mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-16 16:05:52 +00:00
Refactor base algorithm
This commit is contained in:
@@ -1,41 +1,20 @@
|
||||
#include "CPPFImdlp.h"
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Metrics.h"
|
||||
|
||||
namespace mdlp {
|
||||
ostream& operator << (ostream& os, const cutPoint_t& cut)
|
||||
CPPFImdlp::CPPFImdlp(): proposal(true), debug(false), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
|
||||
{
|
||||
os << cut.classNumber << " -> (" << cut.start << ", " << cut.end <<
|
||||
") - (" << cut.fromValue << ", " << cut.toValue << ") "
|
||||
<< endl;
|
||||
return os;
|
||||
|
||||
}
|
||||
CPPFImdlp::CPPFImdlp(): proposal(true), precision(6), debug(false)
|
||||
CPPFImdlp::CPPFImdlp(bool proposal, bool debug): proposal(proposal), debug(debug), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
|
||||
{
|
||||
divider = pow(10, precision);
|
||||
numClasses = 0;
|
||||
}
|
||||
CPPFImdlp::CPPFImdlp(bool proposal, int precision, bool debug): proposal(proposal), precision(precision), debug(debug)
|
||||
{
|
||||
divider = pow(10, precision);
|
||||
numClasses = 0;
|
||||
}
|
||||
CPPFImdlp::~CPPFImdlp()
|
||||
= default;
|
||||
samples CPPFImdlp::getCutPoints()
|
||||
{
|
||||
samples output(cutPoints.size());
|
||||
::transform(cutPoints.begin(), cutPoints.end(), output.begin(),
|
||||
[](cutPoint_t cut) { return cut.toValue; });
|
||||
return output;
|
||||
}
|
||||
labels CPPFImdlp::getDiscretizedValues()
|
||||
{
|
||||
return xDiscretized;
|
||||
}
|
||||
|
||||
CPPFImdlp& CPPFImdlp::fit(samples& X_, labels& y_)
|
||||
{
|
||||
X = X_;
|
||||
@@ -47,227 +26,78 @@ namespace mdlp {
|
||||
throw invalid_argument("X and y must have at least one element");
|
||||
}
|
||||
indices = sortIndices(X_);
|
||||
xDiscretized = labels(X.size(), -1);
|
||||
numClasses = Metrics::numClasses(y, indices, 0, X.size());
|
||||
|
||||
if (proposal) {
|
||||
computeCutPointsProposal();
|
||||
} else {
|
||||
computeCutPointsOriginal();
|
||||
}
|
||||
filterCutPoints();
|
||||
// Apply cut points to the input vector
|
||||
for (auto cut : cutPoints) {
|
||||
for (size_t i = cut.start; i < cut.end; i++) {
|
||||
xDiscretized[indices[i]] = cut.classNumber;
|
||||
}
|
||||
}
|
||||
metrics.setData(y, indices);
|
||||
computeCutPoints(0, X.size());
|
||||
return *this;
|
||||
}
|
||||
bool CPPFImdlp::evaluateCutPoint(cutPoint_t rest, cutPoint_t candidate)
|
||||
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
|
||||
{
|
||||
int cut;
|
||||
if (end - start < 2)
|
||||
return;
|
||||
cut = getCandidate(start, end);
|
||||
if (cut == -1 || !mdlp(start, cut, end)) {
|
||||
// cut.value == -1 means that there is no candidate in the interval
|
||||
// No boundary found, so we add both ends of the interval as cutpoints
|
||||
// because they were selected by the algorithm before
|
||||
if (start != 0)
|
||||
cutPoints.push_back((X[indices[start]] + X[indices[start - 1]]) / 2);
|
||||
if (end != X.size())
|
||||
cutPoints.push_back((X[indices[end]] + X[indices[end - 1]]) / 2);
|
||||
return;
|
||||
}
|
||||
computeCutPoints(start, cut);
|
||||
computeCutPoints(cut, end);
|
||||
}
|
||||
long int CPPFImdlp::getCandidate(size_t start, size_t end)
|
||||
{
|
||||
long int candidate = -1, elements = end - start;
|
||||
precision_t entropy_left, entropy_right, minEntropy = numeric_limits<precision_t>::max();
|
||||
for (auto idx = start + 1; idx < end; idx++) {
|
||||
// Cutpoints are always on boudndaries
|
||||
if (y[indices[idx]] == y[indices[idx - 1]])
|
||||
continue;
|
||||
entropy_left = precision_t(idx - start) / elements * metrics.entropy(start, idx);
|
||||
entropy_right = precision_t(end - idx) / elements * metrics.entropy(idx, end);
|
||||
if (entropy_left + entropy_right < minEntropy) {
|
||||
minEntropy = entropy_left + entropy_right;
|
||||
candidate = idx;
|
||||
}
|
||||
}
|
||||
return candidate;
|
||||
}
|
||||
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
int k, k1, k2;
|
||||
float ig, delta;
|
||||
float ent, ent1, ent2;
|
||||
auto N = float(rest.end - rest.start);
|
||||
precision_t ig, delta;
|
||||
precision_t ent, ent1, ent2;
|
||||
auto N = precision_t(end - start);
|
||||
if (N < 2) {
|
||||
return false;
|
||||
}
|
||||
k = Metrics::numClasses(y, indices, rest.start, rest.end);
|
||||
k1 = Metrics::numClasses(y, indices, rest.start, candidate.end);
|
||||
k2 = Metrics::numClasses(y, indices, candidate.end, rest.end);
|
||||
ent = Metrics::entropy(y, indices, rest.start, rest.end, numClasses);
|
||||
ent1 = Metrics::entropy(y, indices, rest.start, candidate.end, numClasses);
|
||||
ent2 = Metrics::entropy(y, indices, candidate.end, rest.end, numClasses);
|
||||
ig = Metrics::informationGain(y, indices, rest.start, rest.end, candidate.end, numClasses);
|
||||
delta = log2(pow(3, float(k)) - 2) - (float(k) * ent - float(k1) * ent1 - float(k2) * ent2);
|
||||
float term = 1 / N * (log2(N - 1) + delta);
|
||||
if (debug) {
|
||||
cout << "Rest: " << rest;
|
||||
cout << "Candidate: " << candidate;
|
||||
cout << "k=" << k << " k1=" << k1 << " k2=" << k2 << " ent=" << ent << " ent1=" << ent1 << " ent2=" << ent2 << endl;
|
||||
cout << "ig=" << ig << " delta=" << delta << " N " << N << " term " << term << endl;
|
||||
}
|
||||
return (ig > term);
|
||||
k = metrics.computeNumClasses(start, end);
|
||||
k1 = metrics.computeNumClasses(start, cut);
|
||||
k2 = metrics.computeNumClasses(cut, end);
|
||||
ent = metrics.entropy(start, end);
|
||||
ent1 = metrics.entropy(start, cut);
|
||||
ent2 = metrics.entropy(cut, end);
|
||||
ig = metrics.informationGain(start, cut, end);
|
||||
delta = log2(pow(3, precision_t(k)) - 2) -
|
||||
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2);
|
||||
precision_t term = 1 / N * (log2(N - 1) + delta);
|
||||
return ig > term;
|
||||
}
|
||||
void CPPFImdlp::filterCutPoints()
|
||||
cutPoints_t CPPFImdlp::getCutPoints()
|
||||
{
|
||||
cutPoints_t filtered;
|
||||
cutPoint_t rest, item;
|
||||
int classNumber = 0;
|
||||
|
||||
rest.start = 0;
|
||||
rest.end = X.size();
|
||||
rest.fromValue = numeric_limits<float>::lowest();
|
||||
rest.toValue = numeric_limits<float>::max();
|
||||
rest.classNumber = classNumber;
|
||||
bool first = true;
|
||||
for (size_t index = 0; index < size_t(cutPoints.size()); index++) {
|
||||
item = cutPoints[index];
|
||||
if (evaluateCutPoint(rest, item)) {
|
||||
if (debug)
|
||||
cout << "Accepted: " << item << endl;
|
||||
//Assign class number to the interval (cutpoint)
|
||||
item.classNumber = classNumber++;
|
||||
filtered.push_back(item);
|
||||
first = false;
|
||||
rest.start = item.end;
|
||||
} else {
|
||||
if (debug)
|
||||
cout << "Rejected: " << item << endl;
|
||||
if (index != size_t(cutPoints.size()) - 1) {
|
||||
// Try to merge the rejected cutpoint with the next one
|
||||
if (first) {
|
||||
cutPoints[index + 1].fromValue = numeric_limits<float>::lowest();
|
||||
cutPoints[index + 1].start = indices[0];
|
||||
} else {
|
||||
cutPoints[index + 1].fromValue = item.fromValue;
|
||||
cutPoints[index + 1].start = item.start;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!first) {
|
||||
filtered.back().toValue = numeric_limits<float>::max();
|
||||
filtered.back().end = X.size() - 1;
|
||||
} else {
|
||||
filtered.push_back(rest);
|
||||
}
|
||||
cutPoints = filtered;
|
||||
}
|
||||
void CPPFImdlp::computeCutPointsProposal()
|
||||
{
|
||||
cutPoints_t cutPts;
|
||||
cutPoint_t cutPoint;
|
||||
float xPrev, xCur, xPivot;
|
||||
int yPrev, yCur, yPivot;
|
||||
size_t idx, numElements, start;
|
||||
|
||||
xCur = xPrev = X[indices[0]];
|
||||
yCur = yPrev = y[indices[0]];
|
||||
numElements = indices.size() - 1;
|
||||
idx = start = 0;
|
||||
bool firstCutPoint = true;
|
||||
if (debug)
|
||||
printf("*idx=%lu -> (-1, -1) Prev(%3.1f, %d) Elementos: %lu\n", idx, xCur, yCur, numElements);
|
||||
while (idx < numElements) {
|
||||
xPivot = xCur;
|
||||
yPivot = yCur;
|
||||
if (debug)
|
||||
printf("<idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur);
|
||||
// Read the same values and check class changes
|
||||
do {
|
||||
idx++;
|
||||
xCur = X[indices[idx]];
|
||||
yCur = y[indices[idx]];
|
||||
if (yCur != yPivot && xCur == xPivot) {
|
||||
yPivot = -1;
|
||||
}
|
||||
if (debug)
|
||||
printf(">idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur);
|
||||
}
|
||||
while (idx < numElements && xCur == xPivot);
|
||||
// Check if the class changed and there are more than 1 element
|
||||
if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && goodCut(start, idx, numElements + 1)) {
|
||||
// Must we add the entropy criteria here?
