Files
fimdlp/fimdlp/ccFImdlp.cc

111 lines
4.1 KiB
C++

#include "ccFImdlp.h"
#include <numeric>
#include <iostream>
#include <algorithm>
#include <set>
#include "ccMetrics.h"
namespace mdlp {
CPPFImdlp::CPPFImdlp(): proposal(true), precision(6), debug(false), divider(pow(10, precision)), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
{
}
CPPFImdlp::CPPFImdlp(bool proposal, int precision, bool debug): proposal(proposal), precision(precision), debug(debug), divider(pow(10, precision)), indices(indices_t()), y(labels()), metrics(Metrics(y, indices))
{
}
CPPFImdlp::~CPPFImdlp()
= default;
CPPFImdlp& CPPFImdlp::fitx(samples& X_, labels& y_)
{
X = X_;
y = y_;
if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size");
}
if (X.size() == 0 || y.size() == 0) {
throw invalid_argument("X and y must have at least one element");
}
indices = sortIndices(X_);
metrics.setData(y, indices);
computeCutPoints(0, X.size());
return *this;
}
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
{
int cut;
if (end - start < 2)
return;
cut = getCandidate(start, end);
if (cut == -1 || !mdlp(start, cut, end)) {
// cut.value == -1 means that there is no candidate in the interval
// that enhances the information gain
if (start != 0)
xCutPoints.push_back(xcutPoint_t({ start, (X[indices[start]] + X[indices[start - 1]]) / 2 }));
if (end != X.size())
xCutPoints.push_back(xcutPoint_t({ end, (X[indices[end]] + X[indices[end - 1]]) / 2 }));
return;
}
computeCutPoints(start, cut);
computeCutPoints(cut, end);
}
long int CPPFImdlp::getCandidate(size_t start, size_t end)
{
long int candidate = -1, elements = end - start;
float entropy_left, entropy_right, minEntropy = numeric_limits<float>::max();
for (auto idx = start + 1; idx < end; idx++) {
// Cutpoints are always on boudndaries
if (y[indices[idx]] == y[indices[idx - 1]])
continue;
entropy_left = float(idx - start) / elements * metrics.entropy(start, idx);
entropy_right = float(end - idx) / elements * metrics.entropy(idx, end);
if (entropy_left + entropy_right < minEntropy) {
minEntropy = entropy_left + entropy_right;
candidate = idx;
}
}
return candidate;
}
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
{
int k, k1, k2;
float ig, delta;
float ent, ent1, ent2;
auto N = float(end - start);
if (N < 2) {
return false;
}
k = metrics.computeNumClasses(start, end);
k1 = metrics.computeNumClasses(start, cut);
k2 = metrics.computeNumClasses(cut, end);
ent = metrics.entropy(start, end);
ent1 = metrics.entropy(start, cut);
ent2 = metrics.entropy(cut, end);
ig = metrics.informationGain(start, cut, end);
delta = log2(pow(3, float(k)) - 2) - (float(k) * ent - float(k1) * ent1 - float(k2) * ent2);
float term = 1 / N * (log2(N - 1) + delta);
return ig > term;
}
samples CPPFImdlp::getCutPointsx()
{
// Remove duplicates and sort
samples output(xCutPoints.size());
set<float> s;
unsigned size = xCutPoints.size();
for (unsigned i = 0; i < size; i++)
s.insert(xCutPoints[i].value);
output.assign(s.begin(), s.end());
sort(output.begin(), output.end());
return output;
}
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
indices_t CPPFImdlp::sortIndices(samples& X_)
{
indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0);
for (size_t i = 0; i < X_.size(); i++)
sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
{ return X_[i1] < X_[i2]; });
return idx;
}
}