mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-17 00:15:55 +00:00
187 lines
5.2 KiB
Python
187 lines
5.2 KiB
Python
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
from scipy.io import arff
|
|
from .Utils import Files
|
|
from .Arguments import EnvData
|
|
from mdlp.discretization import MDLP
|
|
|
|
|
|
class Diterator:
|
|
def __init__(self, data):
|
|
self._stack = data.copy()
|
|
|
|
def __next__(self):
|
|
if len(self._stack) == 0:
|
|
raise StopIteration()
|
|
return self._stack.pop(0)
|
|
|
|
|
|
class DatasetsArff:
|
|
@staticmethod
|
|
def dataset_names(name):
|
|
return f"{name}.arff"
|
|
|
|
@staticmethod
|
|
def folder():
|
|
return "datasets"
|
|
|
|
def load(self, name, class_name):
|
|
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
|
data = arff.loadarff(file_name)
|
|
df = pd.DataFrame(data[0])
|
|
df.dropna(axis=0, how="any", inplace=True)
|
|
X = df.drop(class_name, axis=1)
|
|
self.features = X.columns
|
|
self.class_name = class_name
|
|
y, _ = pd.factorize(df[class_name])
|
|
X = X.to_numpy()
|
|
return X, y
|
|
|
|
|
|
class DatasetsTanveer:
|
|
@staticmethod
|
|
def dataset_names(name):
|
|
return f"{name}_R.dat"
|
|
|
|
@staticmethod
|
|
def folder():
|
|
return "data"
|
|
|
|
def load(self, name, *args):
|
|
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
|
data = pd.read_csv(
|
|
file_name,
|
|
sep="\t",
|
|
index_col=0,
|
|
)
|
|
X = data.drop("clase", axis=1).to_numpy()
|
|
y = data["clase"].to_numpy()
|
|
return X, y
|
|
|
|
|
|
class DatasetsSurcov:
|
|
@staticmethod
|
|
def dataset_names(name):
|
|
return f"{name}.csv"
|
|
|
|
@staticmethod
|
|
def folder():
|
|
return "datasets"
|
|
|
|
def load(self, name, *args):
|
|
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
|
data = pd.read_csv(
|
|
file_name,
|
|
index_col=0,
|
|
)
|
|
data.dropna(axis=0, how="any", inplace=True)
|
|
self.columns = data.columns
|
|
col_list = ["class"]
|
|
X = data.drop(col_list, axis=1).to_numpy()
|
|
y = data["class"].to_numpy()
|
|
return X, y
|
|
|
|
|
|
class Datasets:
|
|
def __init__(self, dataset_name=None):
|
|
envData = EnvData.load()
|
|
class_name = getattr(
|
|
__import__(__name__),
|
|
f"Datasets{envData['source_data']}",
|
|
)
|
|
self.load = (
|
|
self.load_discretized
|
|
if envData["discretize"] == "1"
|
|
else self.load_continuous
|
|
)
|
|
self.dataset = class_name()
|
|
self.class_names = []
|
|
self._load_names()
|
|
if dataset_name is not None:
|
|
try:
|
|
class_name = self.class_names[
|
|
self.data_sets.index(dataset_name)
|
|
]
|
|
self.class_names = [class_name]
|
|
except ValueError:
|
|
raise ValueError(f"Unknown dataset: {dataset_name}")
|
|
self.data_sets = [dataset_name]
|
|
|
|
def _load_names(self):
|
|
file_name = os.path.join(self.dataset.folder(), Files.index)
|
|
default_class = "class"
|
|
with open(file_name) as f:
|
|
self.data_sets = f.read().splitlines()
|
|
self.class_names = [default_class] * len(self.data_sets)
|
|
if "," in self.data_sets[0]:
|
|
result = []
|
|
class_names = []
|
|
for data in self.data_sets:
|
|
name, class_name = data.split(",")
|
|
result.append(name)
|
|
class_names.append(class_name)
|
|
self.data_sets = result
|
|
self.class_names = class_names
|
|
|
|
def get_attributes(self, name):
|
|
class Attributes:
|
|
pass
|
|
|
|
X, y = self.load_continuous(name)
|
|
attr = Attributes()
|
|
values, counts = np.unique(y, return_counts=True)
|
|
comp = ""
|
|
sep = ""
|
|
for count in counts:
|
|
comp += f"{sep}{count/sum(counts)*100:5.2f}%"
|
|
sep = "/ "
|
|
attr.balance = comp
|
|
attr.classes = len(np.unique(y))
|
|
attr.samples = X.shape[0]
|
|
attr.features = X.shape[1]
|
|
return attr
|
|
|
|
def get_features(self):
|
|
return self.dataset.features
|
|
|
|
def get_class_name(self):
|
|
return self.dataset.class_name
|
|
|
|
def load_continuous(self, name):
|
|
try:
|
|
class_name = self.class_names[self.data_sets.index(name)]
|
|
return self.dataset.load(name, class_name)
|
|
except (ValueError, FileNotFoundError):
|
|
raise ValueError(f"Unknown dataset: {name}")
|
|
|
|
def discretize(self, X, y):
|
|
"""Supervised discretization with Fayyad and Irani's MDLP algorithm.
|
|
|
|
Parameters
|
|
----------
|
|
X : np.ndarray
|
|
array (n_samples, n_features) of features
|
|
y : np.ndarray
|
|
array (n_samples,) of labels
|
|
|
|
Returns
|
|
-------
|
|
tuple (X, y) of numpy.ndarray
|
|
"""
|
|
discretiz = MDLP(random_state=17, dtype=np.int32)
|
|
Xdisc = discretiz.fit_transform(X, y)
|
|
return Xdisc
|
|
|
|
def load_discretized(self, name, dataframe=False):
|
|
X, yd = self.load_continuous(name)
|
|
Xd = self.discretize(X, yd)
|
|
dataset = pd.DataFrame(Xd, columns=self.get_features())
|
|
dataset[self.get_class_name()] = yd
|
|
if dataframe:
|
|
return dataset
|
|
return Xd, yd
|
|
|
|
def __iter__(self) -> Diterator:
|
|
return Diterator(self.data_sets)
|