|
||||
// if (totalEntropy - (entropyLeft + entropyRight) > 0) { Accept cut point }
|
||||
cutPoint.start = start;
|
||||
cutPoint.end = idx;
|
||||
start = idx;
|
||||
cutPoint.fromValue = firstCutPoint ? numeric_limits<float>::lowest() : cutPts.back().toValue;
|
||||
cutPoint.toValue = (xPrev + xCur) / 2;
|
||||
cutPoint.classNumber = -1;
|
||||
firstCutPoint = false;
|
||||
if (debug) {
|
||||
printf("Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = (%3.1g, %3.1g] \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint.fromValue, cutPoint.toValue);
|
||||
}
|
||||
cutPts.push_back(cutPoint);
|
||||
}
|
||||
yPrev = yPivot;
|
||||
xPrev = xPivot;
|
||||
}
|
||||
if (idx == numElements) {
|
||||
cutPoint.start = start;
|
||||
cutPoint.end = numElements + 1;
|
||||
cutPoint.fromValue = firstCutPoint ? numeric_limits<float>::lowest() : cutPts.back().toValue;
|
||||
cutPoint.toValue = numeric_limits<float>::max();
|
||||
cutPoint.classNumber = -1;
|
||||
if (debug)
|
||||
printf("Final Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = (%3.1g, %3.1g] \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint.fromValue, cutPoint.toValue);
|
||||
cutPts.push_back(cutPoint);
|
||||
}
|
||||
if (debug) {
|
||||
cout << "Entropy of the dataset: " << Metrics::entropy(y, indices, 0, numElements + 1, numClasses) << endl;
|
||||
for (auto cutPt : cutPts)
|
||||
cout << "Entropy: " << Metrics::entropy(y, indices, cutPt.start, cutPt.end, numClasses) << " :Proposal: Cut point: " << cutPt;
|
||||
}
|
||||
cutPoints = cutPts;
|
||||
}
|
||||
void CPPFImdlp::computeCutPointsOriginal()
|
||||
{
|
||||
cutPoints_t cutPts;
|
||||
cutPoint_t cutPoint;
|
||||
float xPrev;
|
||||
int yPrev;
|
||||
bool first = true;
|
||||
// idxPrev is the index of the init instance of the cutPoint
|
||||
size_t index, idxPrev = 0, last, idx = indices[0];
|
||||
xPrev = X[idx];
|
||||
yPrev = y[idx];
|
||||
last = indices.size() - 1;
|
||||
for (index = 0; index < last; index++) {
|
||||
idx = indices[index];
|
||||
// Definition 2 Cut points are always on class boundaries &&
|
||||
// there are more than 1 items in the interval
|
||||
// if (entropy of interval) > (entropyLeft + entropyRight)) { Accept cut point } (goodCut)
|
||||
if (y[idx] != yPrev && xPrev < X[idx] && idxPrev != index - 1 && goodCut(idxPrev, idx, last + 1)) {
|
||||
// Must we add the entropy criteria here?
|
||||
if (first) {
|
||||
first = false;
|
||||
cutPoint.fromValue = numeric_limits<float>::lowest();
|
||||
} else {
|
||||
cutPoint.fromValue = cutPts.back().toValue;
|
||||
}
|
||||
cutPoint.start = idxPrev;
|
||||
cutPoint.end = index;
|
||||
cutPoint.classNumber = -1;
|
||||
cutPoint.toValue = round(divider * (X[idx] + xPrev) / 2) / divider;
|
||||
idxPrev = index;
|
||||
cutPts.push_back(cutPoint);
|
||||
}
|
||||
xPrev = X[idx];
|
||||
yPrev = y[idx];
|
||||
}
|
||||
if (first) {
|
||||
cutPoint.start = 0;
|
||||
cutPoint.classNumber = -1;
|
||||
cutPoint.fromValue = numeric_limits<float>::lowest();
|
||||
cutPoint.toValue = numeric_limits<float>::max();
|
||||
cutPts.push_back(cutPoint);
|
||||
} else
|
||||
cutPts.back().toValue = numeric_limits<float>::max();
|
||||
cutPts.back().end = X.size();
|
||||
if (debug) {
|
||||
cout << "Entropy of the dataset: " << Metrics::entropy(y, indices, 0, indices.size(), numClasses) << endl;
|
||||
for (auto cutPt : cutPts)
|
||||
cout << "Entropy: " << Metrics::entropy(y, indices, cutPt.start, cutPt.end, numClasses) << ": Original: Cut point: " << cutPt;
|
||||
}
|
||||
cutPoints = cutPts;
|
||||
}
|
||||
bool CPPFImdlp::goodCut(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
/*
|
||||
Meter las entropías en una matríz cuadrada dispersa (samples, samples) M[start, end] iniciada a -1 y si no se ha calculado calcularla y almacenarla
|
||||
|
||||
|
||||
*/
|
||||
float entropyLeft = Metrics::entropy(y, indices, start, cut, numClasses);
|
||||
float entropyRight = Metrics::entropy(y, indices, cut, end, numClasses);
|
||||
float entropyInterval = Metrics::entropy(y, indices, start, end, numClasses);
|
||||
if (debug)
|
||||
printf("Entropy L, R, T: L(%5.3g) + R(%5.3g) - T(%5.3g) \t", entropyLeft, entropyRight, entropyInterval);
|
||||
//return (entropyInterval - (entropyLeft + entropyRight) > 0);
|
||||
return true;
|
||||
// Remove duplicates and sort
|
||||
cutPoints_t output(cutPoints.size());
|
||||
set<precision_t> s;
|
||||
unsigned size = cutPoints.size();
|
||||
for (unsigned i = 0; i < size; i++)
|
||||
s.insert(cutPoints[i]);
|
||||
output.assign(s.begin(), s.end());
|
||||
sort(output.begin(), output.end());
|
||||
return output;
|
||||
}
|
||||
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
||||
indices_t CPPFImdlp::sortIndices(samples& X_)
|
||||
@@ -275,12 +105,8 @@ namespace mdlp {
|
||||
indices_t idx(X_.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
for (size_t i = 0; i < X_.size(); i++)
|
||||
stable_sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
|
||||
sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
|
||||
{ return X_[i1] < X_[i2]; });
|
||||
return idx;
|
||||
}
|
||||
void CPPFImdlp::setCutPoints(cutPoints_t cutPoints_)
|
||||
{
|
||||
cutPoints = cutPoints_;
|
||||
}
|
||||
}
|
||||
|
@@ -1,39 +1,30 @@
|
||||
#ifndef CPPFIMDLP_H
|
||||
#define CPPFIMDLP_H
|
||||
#include "typesFImdlp.h"
|
||||
#include "Metrics.h"
|
||||
#include <utility>
|
||||
namespace mdlp {
|
||||
class CPPFImdlp {
|
||||
protected:
|
||||
bool proposal; // proposed algorithm or original algorithm
|
||||
int precision;
|
||||
bool debug;
|
||||
float divider;
|
||||
indices_t indices; // sorted indices to use with X and y
|
||||
samples X;
|
||||
labels y;
|
||||
labels xDiscretized;
|
||||
int numClasses;
|
||||
Metrics metrics;
|
||||
cutPoints_t cutPoints;
|
||||
|
||||
void setCutPoints(cutPoints_t);
|
||||
static indices_t sortIndices(samples&);
|
||||
void computeCutPointsOriginal();
|
||||
void computeCutPointsProposal();
|
||||
bool evaluateCutPoint(cutPoint_t, cutPoint_t);
|
||||
void filterCutPoints();
|
||||
bool goodCut(size_t, size_t, size_t); // if the cut candidate reduces entropy
|
||||
void computeCutPoints(size_t, size_t);
|
||||
long int getCandidate(size_t, size_t);
|
||||
bool mdlp(size_t, size_t, size_t);
|
||||
|
||||
public:
|
||||
CPPFImdlp();
|
||||
CPPFImdlp(bool, int, bool debug = false);
|
||||
CPPFImdlp(bool, bool debug = false);
|
||||
~CPPFImdlp();
|
||||
samples getCutPoints();
|
||||
indices_t getIndices();
|
||||
labels getDiscretizedValues();
|
||||
void debugPoints(samples&, labels&);
|
||||
CPPFImdlp& fit(samples&, labels&);
|
||||
labels transform(samples&);
|
||||
samples getCutPoints();
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,46 +1,63 @@
|
||||
#include "Metrics.h"
|
||||
#include <set>
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
Metrics::Metrics()
|
||||
= default;
|
||||
