mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-17 08:25:53 +00:00
Compare commits
15 Commits
language_v
...
add_excel_
Author | SHA1 | Date | |
---|---|---|---|
c8124be119
|
|||
58c52849d8
|
|||
d68fb47688
|
|||
38667d61f7
|
|||
dfd4f8179b
|
|||
8a9342c97b
|
|||
974227166c
|
|||
feea9c542a
|
|||
a53e957c00
|
|||
a2db4f1f6d
|
|||
5a3ae6f440
|
|||
|
8d06a2c5f6 | ||
c62b06f263
|
|||
|
b9eaa534bc | ||
|
c77feff54b |
@@ -1,7 +1,7 @@
|
||||
[](https://github.com/Doctorado-ML/benchmark/actions/workflows/main.yml)
|
||||
[](https://codecov.io/gh/Doctorado-ML/benchmark)
|
||||
[](http://haystack.local:25000/dashboard?id=benchmark)
|
||||
[](http://haystack.local:25000/dashboard?id=benchmark)
|
||||
[](https://haystack.rmontanana.es:25000/dashboard?id=benchmark)
|
||||
[](https://haystack.rmontanana.es:25000/dashboard?id=benchmark)
|
||||

|
||||
|
||||
# benchmark
|
||||
|
@@ -26,7 +26,7 @@ class DatasetsArff:
|
||||
def folder():
|
||||
return "datasets"
|
||||
|
||||
def load(self, name, class_name, dataframe):
|
||||
def load(self, name, class_name):
|
||||
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
||||
data = arff.loadarff(file_name)
|
||||
df = pd.DataFrame(data[0])
|
||||
@@ -35,9 +35,8 @@ class DatasetsArff:
|
||||
self.features = X.columns
|
||||
self.class_name = class_name
|
||||
y, _ = pd.factorize(df[class_name])
|
||||
df[class_name] = y
|
||||
X = X.to_numpy()
|
||||
return df if dataframe else (X, y)
|
||||
return X, y
|
||||
|
||||
|
||||
class DatasetsTanveer:
|
||||
@@ -149,10 +148,10 @@ class Datasets:
|
||||
def get_class_name(self):
|
||||
return self.dataset.class_name
|
||||
|
||||
def load_continuous(self, name, dataframe=False):
|
||||
def load_continuous(self, name):
|
||||
try:
|
||||
class_name = self.class_names[self.data_sets.index(name)]
|
||||
return self.dataset.load(name, class_name, dataframe)
|
||||
return self.dataset.load(name, class_name)
|
||||
except (ValueError, FileNotFoundError):
|
||||
raise ValueError(f"Unknown dataset: {name}")
|
||||
|
||||
@@ -170,16 +169,18 @@ class Datasets:
|
||||
-------
|
||||
tuple (X, y) of numpy.ndarray
|
||||
"""
|
||||
discretiz = MDLP()
|
||||
discretiz = MDLP(random_state=17, dtype=np.int32)
|
||||
Xdisc = discretiz.fit_transform(X, y)
|
||||
return Xdisc.astype(int), y.astype(int)
|
||||
return Xdisc
|
||||
|
||||
def load_discretized(self, name, dataframe=False):
|
||||
X, y = self.load_continuous(name)
|
||||
X, y = self.discretize(X, y)
|
||||
dataset = pd.DataFrame(X, columns=self.get_features())
|
||||
dataset[self.get_class_name()] = y
|
||||
return dataset if dataframe else X, y
|
||||
X, yd = self.load_continuous(name)
|
||||
Xd = self.discretize(X, yd)
|
||||
dataset = pd.DataFrame(Xd, columns=self.get_features())
|
||||
dataset[self.get_class_name()] = yd
|
||||
if dataframe:
|
||||
return dataset
|
||||
return Xd, yd
|
||||
|
||||
def __iter__(self) -> Diterator:
|
||||
return Diterator(self.data_sets)
|
||||
|
@@ -8,7 +8,7 @@ from sklearn.ensemble import (
|
||||
)
|
||||
from sklearn.svm import SVC
|
||||
from stree import Stree
|
||||
from bayesclass import TAN
|
||||
from bayesclass import TAN, KDB, AODE
|
||||
from wodt import Wodt
|
||||
from odte import Odte
|
||||
from xgboost import XGBClassifier
|
||||
@@ -22,6 +22,8 @@ class Models:
|
||||
return {
|
||||
"STree": Stree(random_state=random_state),
|
||||
"TAN": TAN(random_state=random_state),
|
||||
"KDB": KDB(k=3),
|
||||
"AODE": AODE(random_state=random_state),
|
||||
"Cart": DecisionTreeClassifier(random_state=random_state),
|
||||
"ExtraTree": ExtraTreeClassifier(random_state=random_state),
|
||||
"Wodt": Wodt(random_state=random_state),
|
||||
|
@@ -7,6 +7,7 @@ import abc
|
||||
import shutil
|
||||
import subprocess
|
||||
import xlsxwriter
|
||||
from xlsxwriter.exceptions import DuplicateWorksheetName
|
||||
import numpy as np
|
||||
from .Experiments import BestResults
|
||||
from .Datasets import Datasets
|
||||
@@ -21,6 +22,10 @@ from .Utils import (
|
||||
from ._version import __version__
|
||||
|
||||
|
||||
def get_input(is_test):
|
||||
return "test" if is_test else input()
|
||||
|
||||
|
||||
class BestResultsEver:
|
||||
def __init__(self):
|
||||
self.data = {}
|
||||
@@ -35,7 +40,7 @@ class BestResultsEver:
|
||||
]
|
||||
self.data["Arff"]["accuracy"] = [
|
||||
"STree_default (linear-ovo)",
|
