, 3, 4, 5],
|
||||||
|
[2, 3, 4, 5, 6],
|
||||||
|
[3, 4, 5, 6, 7],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
clf = FImdlp()
|
||||||
|
clf.fit(x, factorize(y))
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([], 1, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Number of features must be in range [1, 5]",
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
FImdlp().join_fit([0, 4], 1, x)
|
||||||
|
self.assertTrue(
|
||||||
|
str(exception.exception).startswith(
|
||||||
|
"This FImdlp instance is not fitted yet."
|
||||||
|
)
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([0, 5], 1, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Feature 5 not in range [0, 5)",
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([0, 2], 5, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Target 5 not in range [0, 5)",
|
||||||
|
)
|
||||||
|
with self.assertRaises(ValueError) as exception:
|
||||||
|
clf.join_fit([0, 2], 2, x)
|
||||||
|
self.assertEqual(
|
||||||
|
str(exception.exception),
|
||||||
|
"Target cannot in features to join",
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_factorize(self):
|
||||||
|
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||||
|
clf = FImdlp()
|
||||||
|
computed = clf.factorize(y)
|
||||||
|
self.assertListEqual([0, 0, 1, 2, 3], computed)
|
||||||
|
y = [b"f4", b"f0", b"f0", b"f2", b"f3"]
|
||||||
|
clf = FImdlp()
|
||||||
|
computed = clf.factorize(y)
|
||||||
|
self.assertListEqual([0, 1, 1, 2, 3], computed)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def test_sklearn_transformer():
|
||||||
|
for check, test in check_estimator(FImdlp(), generate_only=True):
|
||||||
|
test(check)
|
||||||
|
|
||||||
|
def test_states_feature(self):
|
||||||
|
clf = FImdlp()
|
||||||
X, y = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
self.assertEqual(clf.n_features_, 4)
|
expected = []
|
||||||
self.assertTrue(np.array_equal(X, clf.X_))
|
for i in [3, 6, 4, 3]:
|
||||||
self.assertTrue(np.array_equal(y, clf.y_))
|
expected.append(list(range(i)))
|
||||||
|
for feature in range(X.shape[1]):
|
||||||
self.assertListEqual(
|
self.assertListEqual(
|
||||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
expected[feature], clf.get_states_feature(feature)
|
||||||
)
|
)
|
||||||
expected = [
|
|
||||||
[4, 0, 1, 1],
|
def test_states_no_feature(self):
|
||||||
[5, 2, 2, 2],
|
clf = FImdlp()
|
||||||
[5, 0, 1, 1],
|
X, y = load_iris(return_X_y=True)
|
||||||
[1, 0, 1, 1],
|
clf.fit(X, y)
|
||||||
[4, 1, 1, 1],
|
self.assertIsNone(clf.get_states_feature(4))
|
||||||
[5, 2, 1, 1],
|
|
||||||
[5, 1, 1, 1],
|
|
||||||
]
|
|
||||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
|
||||||
with self.assertRaises(ValueError):
|
|
||||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
|
||||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
|
||||||
clf = FImdlp(proposal=True)
|
|
||||||
clf.transform([[1, 2], [3, 4]])
|
|
||||||
|
BIN
test1.xlsx
BIN
test1.xlsx
Binary file not shown.
Reference in New Issue
Block a user