int Metrics::numClasses(labels& y, indices_t indices, size_t start, size_t end)
|
||||
Metrics::Metrics(labels& y_, indices_t& indices_): y(y_), indices(indices_), numClasses(computeNumClasses(0, indices.size())), entropyCache(cacheEnt_t()), igCache(cacheIg_t())
|
||||
{
|
||||
std::set<int> numClasses;
|
||||
for (auto i = start; i < end; ++i) {
|
||||
numClasses.insert(y[indices[i]]);
|
||||
}
|
||||
return numClasses.size();
|
||||
}
|
||||
float Metrics::entropy(labels& y, indices_t& indices, size_t start, size_t end, int nClasses)
|
||||
int Metrics::computeNumClasses(size_t start, size_t end)
|
||||
{
|
||||
float entropy = 0;
|
||||
set<int> nClasses;
|
||||
for (auto i = start; i < end; ++i) {
|
||||
nClasses.insert(y[indices[i]]);
|
||||
}
|
||||
return nClasses.size();
|
||||
}
|
||||
void Metrics::setData(labels& y_, indices_t& indices_)
|
||||
{
|
||||
indices = indices_;
|
||||
y = y_;
|
||||
numClasses = computeNumClasses(0, indices.size());
|
||||
}
|
||||
precision_t Metrics::entropy(size_t start, size_t end)
|
||||
{
|
||||
precision_t p, ventropy = 0;
|
||||
int nElements = 0;
|
||||
labels counts(nClasses + 1, 0);
|
||||
labels counts(numClasses + 1, 0);
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
if (entropyCache.find(make_tuple(start, end)) != entropyCache.end()) {
|
||||
return entropyCache[make_tuple(start, end)];
|
||||
}
|
||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
||||
counts[y[*i]]++;
|
||||
nElements++;
|
||||
}
|
||||
for (auto count : counts) {
|
||||
if (count > 0) {
|
||||
float p = (float)count / nElements;
|
||||
entropy -= p * log2(p);
|
||||
p = (precision_t)count / nElements;
|
||||
ventropy -= p * log2(p);
|
||||
}
|
||||
}
|
||||
return entropy < 0 ? 0 : entropy;
|
||||
entropyCache[make_tuple(start, end)] = ventropy;
|
||||
return ventropy;
|
||||
}
|
||||
float Metrics::informationGain(labels& y, indices_t& indices, size_t start, size_t end, size_t cutPoint, int nClasses)
|
||||
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
float iGain;
|
||||
float entropy, entropyLeft, entropyRight;
|
||||
int nClassesLeft, nClassesRight;
|
||||
int nElementsLeft = cutPoint - start, nElementsRight = end - cutPoint;
|
||||
precision_t iGain;
|
||||
precision_t entropyInterval, entropyLeft, entropyRight;
|
||||
int nElementsLeft = cut - start, nElementsRight = end - cut;
|
||||
int nElements = end - start;
|
||||
nClassesLeft = Metrics::numClasses(y, indices, start, cutPoint);
|
||||
nClassesRight = Metrics::numClasses(y, indices, cutPoint, end);
|
||||
entropy = Metrics::entropy(y, indices, start, end, nClasses);
|
||||
entropyLeft = Metrics::entropy(y, indices, start, cutPoint, nClassesLeft);
|
||||
entropyRight = Metrics::entropy(y, indices, cutPoint, end, nClassesRight);
|
||||
iGain = entropy - ((float)nElementsLeft * entropyLeft + (float)nElementsRight * entropyRight) / nElements;
|
||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||
cout << "**********Cache IG hit for " << start << " " << end << endl;
|
||||
return igCache[make_tuple(start, cut, end)];
|
||||
}
|
||||
entropyInterval = entropy(start, end);
|
||||
entropyLeft = entropy(start, cut);
|
||||
entropyRight = entropy(cut, end);
|
||||
iGain = entropyInterval - ((precision_t)nElementsLeft * entropyLeft + (precision_t)nElementsRight * entropyRight) / nElements;
|
||||
igCache[make_tuple(start, cut, end)] = iGain;
|
||||
return iGain;
|
||||
}
|
||||
|
||||
|
@@ -1,14 +1,21 @@
|
||||
#ifndef METRICS_H
|
||||
#define METRICS_H
|
||||
#ifndef CCMETRICS_H
|
||||
#define CCMETRICS_H
|
||||
#include "typesFImdlp.h"
|
||||
#include <cmath>
|
||||
namespace mdlp {
|
||||
class Metrics {
|
||||
protected:
|
||||
labels& y;
|
||||
indices_t& indices;
|
||||
int numClasses;
|
||||
cacheEnt_t entropyCache;
|
||||
cacheIg_t igCache;
|
||||
public:
|
||||
Metrics();
|
||||
static int numClasses(labels&, indices_t, size_t, size_t);
|
||||
static float entropy(labels&, indices_t&, size_t, size_t, int);
|
||||
static float informationGain(labels&, indices_t&, size_t, size_t, size_t, int);
|
||||
Metrics(labels&, indices_t&);
|
||||
void setData(labels&, indices_t&);
|
||||
int computeNumClasses(size_t, size_t);
|
||||
precision_t entropy(size_t, size_t);
|
||||
precision_t informationGain(size_t, size_t, size_t);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,110 +0,0 @@
|
||||
#include "ccFImdlp.h"
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "ccMetrics.h"
|
||||
|
||||
namespace mdlp {
|
||||
CPPFImdlp::CPPFImdlp(): proposal(true), precision(6), debug(false), divider(pow(10, precision)), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
|
||||
{
|
||||
}
|
||||
CPPFImdlp::CPPFImdlp(bool proposal, int precision, bool debug): proposal(proposal), precision(precision), debug(debug), divider(pow(10, precision)), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
|
||||
{
|
||||
}
|
||||
CPPFImdlp::~CPPFImdlp()
|
||||
= default;
|
||||
|
||||
CPPFImdlp& CPPFImdlp::fitx(samples& X_, labels& y_)
|
||||
{
|
||||
X = X_;
|
||||
y = y_;
|
||||
if (X.size() != y.size()) {
|
||||
throw invalid_argument("X and y must have the same size");
|
||||
}
|
||||
if (X.size() == 0 || y.size() == 0) {
|
||||
throw invalid_argument("X and y must have at least one element");
|
||||
}
|
||||
indices = sortIndices(X_);
|
||||
metrics.setData(y, indices);
|
||||
computeCutPoints(0, X.size());
|
||||
return *this;
|
||||
}
|
||||
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
|
||||
{
|
||||
int cut;
|
||||
if (end - start < 2)
|
||||
return;
|
||||
cut = getCandidate(start, end);
|
||||
if (cut == -1 || !mdlp(start, cut, end)) {
|
||||
// cut.value == -1 means that there is no candidate in the interval
|
||||
// that enhances the information gain
|
||||
if (start != 0)
|
||||
xCutPoints.push_back(xcutPoint_t({ start, (X[indices[start]] + X[indices[start - 1]]) / 2 }));
|
||||
if (end != X.size())
|
||||
xCutPoints.push_back(xcutPoint_t({ end, (X[indices[end]] + X[indices[end - 1]]) / 2 }));
|
||||
return;
|
||||
}
|
||||
computeCutPoints(start, cut);
|
||||
computeCutPoints(cut, end);
|
||||
}
|
||||
long int CPPFImdlp::getCandidate(size_t start, size_t end)
|
||||
{
|
||||
long int candidate = -1, elements = end - start;
|
||||
float entropy_left, entropy_right, minEntropy = numeric_limits<float>::max();
|
||||
for (auto idx = start + 1; idx < end; idx++) {
|
||||
// Cutpoints are always on boudndaries
|
||||
if (y[indices[idx]] == y[indices[idx - 1]])
|
||||
continue;
|
||||
entropy_left = float(idx - start) / elements * metrics.entropy(start, idx);
|
||||
entropy_right = float(end - idx) / elements * metrics.entropy(idx, end);
|
||||
if (entropy_left + entropy_right < minEntropy) {
|
||||
minEntropy = entropy_left + entropy_right;
|
||||
candidate = idx;
|
||||
}
|
||||
}
|
||||
return candidate;
|
||||
}
|
||||
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
int k, k1, k2;
|
||||