||||
22.063496,
|
||||
22.109799,
|
||||
]
|
||||
|
||||
def get_name_value(self, key, score):
|
||||
@@ -125,7 +130,7 @@ class BaseReport(abc.ABC):
|
||||
|
||||
|
||||
class Report(BaseReport):
|
||||
header_lengths = [30, 6, 5, 3, 7, 7, 7, 15, 16, 15]
|
||||
header_lengths = [30, 6, 5, 3, 7, 7, 7, 15, 17, 15]
|
||||
header_cols = [
|
||||
"Dataset",
|
||||
"Sampl.",
|
||||
@@ -184,7 +189,7 @@ class Report(BaseReport):
|
||||
)
|
||||
i += 1
|
||||
print(
|
||||
f"{result['time']:9.6f}±{result['time_std']:6.4f} ",
|
||||
f"{result['time']:10.6f}±{result['time_std']:6.4f} ",
|
||||
end="",
|
||||
)
|
||||
i += 1
|
||||
@@ -328,7 +333,17 @@ class Excel(BaseReport):
|
||||
else:
|
||||
self.book = book
|
||||
self.close = False
|
||||
self.sheet = self.book.add_worksheet(self.data["model"])
|
||||
suffix = ""
|
||||
num = 1
|
||||
while True:
|
||||
try:
|
||||
self.sheet = self.book.add_worksheet(
|
||||
self.data["model"] + suffix
|
||||
)
|
||||
break
|
||||
except DuplicateWorksheetName:
|
||||
num += 1
|
||||
suffix = str(num)
|
||||
self.max_hyper_width = 0
|
||||
self.col_hyperparams = 0
|
||||
|
||||
@@ -1341,6 +1356,7 @@ class Summary:
|
||||
def __init__(self, hidden=False) -> None:
|
||||
self.results = Files().get_all_results(hidden=hidden)
|
||||
self.data = []
|
||||
self.data_filtered = []
|
||||
self.datasets = {}
|
||||
self.models = set()
|
||||
self.hidden = hidden
|
||||
@@ -1417,13 +1433,14 @@ class Summary:
|
||||
number=0,
|
||||
) -> None:
|
||||
"""Print the list of results"""
|
||||
data = self.get_results_criteria(
|
||||
score, model, input_data, sort_key, number
|
||||
)
|
||||
if data == []:
|
||||
if self.data_filtered == []:
|
||||
self.data_filtered = self.get_results_criteria(
|
||||
score, model, input_data, sort_key, number
|
||||
)
|
||||
if self.data_filtered == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
max_file = max(len(x["file"]) for x in data)
|
||||
max_title = max(len(x["title"]) for x in data)
|
||||
max_file = max(len(x["file"]) for x in self.data_filtered)
|
||||
max_title = max(len(x["title"]) for x in self.data_filtered)
|
||||
if self.hidden:
|
||||
color1 = TextColor.GREEN
|
||||
color2 = TextColor.YELLOW
|
||||
@@ -1432,10 +1449,11 @@ class Summary:
|
||||
color2 = TextColor.LINE2
|
||||
print(color1, end="")
|
||||
print(
|
||||
f"{'Date':10s} {'File':{max_file}s} {'Score':8s} {'Time(h)':7s} "
|
||||
f"{'Title':s}"
|
||||
f" # {'Date':10s} {'File':{max_file}s} {'Score':8s} "
|
||||
f"{'Time(h)':7s} {'Title':s}"
|
||||
)
|
||||
print(
|
||||
"===",
|
||||
"=" * 10
|
||||
+ " "
|
||||
+ "=" * max_file
|
||||
@@ -1444,21 +1462,60 @@ class Summary:
|
||||
+ " "
|
||||
+ "=" * 7
|
||||
+ " "
|
||||
+ "=" * max_title
|
||||
+ "=" * max_title,
|
||||
)
|
||||
print(
|
||||
"\n".join(
|
||||
[
|
||||
(color2 if n % 2 == 0 else color1)
|
||||
+ f"{x['date']} {x['file']:{max_file}s} "
|
||||
(color2 if n % 2 == 0 else color1) + f"{n:3d} "
|
||||
f"{x['date']} {x['file']:{max_file}s} "
|
||||
f"{x['metric']:8.5f} "
|
||||
f"{x['duration']/3600:7.3f} "
|
||||
f"{x['title']}"
|
||||
for n, x in enumerate(data)
|
||||
for n, x in enumerate(self.data_filtered)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def manage_results(self, excel, is_test):
|
||||
"""Manage results showed in the summary
|
||||
return True if excel file is created False otherwise
|
||||
"""
|
||||
num = ""
|
||||
book = None
|
||||
while True:
|
||||
print(
|
||||
"Which result do you want to report? (q to quit, r to list "
|
||||
"again, number to report): ",
|
||||
end="",
|
||||
)
|
||||
num = get_input(is_test)
|
||||
if num == "r":
|
||||
self.list_results()
|
||||
if num == "q":
|
||||
if excel:
|
||||
if book is not None:
|
||||
book.close()
|
||||
return True
|
||||
return False
|
||||
if num.isdigit() and int(num) < len(self.data) and int(num) >= 0:
|
||||
rep = Report(self.data_filtered[int(num)]["file"], self.hidden)
|
||||
rep.report()
|
||||
if excel and not self.hidden:
|
||||
if book is None:
|
||||
file_name = Files.be_list_excel
|
||||
book = xlsxwriter.Workbook(
|
||||
file_name, {"nan_inf_to_errors": True}
|
||||
)
|
||||
excel = Excel(
|
||||
file_name=self.data_filtered[int(num)]["file"],
|
||||
book=book,
|
||||
)
|
||||
excel.report()
|
||||
else:
|
||||
if num not in ("r", "q"):
|
||||
print(f"Invalid option {num}. Try again!")