float ig, delta;
|
||||
float ent, ent1, ent2;
|
||||
auto N = float(end - start);
|
||||
if (N < 2) {
|
||||
return false;
|
||||
}
|
||||
k = metrics.computeNumClasses(start, end);
|
||||
k1 = metrics.computeNumClasses(start, cut);
|
||||
k2 = metrics.computeNumClasses(cut, end);
|
||||
ent = metrics.entropy(start, end);
|
||||
ent1 = metrics.entropy(start, cut);
|
||||
ent2 = metrics.entropy(cut, end);
|
||||
ig = metrics.informationGain(start, cut, end);
|
||||
delta = log2(pow(3, float(k)) - 2) - (float(k) * ent - float(k1) * ent1 - float(k2) * ent2);
|
||||
float term = 1 / N * (log2(N - 1) + delta);
|
||||
return ig > term;
|
||||
}
|
||||
samples CPPFImdlp::getCutPointsx()
|
||||
{
|
||||
// Remove duplicates and sort
|
||||
samples output(xCutPoints.size());
|
||||
set<float> s;
|
||||
unsigned size = xCutPoints.size();
|
||||
for (unsigned i = 0; i < size; i++)
|
||||
s.insert(xCutPoints[i].value);
|
||||
output.assign(s.begin(), s.end());
|
||||
sort(output.begin(), output.end());
|
||||
return output;
|
||||
}
|
||||
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
||||
indices_t CPPFImdlp::sortIndices(samples& X_)
|
||||
{
|
||||
indices_t idx(X_.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
for (size_t i = 0; i < X_.size(); i++)
|
||||
sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
|
||||
{ return X_[i1] < X_[i2]; });
|
||||
return idx;
|
||||
}
|
||||
}
|
@@ -1,32 +0,0 @@
|
||||
#ifndef CCFIMDLP_H
|
||||
#define CCFIMDLP_H
|
||||
#include "typesFImdlp.h"
|
||||
#include "ccMetrics.h"
|
||||
#include <utility>
|
||||
namespace mdlp {
|
||||
class CPPFImdlp {
|
||||
protected:
|
||||
bool proposal; // proposed algorithm or original algorithm
|
||||
int precision;
|
||||
bool debug;
|
||||
float divider;
|
||||
indices_t indices; // sorted indices to use with X and y
|
||||
samples X;
|
||||
labels y;
|
||||
Metrics metrics;
|
||||
xcutPoints_t xCutPoints;
|
||||
|
||||
static indices_t sortIndices(samples&);
|
||||
void computeCutPoints(size_t, size_t);
|
||||
long int getCandidate(size_t, size_t);
|
||||
bool mdlp(size_t, size_t, size_t);
|
||||
|
||||
public:
|
||||
CPPFImdlp();
|
||||
CPPFImdlp(bool, int, bool debug = false);
|
||||
~CPPFImdlp();
|
||||
CPPFImdlp& fitx(samples&, labels&);
|
||||
samples getCutPointsx();
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,74 +0,0 @@
|
||||
#include "ccMetrics.h"
|
||||
#include <set>
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
Metrics::Metrics(labels& y_, indices_t& indices_): y(y_), indices(indices_), numClasses(computeNumClasses(0, indices.size())), entropyCache(cacheEnt_t()), igCache(cacheIg_t())
|
||||
{
|
||||
}
|
||||
int Metrics::computeNumClasses(size_t start, size_t end)
|
||||
{
|
||||
set<int> nClasses;
|
||||
for (auto i = start; i < end; ++i) {
|
||||
nClasses.insert(y[indices[i]]);
|
||||
}
|
||||
return nClasses.size();
|
||||
}
|
||||
void Metrics::setData(labels& y_, indices_t& indices_)
|
||||
{
|
||||
indices = indices_;
|
||||
y = y_;
|
||||
numClasses = computeNumClasses(0, indices.size());
|
||||
}
|
||||
float Metrics::entropy(size_t start, size_t end)
|
||||
{
|
||||
float p, ventropy = 0;
|
||||
int nElements = 0;
|
||||
labels counts(numClasses + 1, 0);
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
if (entropyCache.find(make_tuple(start, end)) != entropyCache.end()) {
|
||||
return entropyCache[make_tuple(start, end)];
|
||||
}
|
||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
||||
counts[y[*i]]++;
|
||||
nElements++;
|
||||
}
|
||||
for (auto count : counts) {
|
||||
if (count > 0) {
|
||||
p = (float)count / nElements;
|
||||
ventropy -= p * log2(p);
|
||||
}
|
||||
}
|
||||
entropyCache[make_tuple(start, end)] = ventropy;
|
||||
return ventropy;
|
||||
}
|
||||
float Metrics::informationGain(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
float iGain;
|
||||
float entropyInterval, entropyLeft, entropyRight;
|
||||
int nElementsLeft = cut - start, nElementsRight = end - cut;
|
||||
int nElements = end - start;
|
||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||
cout << "**********Cache IG hit for " << start << " " << end << endl;
|
||||
return igCache[make_tuple(start, cut, end)];
|
||||
}
|
||||
entropyInterval = entropy(start, end);
|
||||
entropyLeft = entropy(start, cut);
|
||||
entropyRight = entropy(cut, end);
|
||||
iGain = entropyInterval - ((float)nElementsLeft * entropyLeft + (float)nElementsRight * entropyRight) / nElements;
|
||||
igCache[make_tuple(start, cut, end)] = iGain;
|
||||
return iGain;
|
||||
}
|
||||
|
||||
}
|
||||
/*
|
||||
cache_t entropyCache;
|
||||
std::map<std::tuple<int, int>, double> c;
|
||||
|
||||
// Set the value at index (3, 5) to 7.8.
|
||||
c[std::make_tuple(3, 5)] = 7.8;
|
||||
|
||||
// Print the value at index (3, 5).
|
||||
std::cout << c[std::make_tuple(3, 5)] << std::endl;
|
||||
*/
|
@@ -1,21 +0,0 @@
|
||||
#ifndef CCMETRICS_H
|
||||
#define CCMETRICS_H
|
||||
#include "typesFImdlp.h"
|
||||
#include <cmath>
|
||||
namespace mdlp {
|
||||
class Metrics {
|
||||
protected:
|
||||
labels& y;
|
||||
indices_t& indices;
|
||||
int numClasses;
|
||||
cacheEnt_t entropyCache;
|
||||
cacheIg_t igCache;
|
||||
public:
|
||||
Metrics(labels&, indices_t&);
|
||||
void setData(labels&, indices_t&);
|
||||
int computeNumClasses(size_t, size_t);
|
||||
float entropy(size_t, size_t);
|
||||
float informationGain(size_t, size_t, size_t);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,16 +3,13 @@
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp cimport bool
|
||||
|
||||
cdef extern from "ccFImdlp.h" namespace "mdlp":
|
||||
cdef struct CutPointBody:
|
||||
size_t start, end;
|
||||
int classNumber;
|
||||
float fromValue, toValue;
|
||||
cdef extern from "CPPFImdlp.h" namespace "mdlp":
|
||||
ctypedef float precision_t
|
||||
cdef cppclass CPPFImdlp:
|
||||
CPPFImdlp() except +
|
||||
CPPFImdlp(bool, int, bool) except +
|
||||
CPPFImdlp& fitx(vector[float]&, vector[int]&)
|
||||
vector[float] getCutPointsx()
|
||||
CPPFImdlp(bool, bool) except +
|
||||
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
||||
vector[precision_t] getCutPoints()
|
||||
|
||||
|
||||
class PcutPoint_t:
|
||||
@@ -24,14 +21,14 @@ class PcutPoint_t:
|
||||
|
||||
cdef class CFImdlp:
|
||||
cdef CPPFImdlp *thisptr
|
||||
def __cinit__(self, precision=6, debug=False, proposal=True):
|
||||
def __cinit__(self, debug=False, proposal=True):
|
||||
# Proposal or original algorithm
|
||||
self.thisptr = new CPPFImdlp(proposal, precision, debug)
|
||||
self.thisptr = new CPPFImdlp(proposal, debug)
|
||||
def __dealloc__(self):
|
||||
del self.thisptr
|
||||
def fit(self, X, y):
|
||||
self.thisptr.fitx(X, y)
|
||||
self.thisptr.fit(X, y)
|
||||
return self
|
||||
def get_cut_points(self):
|
||||
return self.thisptr.getCutPointsx()
|
||||
return self.thisptr.getCutPoints()
|
||||
|
Binary file not shown.
@@ -1,36 +0,0 @@
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
struct CutPointBody {
|
||||
size_t start, end; // indices of the sorted vector
|
||||
int classNumber; // class assigned to the cut point
|
||||
float fromValue, toValue;
|
||||
};
|
||||
typedef CutPointBody cutPoint_t;
|
||||
typedef vector<float> samples;
|
||||
typedef vector<int> labels;
|
||||
typedef vector<size_t> indices_t;
|
||||
typedef vector<cutPoint_t> cutPoints_t;
|
||||
//typedef std::map<std::tuple<int, int>, float> cache_t;
|
||||
struct cutPointStruct {
|
||||
size_t index;
|
||||
float value;
|
||||
};
|
||||
typedef cutPointStruct xcutPoint_t;
|
||||
typedef vector<xcutPoint_t> xcutPoints_t;
|
||||
class Metrics {
|
||||
private:
|
||||
labels& y;
|
||||
indices_t& indices;
|
||||
int numClasses;
|
||||
public:
|
||||
Metrics(labels&, indices_t&);
|
||||
int computeNumClasses(size_t, size_t);
|
||||
float entropy(size_t, size_t);
|
||||
float informationGain(size_t, size_t, size_t);
|
||||
};
|
||||
Metrics::Metrics(labels& y_, indices_t& indices_) : y(y_), indices(indices_)
|
||||
{
|
||||
numClasses = computeNumClasses(0, indices.size());
|
||||
}
|
BIN
fimdlp/main
BIN
fimdlp/main
Binary file not shown.
@@ -1,52 +0,0 @@
|
||||
#include "CPPFImdlp.h"
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
using namespace std;
|
||||
using namespace mdlp;
|
||||
|
||||
int main()
|
||||
{
|
||||
ifstream fin("kdd_JapaneseVowels.arff");
|
||||
if (!fin.is_open()) {
|
||||
cout << "Error opening file" << endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int count = 0;
|
||||
|
||||
// Read the Data from the file
|
||||
// as String Vector
|
||||
size_t col;
|
||||
vector<string> row;
|
||||
string line, word;
|
||||
vector<vector<float>> dataset = vector<vector<float>>(15, vector<float>());
|
||||
while (getline(fin, line)) {
|
||||
if (count++ > 215) {
|
||||
stringstream ss(line);
|
||||
col = 0;
|
||||
while (getline(ss, word, ',')) {
|
||||
col = col % 15;
|
||||
dataset[col].push_back(stof(word));
|
||||
cout << col << "-" << word << " ";
|
||||
col++;
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
}
|
||||
labels y = labels(dataset[0].begin(), dataset[0].end());
|
||||
cout << "Column 0 (y): " << y.size() << endl;
|
||||
for (auto item : y) {
|
||||
cout << item << " ";
|
||||
}
|
||||
CPPFImdlp test = CPPFImdlp(false, 6, true);
|
||||
test.fit(dataset[3], y);
|
||||
cout << "Cut points: " << test.getCutPoints().size() << endl;
|
||||
for (auto item : test.getCutPoints()) {
|
||||
cout << item << " ";
|
||||
}
|
||||
fin.close();
|
||||
return 0;
|
||||
}
|
@@ -1,6 +1,5 @@
|
||||
import numpy as np
|
||||
from .cppfimdlp import CFImdlp
|
||||
from .pyfimdlp import PyFImdlp
|
||||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
|
@@ -1,479 +0,0 @@
|
||||
import numpy as np
|
||||
from math import log2
|
||||
from types import SimpleNamespace
|
||||
|
||||
|
||||
class PyFImdlp:
|
||||
def __init__(self, proposal=True, debug=False):
|
||||
self.proposal = proposal
|
||||
self.n_features_ = None
|
||||
self.X_ = None
|
||||
self.y_ = None
|
||||
self.debug = debug
|
||||
self.features_ = None
|
||||
self.cut_points_ = []
|
||||
self.entropy_cache = {}
|
||||
self.information_gain_cache = {}
|
||||
|
||||
def fit(self, X, y):
|
||||
self.n_features_ = len(X)
|
||||
self.indices_ = np.argsort(X)
|
||||
self.use_indices = False
|
||||
X = [
|
||||
4.3,
|
||||
4.4,
|
||||
4.4,
|
||||
4.4,
|
||||
4.5,
|
||||
4.6,
|
||||
4.6,
|
||||
4.6,
|
||||
4.6,
|
||||
4.7,
|
||||
4.7,
|
||||
4.8,
|
||||
4.8,
|
||||
4.8,
|
||||
4.8,
|
||||
4.8,
|
||||
4.9,
|
||||
4.9,
|
||||
4.9,
|
||||
4.9,
|
||||
4.9,
|
||||
4.9,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.1,
|
||||
5.2,
|
||||
5.2,
|
||||
5.2,
|
||||
5.2,
|
||||
5.3,
|
||||
5.4,
|
||||
5.4,
|
||||
5.4,
|
||||
5.4,
|
||||
5.4,
|
||||
5.4,
|
||||
5.5,
|
||||
5.5,
|
||||
5.5,
|
||||
5.5,
|
||||
5.5,
|
||||
5.5,
|
||||
5.5,
|
||||
5.6,
|
||||
5.6,
|
||||
5.6,
|
||||
5.6,
|
||||
5.6,
|
||||
5.6,
|
||||
5.7,
|
||||
5.7,
|
||||
5.7,
|
||||
5.7,
|
||||
5.7,
|
||||
5.7,
|
||||
5.7,
|
||||
5.7,
|
||||
5.8,
|
||||
5.8,
|
||||
5.8,
|
||||
5.8,
|
||||
5.8,
|
||||
5.8,
|
||||
5.8,
|
||||
5.9,
|
||||
5.9,
|
||||
5.9,
|
||||
6,
|
||||
6,
|
||||
6,
|
||||
6,
|
||||
6,
|
||||
6,
|
||||
6.1,
|
||||
6.1,
|
||||
6.1,
|
||||
6.1,
|
||||
6.1,
|
||||
6.1,
|
||||
6.2,
|
||||
6.2,
|
||||
6.2,
|
||||
6.2,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.3,
|
||||
6.4,
|
||||
6.4,
|
||||
6.4,
|
||||
6.4,
|
||||
6.4,
|
||||
6.4,
|
||||
6.4,
|
||||
6.5,
|
||||
6.5,
|
||||
6.5,
|
||||
6.5,
|
||||
6.5,
|
||||
6.6,
|
||||
6.6,
|
||||
6.7,
|
||||
6.7,
|
||||
6.7,
|
||||
6.7,
|
||||
6.7,
|
||||
6.7,
|
||||
6.7,
|
||||
6.7,
|
||||
6.8,
|
||||
6.8,
|
||||
6.8,
|
||||
6.9,
|
||||
6.9,
|
||||
6.9,
|
||||
6.9,
|
||||
7,
|
||||
7.1,
|
||||
7.2,
|
||||
7.2,
|
||||
7.2,
|
||||
7.3,
|
||||
7.4,
|
||||
7.6,
|
||||
7.7,
|
||||
7.7,
|
||||
7.7,
|
||||
7.7,
|
||||
7.9,
|
||||
]
|
||||
y = [
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
]
|
||||
# self.X_ = X[self.indices_] if not self.use_indices else X
|
||||
# self.y_ = y[self.indices_] if not self.use_indices else y
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
self.compute_cut_points(0, len(y))
|
||||
return self
|
||||
|
||||
def get_cut_points(self):
|
||||
return sorted(list(set([cut.value for cut in self.cut_points_])))
|
||||
|
||||
def compute_cut_points(self, start, end):
|
||||
# print((start, end))
|
||||
cut = self.get_candidate(start, end)
|
||||
if cut.value is None:
|
||||
return
|
||||
print("cut: ", cut.value, " index: ", cut.index)
|
||||
if self.mdlp(cut, start, end):
|
||||
print("¡Ding!", cut.value, cut.index)
|
||||
self.cut_points_.append(cut)
|
||||
self.compute_cut_points(start, cut.index)
|
||||
self.compute_cut_points(cut.index, end)
|
||||
|
||||
def mdlp(self, cut, start, end):
|
||||
N = end - start
|
||||
k = self.num_classes(start, end)
|
||||
k1 = self.num_classes(start, cut.index)
|
||||
k2 = self.num_classes(cut.index, end)
|
||||
ent = self.entropy(start, end)
|
||||
ent1 = self.entropy(start, cut.index)
|
||||
ent2 = self.entropy(cut.index, end)
|
||||
ig = self.information_gain(start, cut.index, end)
|
||||
delta = log2(pow(3, k) - 2, 2) - (
|
||||
float(k) * ent - float(k1) * ent1 - float(k2) * ent2
|
||||
)
|
||||
term = 1 / N * (log2(N - 1, 2) + delta)
|
||||
print("start: ", start, " cut: ", cut.index, " end: ", end)
|
||||
print(
|
||||
"k=",
|
||||
k,
|
||||
" k1=",
|
||||
k1,
|
||||
" k2=",
|
||||
k2,
|
||||
" ent=",
|
||||
ent,
|
||||
" ent1=",
|
||||
ent1,
|
||||
" ent2=",
|
||||
ent2,
|
||||
)
|
||||
print("ig=", ig, " delta=", delta, " N ", N, " term ", term)
|
||||
return ig > term
|
||||
|
||||
def num_classes(self, start, end):
|
||||
n_classes = set()
|
||||
for i in range(start, end):
|
||||
n_classes.add(
|
||||
self.y_[self.indices_[i]] if self.use_indices else self.y_[i]
|
||||
)
|
||||
return len(n_classes)
|
||||
|
||||
def get_candidate(self, start, end):
|
||||
"""Return the best cutpoint candidate for the given range.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : int
|
||||
Start of the range.