|
||||
|
||||
def show_result(self, data: dict, title: str = "") -> None:
|
||||
def whites(n: int) -> str:
|
||||
return " " * n + color1 + "*"
|
||||
|
@@ -28,6 +28,7 @@ class Files:
|
||||
benchmark_r = "benchmark.r"
|
||||
dot_env = ".env"
|
||||
datasets_report_excel = "ReportDatasets.xlsx"
|
||||
be_list_excel = "some_results.xlsx"
|
||||
|
||||
@staticmethod
|
||||
def exreport_output(score):
|
||||
|
@@ -1 +0,0 @@
|
||||
__version__ = "0.7.1"
|
@@ -1 +1 @@
|
||||
__version__ = "0.2.0"
|
||||
__version__ = "0.4.0"
|
||||
|
@@ -1,7 +1,7 @@
|
||||
#! /usr/bin/env python
|
||||
import os
|
||||
from benchmark.Results import Summary
|
||||
from benchmark.Utils import Folders
|
||||
from benchmark.Utils import Folders, Files
|
||||
from benchmark.Arguments import Arguments
|
||||
|
||||
"""List experiments of a model
|
||||
@@ -12,6 +12,7 @@ def main(args_test=None):
|
||||
arguments = Arguments()
|
||||
arguments.xset("number").xset("model", required=False).xset("key")
|
||||
arguments.xset("hidden").xset("nan").xset("score", required=False)
|
||||
arguments.xset("excel")
|
||||
args = arguments.parse(args_test)
|
||||
data = Summary(hidden=args.hidden)
|
||||
data.acquire()
|
||||
@@ -22,32 +23,39 @@ def main(args_test=None):
|
||||
sort_key=args.key,
|
||||
number=args.number,
|
||||
)
|
||||
is_test = args_test is not None
|
||||
if not args.nan:
|
||||
excel_generated = data.manage_results(args.excel, is_test)
|
||||
if args.excel and excel_generated:
|
||||
print(f"Generated file: {Files.be_list_excel}")
|
||||
Files.open(Files.be_list_excel, is_test)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
else:
|
||||
if args.nan:
|
||||
results_nan = []
|
||||
results = data.get_results_criteria(
|
||||
score=args.score,
|
||||
model=args.model,
|
||||
input_data=None,
|
||||
sort_key=args.key,
|
||||
number=args.number,
|
||||
return
|
||||
if args.nan:
|
||||
results_nan = []
|
||||
results = data.get_results_criteria(
|
||||
score=args.score,
|
||||
model=args.model,
|
||||
input_data=None,
|
||||
sort_key=args.key,
|
||||
number=args.number,
|
||||
)
|
||||
for result in results:
|
||||
if result["metric"] != result["metric"]:
|
||||
results_nan.append(result)
|
||||
if results_nan != []:
|
||||
print(
|
||||
"\n"
|
||||
+ "*" * 30
|
||||
+ " Results with nan moved to hidden "
|
||||
+ "*" * 30
|
||||
)
|
||||
for result in results:
|
||||
if result["metric"] != result["metric"]:
|
||||
results_nan.append(result)
|
||||
if results_nan != []:
|
||||
print(
|
||||
"\n"
|
||||
+ "*" * 30
|
||||
+ " Results with nan moved to hidden "
|
||||
+ "*" * 30
|
||||
data.data_filtered = []
|
||||
data.list_results(input_data=results_nan)
|
||||
for result in results_nan:
|
||||
name = result["file"]
|
||||
os.rename(
|
||||
os.path.join(Folders.results, name),
|
||||
os.path.join(Folders.hidden_results, name),
|
||||
)
|
||||
data.list_results(input_data=results_nan)
|
||||
for result in results_nan:
|
||||
name = result["file"]
|
||||
os.rename(
|
||||
os.path.join(Folders.results, name),
|
||||
os.path.join(Folders.hidden_results, name),
|
||||
)
|
||||
|
1
benchmark/tests/.gitignore
vendored
1
benchmark/tests/.gitignore
vendored
@@ -1 +1,2 @@
|
||||
ReportDatasets.xlsx
|
||||
some_results.xlsx
|
||||
|
@@ -5,6 +5,7 @@ from openpyxl import load_workbook
|
||||
from .TestBase import TestBase
|
||||
from ..Utils import Folders, Files, NO_RESULTS
|
||||
from ..Results import Benchmark
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
class BenchmarkTest(TestBase):
|
||||
@@ -107,6 +108,16 @@ class BenchmarkTest(TestBase):
|
||||
benchmark.excel()
|
||||
file_name = benchmark.get_excel_file_name()
|
||||
book = load_workbook(file_name)
|
||||
replace = None
|
||||
with_this = None
|
||||
for sheet_name in book.sheetnames:
|
||||
sheet = book[sheet_name]
|
||||
self.check_excel_sheet(sheet, f"exreport_excel_{sheet_name}")
|
||||
if sheet_name == "Datasets":
|
||||
replace = self.benchmark_version
|
||||
with_this = __version__
|
||||
self.check_excel_sheet(
|
||||
sheet,
|
||||
f"exreport_excel_{sheet_name}",
|
||||
replace=replace,
|
||||
with_this=with_this,
|
||||
)
|
||||
|
@@ -30,6 +30,19 @@ class DatasetTest(TestBase):
|
||||
expected = [271, 314, 171]
|
||||
self.assertSequenceEqual(Randomized.seeds(), expected)
|
||||
|
||||
def test_load_dataframe(self):
|
||||
self.set_env(".env.arff")
|
||||
dt = Datasets()
|
||||
X, y = dt.load_discretized("iris", dataframe=False)
|
||||
dataset = dt.load_discretized("iris", dataframe=True)
|
||||
class_name = dt.get_class_name()
|
||||
features = dt.get_features()
|
||||
self.assertListEqual(y.tolist(), dataset[class_name].tolist())
|
||||
for i in range(len(features)):
|
||||
self.assertListEqual(
|
||||
X[:, i].tolist(), dataset[features[i]].tolist()
|
||||
)
|
||||
|
||||
def test_Datasets_iterator(self):
|
||||
test = {
|
||||
".env.dist": ["balance-scale", "balloons"],
|
||||
|
@@ -2,11 +2,14 @@ import os
|
||||
from io import StringIO
|
||||
from unittest.mock import patch
|
||||
from .TestBase import TestBase
|
||||
from ..Results import Report, BaseReport, ReportBest, ReportDatasets
|
||||
from ..Results import Report, BaseReport, ReportBest, ReportDatasets, get_input
|
||||
from ..Utils import Symbols
|
||||
|
||||
|
||||
class ReportTest(TestBase):
|
||||
def test_get_input(self):
|
||||
self.assertEqual(get_input(is_test=True), "test")
|
||||
|
||||
def test_BaseReport(self):
|
||||
with patch.multiple(BaseReport, __abstractmethods__=set()):
|
||||
file_name = os.path.join(
|
||||
@@ -81,7 +84,7 @@ class ReportTest(TestBase):
|
||||
output_text = stdout.getvalue().splitlines()
|
||||
# Compare replacing STree version
|
||||
for line, index in zip(expected, range(len(expected))):
|
||||
if "1.2.4" in line:
|
||||
if self.stree_version in line:
|
||||
# replace STree version
|