|
||||
end : int
|
||||
End of the range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
candidate : SimpleNamespace with attributes index and value
|
||||
value == None if no candidate is found.
|
||||
"""
|
||||
candidate = SimpleNamespace()
|
||||
candidate.value = None
|
||||
minEntropy = float("inf")
|
||||
for idx in range(start + 1, end):
|
||||
condition = (
|
||||
self.y_[self.indices_[idx]] == self.y_[self.indices_[idx - 1]]
|
||||
if self.use_indices
|
||||
else self.y_[idx] == self.y_[idx - 1]
|
||||
)
|
||||
if condition:
|
||||
continue
|
||||
entropy_left = self.entropy(start, idx)
|
||||
entropy_right = self.entropy(idx, end)
|
||||
entropy_cut = entropy_left + entropy_right
|
||||
print(
|
||||
"idx: ",
|
||||
idx,
|
||||
" entropy_left: ",
|
||||
entropy_left,
|
||||
" entropy_right : ",
|
||||
entropy_right,
|
||||
" -> ",
|
||||
start,
|
||||
" ",
|
||||
end,
|
||||
)
|
||||
if entropy_cut < minEntropy:
|
||||
minEntropy = entropy_cut
|
||||
candidate.index = idx
|
||||
if self.use_indices:
|
||||
candidate.value = (
|
||||
self.X_[self.indices_[idx]]
|
||||
+ self.X_[self.indices_[idx - 1]]
|
||||
) / 2
|
||||
else:
|
||||
candidate.value = (self.X_[idx] + self.X_[idx - 1]) / 2
|
||||
return candidate
|
||||
|
||||
def entropy(self, start, end) -> float:
|
||||
n_labels = end - start
|
||||
if n_labels <= 1:
|
||||
return 0
|
||||
if (start, end) in self.entropy_cache:
|
||||
return self.entropy_cache[(start, end)]
|
||||
if self.use_indices:
|
||||
counts = np.bincount(self.y_[self.indices_[start:end]])
|
||||
else:
|
||||
counts = np.bincount(self.y_[start:end])
|
||||
proportions = counts / n_labels
|
||||
n_classes = np.count_nonzero(proportions)
|
||||
if n_classes <= 1:
|
||||
return 0
|
||||
entropy = 0.0
|
||||
# Compute standard entropy.
|
||||
for prop in proportions:
|
||||
if prop != 0.0:
|
||||
entropy -= prop * log2(prop, 2)
|
||||
self.entropy_cache[(start, end)] = entropy
|
||||
return entropy
|
||||
|
||||
def information_gain(self, start, cut, end):
|
||||
if (start, cut, end) in self.information_gain_cache:
|
||||
return self.information_gain_cache[(start, cut, end)]
|
||||
labels = end - start
|
||||
if labels == 0:
|
||||
return 0.0
|
||||
entropy = self.entropy(start, end)
|
||||
card_left = cut - start
|
||||
entropy_left = self.entropy(start, cut)
|
||||
card_right = end - cut
|
||||
entropy_right = self.entropy(cut, end)
|
||||
result = (
|
||||
entropy
|
||||
- (card_left / labels) * entropy_left
|
||||
- (card_right / labels) * entropy_right
|
||||
)
|
||||
self.information_gain_cache[(start, cut, end)] = result
|
||||
return result
|
@@ -34,7 +34,7 @@ namespace mdlp {
|
||||
X = X_;
|
||||
indices = indices_;
|
||||
indices_t testSortedIndices = sortIndices(X);
|
||||
float prev = X[testSortedIndices[0]];
|
||||
precision_t prev = X[testSortedIndices[0]];
|
||||
for (auto i = 0; i < X.size(); ++i) {
|
||||
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
||||
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
||||
@@ -162,7 +162,7 @@ namespace mdlp {
|
||||
fit(X, y);
|
||||
computeCutPointsOriginal();
|
||||
cutPoints_t expected;
|
||||
vector<float> computed = getCutPoints();
|
||||
vector<precision_t> computed = getCutPoints();
|
||||
expected = {
|
||||
{ 0, 4, -1, -3.4028234663852886e+38, 5.15 }, { 4, 6, -1, 5.15, 5.45 },
|
||||
{ 6, 10, -1, 5.45, 3.4028234663852886e+38 }
|
||||
|
@@ -2,7 +2,7 @@
|
||||
#include "../Metrics.h"
|
||||
|
||||
namespace mdlp {
|
||||
float precision = 0.000001;
|
||||
precision_t precision = 0.000001;
|
||||
TEST(MetricTest, NumClasses)
|
||||
{
|
||||
labels y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
|
286
fimdlp/tests/bak/CPPFImdlp.cpp
Normal file
286
fimdlp/tests/bak/CPPFImdlp.cpp
Normal file
@@ -0,0 +1,286 @@
|
||||
#include "CPPFImdlp.h"
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include "Metrics.h"
|
||||
|
||||
namespace mdlp {
|
||||
ostream& operator << (ostream& os, const cutPoint_t& cut)
|
||||
{
|
||||
os << cut.classNumber << " -> (" << cut.start << ", " << cut.end <<
|
||||
") - (" << cut.fromValue << ", " << cut.toValue << ") "
|
||||
<< endl;
|
||||
return os;
|
||||
|
||||
}
|
||||
CPPFImdlp::CPPFImdlp(): proposal(true), precision(6), debug(false)
|
||||
{
|
||||
divider = pow(10, precision);
|
||||
numClasses = 0;
|
||||
}
|
||||
CPPFImdlp::CPPFImdlp(bool proposal, int precision, bool debug): proposal(proposal), precision(precision), debug(debug)
|
||||
{
|
||||
divider = pow(10, precision);
|
||||
numClasses = 0;
|
||||
}
|
||||
CPPFImdlp::~CPPFImdlp()
|
||||
= default;
|
||||
samples CPPFImdlp::getCutPoints()
|
||||
{
|
||||
samples output(cutPoints.size());
|
||||
::transform(cutPoints.begin(), cutPoints.end(), output.begin(),
|
||||
[](cutPoint_t cut) { return cut.toValue; });
|
||||
return output;
|
||||
}
|
||||
labels CPPFImdlp::getDiscretizedValues()
|
||||
{
|
||||
return xDiscretized;
|
||||
}
|
||||
CPPFImdlp& CPPFImdlp::fit(samples& X_, labels& y_)
|
||||
{
|
||||
X = X_;
|
||||
y = y_;
|
||||
if (X.size() != y.size()) {
|
||||
throw invalid_argument("X and y must have the same size");
|
||||
}
|
||||
if (X.size() == 0 || y.size() == 0) {
|
||||
throw invalid_argument("X and y must have at least one element");
|
||||
}
|
||||
indices = sortIndices(X_);
|
||||
xDiscretized = labels(X.size(), -1);
|
||||
numClasses = Metrics::numClasses(y, indices, 0, X.size());
|
||||
|
||||
if (proposal) {
|
||||
computeCutPointsProposal();
|
||||
} else {
|
||||
computeCutPointsOriginal();
|
||||
}
|
||||
filterCutPoints();
|
||||
// Apply cut points to the input vector
|
||||
for (auto cut : cutPoints) {
|
||||
for (size_t i = cut.start; i < cut.end; i++) {
|
||||
xDiscretized[indices[i]] = cut.classNumber;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
bool CPPFImdlp::evaluateCutPoint(cutPoint_t rest, cutPoint_t candidate)
|
||||
{
|
||||
int k, k1, k2;
|
||||
precision_t ig, delta;
|
||||
precision_t ent, ent1, ent2;
|
||||
auto N = precision_t(rest.end - rest.start);
|
||||
if (N < 2) {
|
||||
return false;
|
||||
}
|
||||
k = Metrics::numClasses(y, indices, rest.start, rest.end);
|
||||
k1 = Metrics::numClasses(y, indices, rest.start, candidate.end);
|
||||
k2 = Metrics::numClasses(y, indices, candidate.end, rest.end);
|
||||
ent = Metrics::entropy(y, indices, rest.start, rest.end, numClasses);
|
||||
ent1 = Metrics::entropy(y, indices, rest.start, candidate.end, numClasses);
|
||||
ent2 = Metrics::entropy(y, indices, candidate.end, rest.end, numClasses);
|
||||
ig = Metrics::informationGain(y, indices, rest.start, rest.end, candidate.end, numClasses);
|
||||
delta = log2(pow(3, precision_t(k)) - 2) - (precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2);
|
||||
precision_t term = 1 / N * (log2(N - 1) + delta);
|
||||
if (debug) {
|
||||
cout << "Rest: " << rest;
|
||||
cout << "Candidate: " << candidate;
|
||||
cout << "k=" << k << " k1=" << k1 << " k2=" << k2 << " ent=" << ent << " ent1=" << ent1 << " ent2=" << ent2 << endl;
|
||||
cout << "ig=" << ig << " delta=" << delta << " N " << N << " term " << term << endl;
|
||||
}
|
||||
return (ig > term);
|
||||
}
|
||||
void CPPFImdlp::filterCutPoints()
|
||||
{
|
||||
cutPoints_t filtered;
|
||||
cutPoint_t rest, item;
|
||||
int classNumber = 0;
|
||||
|
||||
rest.start = 0;
|
||||
rest.end = X.size();
|
||||
rest.fromValue = numeric_limits<precision_t>::lowest();
|
||||
rest.toValue = numeric_limits<precision_t>::max();
|
||||
rest.classNumber = classNumber;
|
||||
bool first = true;
|
||||
for (size_t index = 0; index < size_t(cutPoints.size()); index++) {
|
||||
item = cutPoints[index];
|
||||
if (evaluateCutPoint(rest, item)) {
|
||||
if (debug)
|
||||
cout << "Accepted: " << item << endl;
|
||||
//Assign class number to the interval (cutpoint)
|
||||
item.classNumber = classNumber++;
|
||||
filtered.push_back(item);
|
||||
first = false;
|
||||
rest.start = item.end;
|
||||
} else {
|
||||
if (debug)
|
||||
cout << "Rejected: " << item << endl;
|
||||
if (index != size_t(cutPoints.size()) - 1) {
|
||||
// Try to merge the rejected cutpoint with the next one
|
||||
if (first) {
|
||||
cutPoints[index + 1].fromValue = numeric_limits<precision_t>::lowest();
|
||||
cutPoints[index + 1].start = indices[0];
|
||||
} else {
|
||||
cutPoints[index + 1].fromValue = item.fromValue;
|
||||
cutPoints[index + 1].start = item.start;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!first) {
|
||||
filtered.back().toValue = numeric_limits<precision_t>::max();
|
||||
filtered.back().end = X.size() - 1;
|
||||
} else {
|
||||
filtered.push_back(rest);
|
||||
}
|
||||
cutPoints = filtered;
|
||||
}
|
||||
void CPPFImdlp::computeCutPointsProposal()
|
||||
{
|
||||
cutPoints_t cutPts;
|
||||
cutPoint_t cutPoint;
|
||||
precision_t xPrev, xCur, xPivot;
|
||||
int yPrev, yCur, yPivot;
|
||||
size_t idx, numElements, start;
|
||||
|
||||
xCur = xPrev = X[indices[0]];
|
||||
yCur = yPrev = y[indices[0]];
|
||||
numElements = indices.size() - 1;
|
||||
idx = start = 0;
|
||||
bool firstCutPoint = true;
|
||||
if (debug)
|
||||
printf("*idx=%lu -> (-1, -1) Prev(%3.1f, %d) Elementos: %lu\n", idx, xCur, yCur, numElements);
|
||||
while (idx < numElements) {
|
||||
xPivot = xCur;
|
||||
yPivot = yCur;
|
||||
if (debug)
|
||||
printf("<idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur);
|
||||
// Read the same values and check class changes
|
||||
do {
|
||||
idx++;
|
||||
xCur = X[indices[idx]];
|
||||
yCur = y[indices[idx]];
|
||||
if (yCur != yPivot && xCur == xPivot) {
|
||||
yPivot = -1;
|
||||
}
|
||||
if (debug)
|
||||
printf(">idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur);
|
||||
}
|
||||
while (idx < numElements && xCur == xPivot);
|
||||
// Check if the class changed and there are more than 1 element
|
||||
if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && goodCut(start, idx, numElements + 1)) {
|
||||
// Must we add the entropy criteria here?
|
||||
// if (totalEntropy - (entropyLeft + entropyRight) > 0) { Accept cut point }
|
||||
cutPoint.start = start;
|
||||
cutPoint.end = idx;
|
||||
start = idx;
|
||||
cutPoint.fromValue = firstCutPoint ? numeric_limits<precision_t>::lowest() : cutPts.back().toValue;
|
||||
cutPoint.toValue = (xPrev + xCur) / 2;
|
||||
cutPoint.classNumber = -1;
|
||||
firstCutPoint = false;
|
||||
if (debug) {
|
||||
printf("Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = (%3.1g, %3.1g] \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint.fromValue, cutPoint.toValue);
|
||||
}
|
||||
cutPts.push_back(cutPoint);
|
||||
}
|
||||
yPrev = yPivot;
|
||||
xPrev = xPivot;
|
||||
}
|
||||
if (idx == numElements) {
|
||||
cutPoint.start = start;
|
||||
cutPoint.end = numElements + 1;
|
||||
cutPoint.fromValue = firstCutPoint ? numeric_limits<precision_t>::lowest() : cutPts.back().toValue;
|
||||
cutPoint.toValue = numeric_limits<precision_t>::max();
|
||||
cutPoint.classNumber = -1;
|
||||
if (debug)
|
||||
printf("Final Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = (%3.1g, %3.1g] \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint.fromValue, cutPoint.toValue);
|
||||
cutPts.push_back(cutPoint);
|
||||
}
|
||||
if (debug) {
|
||||
cout << "Entropy of the dataset: " << Metrics::entropy(y, indices, 0, numElements + 1, numClasses) << endl;
|
||||
for (auto cutPt : cutPts)
|
||||
cout << "Entropy: " << Metrics::entropy(y, indices, cutPt.start, cutPt.end, numClasses) << " :Proposal: Cut point: " << cutPt;
|
||||
}
|
||||
cutPoints = cutPts;
|
||||
}
|
||||
void CPPFImdlp::computeCutPointsOriginal()
|
||||
{
|
||||
cutPoints_t cutPts;
|
||||
cutPoint_t cutPoint;
|
||||
precision_t xPrev;
|
||||
int yPrev;
|
||||
bool first = true;
|
||||
// idxPrev is the index of the init instance of the cutPoint
|
||||
size_t index, idxPrev = 0, last, idx = indices[0];
|
||||
xPrev = X[idx];
|
||||
yPrev = y[idx];
|
||||
last = indices.size() - 1;
|
||||
for (index = 0; index < last; index++) {
|
||||
idx = indices[index];
|
||||
// Definition 2 Cut points are always on class boundaries &&
|
||||
// there are more than 1 items in the interval
|
||||
// if (entropy of interval) > (entropyLeft + entropyRight)) { Accept cut point } (goodCut)
|
||||
if (y[idx] != yPrev && xPrev < X[idx] && idxPrev != index - 1 && goodCut(idxPrev, idx, last + 1)) {
|
||||
// Must we add the entropy criteria here?