||||
line = self.replace_STree_version(line, output_text, index)
|
||||
|
||||
@@ -97,4 +100,12 @@ class ReportTest(TestBase):
|
||||
def test_report_datasets(self, mock_output):
|
||||
report = ReportDatasets()
|
||||
report.report()
|
||||
self.check_output_file(mock_output, "report_datasets")
|
||||
file_name = f"report_datasets{self.ext}"
|
||||
with open(os.path.join(self.test_files, file_name)) as f:
|
||||
expected = f.read()
|
||||
output_text = mock_output.getvalue().splitlines()
|
||||
for line, index in zip(expected.splitlines(), range(len(expected))):
|
||||
if self.benchmark_version in line:
|
||||
# replace benchmark version
|
||||
line = self.replace_benchmark_version(line, output_text, index)
|
||||
self.assertEqual(line, output_text[index])
|
||||
|
@@ -15,6 +15,8 @@ class TestBase(unittest.TestCase):
|
||||
self.test_files = "test_files"
|
||||
self.output = "sys.stdout"
|
||||
self.ext = ".test"
|
||||
self.benchmark_version = "0.2.0"
|
||||
self.stree_version = "1.2.4"
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def remove_files(self, files, folder):
|
||||
@@ -31,7 +33,9 @@ class TestBase(unittest.TestCase):
|
||||
if value is not None:
|
||||
print(f'{row};{col};"{value}"', file=f)
|
||||
|
||||
def check_excel_sheet(self, sheet, file_name):
|
||||
def check_excel_sheet(
|
||||
self, sheet, file_name, replace=None, with_this=None
|
||||
):
|
||||
file_name += self.ext
|
||||
with open(os.path.join(self.test_files, file_name), "r") as f:
|
||||
expected = csv.reader(f, delimiter=";")
|
||||
@@ -43,6 +47,9 @@ class TestBase(unittest.TestCase):
|
||||
value = float(value)
|
||||
except ValueError:
|
||||
pass
|
||||
if replace is not None and isinstance(value, str):
|
||||
if replace in value:
|
||||
value = value.replace(replace, with_this)
|
||||
self.assertEqual(sheet.cell(int(row), int(col)).value, value)
|
||||
|
||||
def check_output_file(self, output, file_name):
|
||||
@@ -51,10 +58,15 @@ class TestBase(unittest.TestCase):
|
||||
expected = f.read()
|
||||
self.assertEqual(output.getvalue(), expected)
|
||||
|
||||
@staticmethod
|
||||
def replace_STree_version(line, output, index):
|
||||
idx = line.find("1.2.4")
|
||||
return line.replace("1.2.4", output[index][idx : idx + 5])
|
||||
def replace_STree_version(self, line, output, index):
|
||||
idx = line.find(self.stree_version)
|
||||
return line.replace(self.stree_version, output[index][idx : idx + 5])
|
||||
|
||||
def replace_benchmark_version(self, line, output, index):
|
||||
idx = line.find(self.benchmark_version)
|
||||
return line.replace(
|
||||
self.benchmark_version, output[index][idx : idx + 5]
|
||||
)
|
||||
|
||||
def check_file_file(self, computed_file, expected_file):
|
||||
with open(computed_file) as f:
|
||||
|
@@ -2,6 +2,7 @@ import os
|
||||
from openpyxl import load_workbook
|
||||
from ...Utils import NO_RESULTS, Folders, Files
|
||||
from ..TestBase import TestBase
|
||||
from ..._version import __version__
|
||||
|
||||
|
||||
class BeBenchmarkTest(TestBase):
|
||||
@@ -43,9 +44,19 @@ class BeBenchmarkTest(TestBase):
|
||||
Folders.exreport, Files.exreport_excel(self.score)
|
||||
)
|
||||
book = load_workbook(file_name)
|
||||
replace = None
|
||||
with_this = None
|
||||
for sheet_name in book.sheetnames:
|
||||
sheet = book[sheet_name]
|
||||
self.check_excel_sheet(sheet, f"exreport_excel_{sheet_name}")
|
||||
if sheet_name == "Datasets":
|
||||
replace = self.benchmark_version
|
||||
with_this = __version__
|
||||
self.check_excel_sheet(
|
||||
sheet,
|
||||
f"exreport_excel_{sheet_name}",
|
||||
replace=replace,
|
||||
with_this=with_this,
|
||||
)
|
||||
|
||||
def test_be_benchmark_single(self):
|
||||
stdout, stderr = self.execute_script(
|
||||
|
@@ -4,6 +4,10 @@ from ...Utils import Folders, Files
|
||||
from ..TestBase import TestBase
|
||||
|
||||
|
||||
def get_test():
|
||||
return "hola"
|
||||
|
||||
|
||||
class BeGridTest(TestBase):
|
||||
def setUp(self):
|
||||
self.prepare_scripts_env()
|
||||
|
@@ -1,5 +1,7 @@
|
||||
import os
|
||||
from ...Utils import Folders, NO_RESULTS
|
||||
from unittest.mock import patch
|
||||
from openpyxl import load_workbook
|
||||
from ...Utils import Folders, Files, NO_RESULTS
|
||||
from ..TestBase import TestBase
|
||||
|
||||
|
||||
@@ -7,12 +9,64 @@ class BeListTest(TestBase):
|
||||
def setUp(self):
|
||||
self.prepare_scripts_env()
|
||||
|
||||
def test_be_list(self):
|
||||
@patch("benchmark.Results.get_input", return_value="q")
|
||||
def test_be_list(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "summary_list_model")
|
||||
self.check_output_file(stdout, "be_list_model")
|
||||
|
||||
def test_be_list_no_data(self):
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["x", "q"]))
|
||||
def test_be_list_invalid_option(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_model_invalid")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["0", "q"]))
|
||||
def test_be_list_report(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_report")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["q"]))
|
||||
def test_be_list_report_excel_none(self, input_data):
|
||||
stdout, stderr = self.execute_script(
|
||||
"be_list", ["-m", "STree", "-x", "1"]
|
||||
)
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_model")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["r", "q"]))
|
||||
def test_be_list_twice(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_model_2")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["2", "q"]))
|
||||
def test_be_list_report_excel(self, input_data):
|
||||
stdout, stderr = self.execute_script(
|
||||
"be_list", ["-m", "STree", "-x", "1"]
|
||||
)
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_report_excel")
|
||||
book = load_workbook(Files.be_list_excel)
|
||||