|
||||
if (first) {
|
||||
first = false;
|
||||
cutPoint.fromValue = numeric_limits<precision_t>::lowest();
|
||||
} else {
|
||||
cutPoint.fromValue = cutPts.back().toValue;
|
||||
}
|
||||
cutPoint.start = idxPrev;
|
||||
cutPoint.end = index;
|
||||
cutPoint.classNumber = -1;
|
||||
cutPoint.toValue = round(divider * (X[idx] + xPrev) / 2) / divider;
|
||||
idxPrev = index;
|
||||
cutPts.push_back(cutPoint);
|
||||
}
|
||||
xPrev = X[idx];
|
||||
yPrev = y[idx];
|
||||
}
|
||||
if (first) {
|
||||
cutPoint.start = 0;
|
||||
cutPoint.classNumber = -1;
|
||||
cutPoint.fromValue = numeric_limits<precision_t>::lowest();
|
||||
cutPoint.toValue = numeric_limits<precision_t>::max();
|
||||
cutPts.push_back(cutPoint);
|
||||
} else
|
||||
cutPts.back().toValue = numeric_limits<precision_t>::max();
|
||||
cutPts.back().end = X.size();
|
||||
if (debug) {
|
||||
cout << "Entropy of the dataset: " << Metrics::entropy(y, indices, 0, indices.size(), numClasses) << endl;
|
||||
for (auto cutPt : cutPts)
|
||||
cout << "Entropy: " << Metrics::entropy(y, indices, cutPt.start, cutPt.end, numClasses) << ": Original: Cut point: " << cutPt;
|
||||
}
|
||||
cutPoints = cutPts;
|
||||
}
|
||||
bool CPPFImdlp::goodCut(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
/*
|
||||
Meter las entropías en una matríz cuadrada dispersa (samples, samples) M[start, end] iniciada a -1 y si no se ha calculado calcularla y almacenarla
|
||||
|
||||
|
||||
*/
|
||||
precision_t entropyLeft = Metrics::entropy(y, indices, start, cut, numClasses);
|
||||
precision_t entropyRight = Metrics::entropy(y, indices, cut, end, numClasses);
|
||||
precision_t entropyInterval = Metrics::entropy(y, indices, start, end, numClasses);
|
||||
if (debug)
|
||||
printf("Entropy L, R, T: L(%5.3g) + R(%5.3g) - T(%5.3g) \t", entropyLeft, entropyRight, entropyInterval);
|
||||
//return (entropyInterval - (entropyLeft + entropyRight) > 0);
|
||||
return true;
|
||||
}
|
||||
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
||||
indices_t CPPFImdlp::sortIndices(samples& X_)
|
||||
{
|
||||
indices_t idx(X_.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
for (size_t i = 0; i < X_.size(); i++)
|
||||
stable_sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
|
||||
{ return X_[i1] < X_[i2]; });
|
||||
return idx;
|
||||
}
|
||||
void CPPFImdlp::setCutPoints(cutPoints_t cutPoints_)
|
||||
{
|
||||
cutPoints = cutPoints_;
|
||||
}
|
||||
}
|
39
fimdlp/tests/bak/CPPFImdlp.h
Normal file
39
fimdlp/tests/bak/CPPFImdlp.h
Normal file
@@ -0,0 +1,39 @@
|
||||
#ifndef CPPFIMDLP_H
|
||||
#define CPPFIMDLP_H
|
||||
#include "typesFImdlp.h"
|
||||
#include <utility>
|
||||
namespace mdlp {
|
||||
class CPPFImdlp {
|
||||
protected:
|
||||
bool proposal; // proposed algorithm or original algorithm
|
||||
int precision;
|
||||
bool debug;
|
||||
precision_t divider;
|
||||
indices_t indices; // sorted indices to use with X and y
|
||||
samples X;
|
||||
labels y;
|
||||
labels xDiscretized;
|
||||
int numClasses;
|
||||
cutPoints_t cutPoints;
|
||||
|
||||
void setCutPoints(cutPoints_t);
|
||||
static indices_t sortIndices(samples&);
|
||||
void computeCutPointsOriginal();
|
||||
void computeCutPointsProposal();
|
||||
bool evaluateCutPoint(cutPoint_t, cutPoint_t);
|
||||
void filterCutPoints();
|
||||
bool goodCut(size_t, size_t, size_t); // if the cut candidate reduces entropy
|
||||
|
||||
public:
|
||||
CPPFImdlp();
|
||||
CPPFImdlp(bool, int, bool debug = false);
|
||||
~CPPFImdlp();
|
||||
samples getCutPoints();
|
||||
indices_t getIndices();
|
||||
labels getDiscretizedValues();
|
||||
void debugPoints(samples&, labels&);
|
||||
CPPFImdlp& fit(samples&, labels&);
|
||||
labels transform(samples&);
|
||||
};
|
||||
}
|
||||
#endif
|
47
fimdlp/tests/bak/Metrics.cpp
Normal file
47
fimdlp/tests/bak/Metrics.cpp
Normal file
@@ -0,0 +1,47 @@
|
||||
#include "Metrics.h"
|
||||
#include <set>
|
||||
namespace mdlp {
|
||||
Metrics::Metrics()
|
||||
= default;
|
||||
int Metrics::numClasses(labels& y, indices_t indices, size_t start, size_t end)
|
||||
{
|
||||
std::set<int> numClasses;
|
||||
for (auto i = start; i < end; ++i) {
|
||||
numClasses.insert(y[indices[i]]);
|
||||
}
|
||||
return numClasses.size();
|
||||
}
|
||||
precision_t Metrics::entropy(labels& y, indices_t& indices, size_t start, size_t end, int nClasses)
|
||||
{
|
||||
precision_t entropy = 0;
|
||||
int nElements = 0;
|
||||
labels counts(nClasses + 1, 0);
|
||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
||||
counts[y[*i]]++;
|
||||
nElements++;
|
||||
}
|
||||
for (auto count : counts) {
|
||||
if (count > 0) {
|
||||
precision_t p = (precision_t)count / nElements;
|
||||
entropy -= p * log2(p);
|
||||
}
|
||||
}
|
||||
return entropy < 0 ? 0 : entropy;
|
||||
}
|
||||
precision_t Metrics::informationGain(labels& y, indices_t& indices, size_t start, size_t end, size_t cutPoint, int nClasses)
|
||||
{
|
||||
precision_t iGain;
|
||||
precision_t entropy, entropyLeft, entropyRight;
|
||||
int nClassesLeft, nClassesRight;
|
||||
int nElementsLeft = cutPoint - start, nElementsRight = end - cutPoint;
|
||||
int nElements = end - start;
|
||||
nClassesLeft = Metrics::numClasses(y, indices, start, cutPoint);
|
||||
nClassesRight = Metrics::numClasses(y, indices, cutPoint, end);
|
||||
entropy = Metrics::entropy(y, indices, start, end, nClasses);
|
||||
entropyLeft = Metrics::entropy(y, indices, start, cutPoint, nClassesLeft);
|
||||
entropyRight = Metrics::entropy(y, indices, cutPoint, end, nClassesRight);
|
||||
iGain = entropy - ((precision_t)nElementsLeft * entropyLeft + (precision_t)nElementsRight * entropyRight) / nElements;
|
||||
return iGain;
|
||||
}
|
||||
|
||||
}
|
14
fimdlp/tests/bak/Metrics.h
Normal file
14
fimdlp/tests/bak/Metrics.h
Normal file
@@ -0,0 +1,14 @@
|
||||
#ifndef METRICS_H
|
||||
#define METRICS_H
|
||||
#include "typesFImdlp.h"
|
||||
#include <cmath>
|
||||
namespace mdlp {
|
||||
class Metrics {
|
||||
public:
|
||||
Metrics();
|
||||
static int numClasses(labels&, indices_t, size_t, size_t);
|
||||
static precision_t entropy(labels&, indices_t&, size_t, size_t, int);
|
||||
static precision_t informationGain(labels&, indices_t&, size_t, size_t, size_t, int);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -5,21 +5,12 @@
|
||||
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
struct CutPointBody {
|
||||
size_t start, end; // indices of the sorted vector
|
||||
};
|
||||
typedef CutPointBody cutPoint_t;
|
||||
typedef vector<float> samples;
|
||||
typedef float precision_t;
|
||||
typedef vector<precision_t> samples;
|
||||
typedef vector<int> labels;
|
||||
typedef vector<size_t> indices_t;
|
||||
typedef vector<cutPoint_t> cutPoints_t;
|
||||
typedef map<tuple<int, int>, float> cacheEnt_t;
|
||||
typedef map<tuple<int, int, int>, float> cacheIg_t;
|
||||
struct cutPointStruct {
|
||||
size_t index;
|
||||
float value;
|
||||
};
|
||||
typedef cutPointStruct xcutPoint_t;
|
||||
typedef vector<xcutPoint_t> xcutPoints_t;
|
||||
typedef vector<precision_t> cutPoints_t;
|
||||
typedef map<tuple<int, int>, precision_t> cacheEnt_t;
|
||||
typedef map<tuple<int, int, int>, precision_t> cacheIg_t;
|
||||
}
|
||||
#endif
|
@@ -13,7 +13,7 @@ namespace FImdlp {
|
||||
int n = X.size();
|
||||
for (i = 1; i < n; i++) {
|
||||
if (X.at(i) != ant) {
|
||||
cutPts.push_back(float(X.at(i) + ant) / 2);
|
||||
cutPts.push_back(precision_t(X.at(i) + ant) / 2);
|
||||
ant = X.at(i);
|
||||
}
|
||||
}
|
||||
|
@@ -5,7 +5,7 @@ from libcpp.vector cimport vector
|
||||
cdef extern from "FImdlp.h" namespace "FImdlp":
|
||||
cdef cppclass FImdlp:
|
||||
FImdlp() except +
|
||||
vector[float] cutPoints(vector[int]&, vector[int]&)
|
||||
vector[precision_t] cutPoints(vector[int]&, vector[int]&)
|
||||
|
||||
cdef class CFImdlp:
|
||||
cdef FImdlp *thisptr
|
||||
|
Reference in New Issue
Block a user