sheet = book["STree"]
|
||||
self.check_excel_sheet(sheet, "excel")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["2", "1", "q"]))
|
||||
def test_be_list_report_excel_twice(self, input_data):
|
||||
stdout, stderr = self.execute_script(
|
||||
"be_list", ["-m", "STree", "-x", "1"]
|
||||
)
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_report_excel_2")
|
||||
book = load_workbook(Files.be_list_excel)
|
||||
sheet = book["STree"]
|
||||
self.check_excel_sheet(sheet, "excel")
|
||||
sheet = book["STree2"]
|
||||
self.check_excel_sheet(sheet, "excel2")
|
||||
|
||||
@patch("benchmark.Results.get_input", return_value="q")
|
||||
def test_be_list_no_data(self, input_data):
|
||||
stdout, stderr = self.execute_script(
|
||||
"be_list", ["-m", "Wodt", "-s", "f1-macro"]
|
||||
)
|
||||
@@ -41,7 +95,8 @@ class BeListTest(TestBase):
|
||||
swap_files(Folders.results, Folders.hidden_results, file_name)
|
||||
self.fail("test_be_list_nan() should not raise exception")
|
||||
|
||||
def test_be_list_nan_no_nan(self):
|
||||
@patch("benchmark.Results.get_input", return_value="q")
|
||||
def test_be_list_nan_no_nan(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["--nan", "1"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_no_nan")
|
||||
|
@@ -2,6 +2,7 @@ import os
|
||||
from openpyxl import load_workbook
|
||||
from ...Utils import Folders, Files
|
||||
from ..TestBase import TestBase
|
||||
from ..._version import __version__
|
||||
|
||||
|
||||
class BeReportTest(TestBase):
|
||||
@@ -14,6 +15,7 @@ class BeReportTest(TestBase):
|
||||
"results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.xlsx",
|
||||
]
|
||||
self.remove_files(files, Folders.results)
|
||||
self.remove_files([Files.datasets_report_excel], os.getcwd())
|
||||
return super().tearDown()
|
||||
|
||||
def test_be_report(self):
|
||||
@@ -41,16 +43,37 @@ class BeReportTest(TestBase):
|
||||
def test_be_report_datatsets(self):
|
||||
stdout, stderr = self.execute_script("be_report", [])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "report_datasets")
|
||||
file_name = f"report_datasets{self.ext}"
|
||||
with open(os.path.join(self.test_files, file_name)) as f:
|
||||
expected = f.read()
|
||||
output_text = stdout.getvalue().splitlines()
|
||||
for line, index in zip(expected.splitlines(), range(len(expected))):
|
||||
if self.benchmark_version in line:
|
||||
# replace benchmark version
|
||||
line = self.replace_benchmark_version(line, output_text, index)
|
||||
self.assertEqual(line, output_text[index])
|
||||
|
||||
def test_be_report_datasets_excel(self):
|
||||
stdout, stderr = self.execute_script("be_report", ["-x", "1"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "report_datasets")
|
||||
file_name = f"report_datasets{self.ext}"
|
||||
with open(os.path.join(self.test_files, file_name)) as f:
|
||||
expected = f.read()
|
||||
output_text = stdout.getvalue().splitlines()
|
||||
for line, index in zip(expected.splitlines(), range(len(expected))):
|
||||
if self.benchmark_version in line:
|
||||
# replace benchmark version
|
||||
line = self.replace_benchmark_version(line, output_text, index)
|
||||
self.assertEqual(line, output_text[index])
|
||||
file_name = os.path.join(os.getcwd(), Files.datasets_report_excel)
|
||||
book = load_workbook(file_name)
|
||||
sheet = book["Datasets"]
|
||||
self.check_excel_sheet(sheet, "exreport_excel_Datasets")
|
||||
self.check_excel_sheet(
|
||||
sheet,
|
||||
"exreport_excel_Datasets",
|
||||
replace=self.benchmark_version,
|
||||
with_this=__version__,
|
||||
)
|
||||
|
||||
def test_be_report_best(self):
|
||||
stdout, stderr = self.execute_script(
|
||||
|
6
benchmark/tests/test_files/be_list_model.test
Normal file
6
benchmark/tests/test_files/be_list_model.test
Normal file
@@ -0,0 +1,6 @@
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report):
|
11
benchmark/tests/test_files/be_list_model_2.test
Normal file
11
benchmark/tests/test_files/be_list_model_2.test
Normal file
@@ -0,0 +1,11 @@
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): [94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report):
|
7
benchmark/tests/test_files/be_list_model_invalid.test
Normal file
7
benchmark/tests/test_files/be_list_model_invalid.test
Normal file
@@ -0,0 +1,7 @@
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): Invalid option x. Try again!
|
||||
Which result do you want to report? (q to quit, r to list again, number to report):
|
@@ -1,13 +1,13 @@
|
||||
[94mDate File Score Time(h) Title
|
||||
========== ================================================================ ======== ======= ============================================
|
||||
[96m2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters
|
||||
[94m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ================================================================ ======== ======= ============================================
|
||||
[96m 0 2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters
|
||||
[94m 1 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m 2 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m 3 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m 4 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m 5 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
|
||||
****************************** Results with nan moved to hidden ******************************
|
||||
[94mDate File Score Time(h) Title
|
||||
========== ================================================================ ======== ======= =======================
|
||||
[96m2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ================================================================ ======== ======= =======================
|
||||
[96m 0 2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[94m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[96m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[94m 1 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[96m 2 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 3 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 4 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
|
21
benchmark/tests/test_files/be_list_report.test
Normal file
21
benchmark/tests/test_files/be_list_report.test
Normal file
@@ -0,0 +1,21 @@
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): [94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-11-01 19:17:07 *
|
||||
[94m* default B *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 4115.04 seconds, 1.14 hours, on macbook-pro *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 18.78 9.88 5.90 0.970000±0.0020 0.233304±0.0481 {'max_features': 'auto', 'splitter': 'mutual'}
|
||||
[94mballoons 16 4 2 4.72 2.86 2.78 0.556667±0.2941 0.021352±0.0058 {'max_features': 'auto', 'splitter': 'mutual'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0379 *
|
||||
[94m*************************************************************************************************************************
|
||||
Which result do you want to report? (q to quit, r to list again, number to report):
|
21
benchmark/tests/test_files/be_list_report_excel.test
Normal file
21
benchmark/tests/test_files/be_list_report_excel.test
Normal file
@@ -0,0 +1,21 @@
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): [94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 7.00 4.00 3.00 0.970560±0.0150 0.014049±0.0020 {'C': 10000.0, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000854±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0454 *
|
||||
[94m*************************************************************************************************************************
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): Generated file: some_results.xlsx
|
36
benchmark/tests/test_files/be_list_report_excel_2.test
Normal file
36
benchmark/tests/test_files/be_list_report_excel_2.test
Normal file
@@ -0,0 +1,36 @@
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): [94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 7.00 4.00 3.00 0.970560±0.0150 0.014049±0.0020 {'C': 10000.0, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000854±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0454 *
|
||||
[94m*************************************************************************************************************************
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): [94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-10-27 09:40:40 *
|
||||
[94m* default A *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 3395.01 seconds, 0.94 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 11.08 5.90 5.90 0.980000±0.0010 0.285207±0.0603 {'splitter': 'best', 'max_features': 'auto'}
|
||||
[94mballoons 16 4 2 4.12 2.56 2.56 0.695000±0.2757 0.021201±0.0035 {'splitter': 'best', 'max_features': 'auto'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0416 *
|
||||
[94m*************************************************************************************************************************
|
||||
Which result do you want to report? (q to quit, r to list again, number to report): Generated file: some_results.xlsx
|
@@ -1,16 +1,16 @@
|
||||
[94m************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-09 00:15:25 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.80 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m************************************************************************************************************************
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-09 00:15:25 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.80 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================ ===============
|
||||
[96mbalance-scale 625 4 3 23.32 12.16 6.44 0.840160±0.0304 0.013745±0.0019 {'splitter': 'best', 'max_features': 'auto'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000388±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0422 *
|
||||
[94m************************************************************************************************************************
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 23.32 12.16 6.44 0.840160±0.0304 0.013745±0.0019 {'splitter': 'best', 'max_features': 'auto'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000388±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0422 *
|
||||
[94m*************************************************************************************************************************
|
||||
Results in results/results_accuracy_STree_iMac27_2022-05-09_00:15:25_0.json
|
||||
|
@@ -1,16 +1,16 @@
|
||||
[94m************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-08 20:14:43 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.48 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m************************************************************************************************************************
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-08 20:14:43 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.48 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================ ===============
|
||||
[96mbalance-scale 625 4 3 17.36 9.18 6.18 0.908480±0.0247 0.007388±0.0013 {}
|
||||
[94mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000664±0.0002 {}
|
||||
[94m************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0390 *
|
||||
[94m************************************************************************************************************************
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 17.36 9.18 6.18 0.908480±0.0247 0.007388±0.0013 {}
|
||||
[94mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000664±0.0002 {}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0390 *
|
||||
[94m*************************************************************************************************************************
|
||||
Results in results/results_accuracy_STree_iMac27_2022-05-08_20:14:43_0.json
|
||||
|
@@ -1,15 +1,15 @@
|
||||
[94m************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-08 19:38:28 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.06 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m************************************************************************************************************************
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-08 19:38:28 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.06 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================ ===============
|
||||
[96mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000671±0.0001 {}
|
||||
[94m************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0165 *
|
||||
[94m************************************************************************************************************************
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000671±0.0001 {}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0165 *
|
||||
[94m*************************************************************************************************************************
|
||||
Partial result file removed: results/results_accuracy_STree_iMac27_2022-05-08_19:38:28_0.json
|
||||
|
@@ -1,16 +1,16 @@
|
||||
[94m************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-09 00:21:06 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.89 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m************************************************************************************************************************
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-09 00:21:06 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 0.89 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================ ===============
|
||||
[96mbalance-scale 625 4 3 26.12 13.56 7.94 0.910720±0.0249 0.015852±0.0027 {'C': 1.0, 'kernel': 'liblinear', 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000640±0.0001 {'C': 1.0, 'kernel': 'linear', 'multiclass_strategy': 'ovr'}
|
||||
[94m************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0391 *
|
||||
[94m************************************************************************************************************************
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 26.12 13.56 7.94 0.910720±0.0249 0.015852±0.0027 {'C': 1.0, 'kernel': 'liblinear', 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000640±0.0001 {'C': 1.0, 'kernel': 'linear', 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0391 *
|
||||
[94m*************************************************************************************************************************
|
||||
Results in results/results_accuracy_STree_iMac27_2022-05-09_00:21:06_0.json
|
||||
|
@@ -26,10 +26,10 @@
|
||||
* [93mresults_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json [96m*
|
||||
[96m* [96m*
|
||||
[96m*********************************************************************************
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m 1 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m 2 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m 3 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m 4 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
|
@@ -26,10 +26,10 @@
|
||||
* [93mresults_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json [96m*
|
||||
[96m* [96m*
|
||||
[96m*********************************************************************************
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m 1 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m 2 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m 3 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m 4 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
|
@@ -26,13 +26,13 @@
|
||||
* [93mresults_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json [96m*
|
||||
[96m* [96m*
|
||||
[96m*********************************************************************************
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m 1 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m 2 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m 3 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m 4 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
** No results found **
|
||||
** No results found **
|
||||
** No results found **
|
||||
|
@@ -26,10 +26,10 @@
|
||||
* [93mresults_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json [96m*
|
||||
[96m* [96m*
|
||||
[96m*********************************************************************************
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m 1 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m 2 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m 3 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m 4 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
|
48
benchmark/tests/test_files/excel2.test
Normal file
48
benchmark/tests/test_files/excel2.test
Normal file
@@ -0,0 +1,48 @@
|
||||
1;1;" STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-10-27 09:40:40"
|
||||
2;1;" default A"
|
||||
3;1;" Score is accuracy"
|
||||
3;2;" Execution time"
|
||||
3;5;"3,395.01 s"
|
||||
3;7;" "
|
||||
3;8;"Platform"
|
||||
3;9;"iMac27"
|
||||
3;10;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
4;5;" 0.94 h"
|
||||
4;10;"Stratified: False"
|
||||
6;1;"Dataset"
|
||||
6;2;"Samples"
|
||||
6;3;"Features"
|
||||
6;4;"Classes"
|
||||
6;5;"Nodes"
|
||||
6;6;"Leaves"
|
||||
6;7;"Depth"
|
||||
6;8;"Score"
|
||||
6;9;"Score Std."
|
||||
6;10;"Time"
|
||||
6;11;"Time Std."
|
||||
6;12;"Hyperparameters"
|
||||
7;1;"balance-scale"
|
||||
7;2;"625"
|
||||
7;3;"4"
|
||||
7;4;"3"
|
||||
7;5;"11.08"
|
||||
7;6;"5.9"
|
||||
7;7;"5.9"
|
||||
7;8;"0.98"
|
||||
7;9;"0.001"
|
||||
7;10;"0.2852065515518188"
|
||||
7;11;"0.06031593282605064"
|
||||
7;12;"{'splitter': 'best', 'max_features': 'auto'}"
|
||||
8;1;"balloons"
|
||||
8;2;"16"
|
||||
8;3;"4"
|
||||
8;4;"2"
|
||||
8;5;"4.12"
|
||||
8;6;"2.56"
|
||||
8;7;"2.56"
|
||||
8;8;"0.695"
|
||||
8;9;"0.2756860130252853"
|
||||
8;10;"0.02120100021362305"
|
||||
8;11;"0.003526023309468471"
|
||||
8;12;"{'splitter': 'best', 'max_features': 'auto'}"
|
||||
10;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0416"
|
@@ -1,15 +1,15 @@
|
||||
[94m************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m************************************************************************************************************************
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================ ===============
|
||||
[96mbalance-scale 625 4 3 7.00 4.00 3.00 0.970560±0.0150 0.014049±0.0020 {'C': 10000.0, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000854±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0454 *
|
||||
[94m************************************************************************************************************************
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 7.00 4.00 3.00 0.970560±0.0150 0.014049±0.0020 {'C': 10000.0, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000854±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0454 *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,16 +1,16 @@
|
||||
[94m************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m************************************************************************************************************************
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================ ===============
|
||||
[96mbalance-scale 625 4 3 7.00 4.00 3.00 0.970560±0.0150 0.014049±0.0020 {'C': 10000.0, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850✔ 0.000854±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m************************************************************************************************************************
|
||||
[94m* ✔ Equal to best .....: 1 *
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0454 *
|
||||
[94m************************************************************************************************************************
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mbalance-scale 625 4 3 7.00 4.00 3.00 0.970560±0.0150 0.014049±0.0020 {'C': 10000.0, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850✔ 0.000854±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000.0, 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* ✔ Equal to best .....: 1 *
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0454 *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,4 +1,4 @@
|
||||
[92mDate File Score Time(h) Title
|
||||
========== ================================================================ ======== ======= =======================
|
||||
[93m2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters
|
||||
[92m2021-11-01 results_accuracy_STree_iMac27_2021-11-01_23:55:16_0.json 0.97446 0.098 default
|
||||
[92m # Date File Score Time(h) Title
|
||||
=== ========== ================================================================ ======== ======= =======================
|
||||
[93m 0 2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters
|
||||
[92m 1 2021-11-01 results_accuracy_STree_iMac27_2021-11-01_23:55:16_0.json 0.97446 0.098 default
|
||||
|
@@ -1,5 +1,5 @@
|
||||
[94mDate File Score Time(h) Title
|
||||
========== ============================================================= ======== ======= =================================
|
||||
[96m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== ============================================================= ======== ======= =================================
|
||||
[96m 0 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 1 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 2 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
|
@@ -1,5 +1,5 @@
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[94m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[96m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[94m 1 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[96m 2 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[94m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[96m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[94m 1 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[96m 2 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[94m 3 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[96m 4 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94mDate File Score Time(h) Title
|
||||
========== =============================================================== ======== ======= ============================================
|
||||
[96m2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
[94m # Date File Score Time(h) Title
|
||||
=== ========== =============================================================== ======== ======= ============================================
|
||||
[96m 0 2021-09-30 results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json 0.04544 0.173 With gridsearched hyperparameters
|
||||
[94m 1 2022-04-20 results_accuracy_ODTE_Galgo_2022-04-20_10:52:20_0.json 0.04341 6.275 Gridsearched hyperparams v022.1b random_init
|
||||
[96m 2 2021-10-27 results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json 0.04158 0.943 default A
|
||||
[94m 3 2021-11-01 results_accuracy_STree_macbook-pro_2021-11-01_19:17:07_0.json 0.03790 1.143 default B
|
||||
[96m 4 2022-01-14 results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json 0.03627 0.076 Test default paramters with RandomForest
|
||||
|
5
setup.py
5
setup.py
@@ -49,15 +49,14 @@ setuptools.setup(
|
||||
name="benchmark",
|
||||
version=get_data("version", "_version.py"),
|
||||
license=get_data("license"),
|
||||
description="Oblique decision tree with svm nodes",
|
||||
description="Benchmark of models with different datasets",
|
||||
long_description=readme(),
|
||||
long_description_content_type="text/markdown",
|
||||
packages=setuptools.find_packages(),
|
||||
url="https://github.com/Doctorado-ML/benchmark",
|
||||
author=get_data("author"),
|
||||
author_email=get_data("author_email"),
|
||||
keywords="scikit-learn oblique-classifier oblique-decision-tree decision-\
|
||||
tree svm svc",
|
||||
keywords="scikit-learn benchmark",
|
||||
classifiers=[
|
||||
"Development Status :: 4 - Beta",
|
||||
"License :: OSI Approved :: " + get_data("license"),
|
||||
|
Reference in New Issue
Block a user