mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-15 23:55:57 +00:00
Merge pull request #3 from Doctorado-ML/localdiscretization
Localdiscretization
This commit is contained in:
@@ -16,4 +16,6 @@ __all__ = [
|
||||
"TAN",
|
||||
"KDB",
|
||||
"AODE",
|
||||
"KDBNew",
|
||||
"AODENew",
|
||||
]
|
||||
|
@@ -3,7 +3,7 @@ import warnings
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.stats import mode
|
||||
from sklearn.base import ClassifierMixin, BaseEstimator
|
||||
from sklearn.base import clone, ClassifierMixin, BaseEstimator
|
||||
from sklearn.ensemble import BaseEnsemble
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
@@ -12,9 +12,14 @@ import networkx as nx
|
||||
from pgmpy.estimators import TreeSearch, BayesianEstimator
|
||||
from pgmpy.models import BayesianNetwork
|
||||
import matplotlib.pyplot as plt
|
||||
from fimdlp.mdlp import FImdlp
|
||||
from ._version import __version__
|
||||
|
||||
|
||||
def default_feature_names(num_features):
|
||||
return [f"feature_{i}" for i in range(num_features)]
|
||||
|
||||
|
||||
class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
def __init__(self, random_state, show_progress):
|
||||
self.random_state = random_state
|
||||
@@ -38,6 +43,16 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
return len(self.dag_), len(self.dag_.edges())
|
||||
return 0, 0
|
||||
|
||||
@staticmethod
|
||||
def default_class_name():
|
||||
return "class"
|
||||
|
||||
def build_dataset(self):
|
||||
self.dataset_ = pd.DataFrame(
|
||||
self.X_, columns=self.feature_names_in_, dtype=np.int32
|
||||
)
|
||||
self.dataset_[self.class_name_] = self.y_
|
||||
|
||||
def _check_params_fit(self, X, y, expected_args, kwargs):
|
||||
"""Check the common parameters passed to fit"""
|
||||
# Check that X and y have correct shape
|
||||
@@ -47,14 +62,18 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
self.classes_ = unique_labels(y)
|
||||
self.n_classes_ = self.classes_.shape[0]
|
||||
# Default values
|
||||
self.class_name_ = "class"
|
||||
self.features_ = [f"feature_{i}" for i in range(X.shape[1])]
|
||||
self.class_name_ = self.default_class_name()
|
||||
self.features_ = default_feature_names(X.shape[1])
|
||||
for key, value in kwargs.items():
|
||||
if key in expected_args:
|
||||
setattr(self, f"{key}_", value)
|
||||
else:
|
||||
raise ValueError(f"Unexpected argument: {key}")
|
||||
self.feature_names_in_ = self.features_
|
||||
# used for local discretization
|
||||
self.indexed_features_ = {
|
||||
feature: i for i, feature in enumerate(self.features_)
|
||||
}
|
||||
if self.random_state is not None:
|
||||
random.seed(self.random_state)
|
||||
if len(self.feature_names_in_) != X.shape[1]:
|
||||
@@ -75,7 +94,7 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
return self.states_
|
||||
|
||||
def fit(self, X, y, **kwargs):
|
||||
"""A reference implementation of a fitting function for a classifier.
|
||||
"""Fit classifier
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@@ -116,10 +135,7 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
# Store the information needed to build the model
|
||||
self.X_ = X_
|
||||
self.y_ = y_
|
||||
self.dataset_ = pd.DataFrame(
|
||||
self.X_, columns=self.feature_names_in_, dtype=np.int32
|
||||
)
|
||||
self.dataset_[self.class_name_] = self.y_
|
||||
self.build_dataset()
|
||||
# Build the DAG
|
||||
self._build()
|
||||
# Train the model
|
||||
@@ -130,6 +146,9 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
# Return the classifier
|
||||
return self
|
||||
|
||||
def _build(self):
|
||||
...
|
||||
|
||||
def _train(self, kwargs):
|
||||
self.model_ = BayesianNetwork(
|
||||
self.dag_.edges(), show_progress=self.show_progress
|
||||
@@ -190,7 +209,6 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
"""
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, ["X_", "y_", "fitted_"])
|
||||
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
dataset = pd.DataFrame(
|
||||
@@ -260,37 +278,38 @@ class TAN(BayesBase):
|
||||
return X, y
|
||||
|
||||
def _build(self):
|
||||
# est = TreeSearch(self.dataset_,
|
||||
# root_node=self.feature_names_in_[self.head_])
|
||||
# self.dag_ = est.estimate(
|
||||
# estimator_type="tan",
|
||||
# class_node=self.class_name_,
|
||||
# show_progress=self.show_progress,
|
||||
# )
|
||||
est = TreeSearch(
|
||||
self.dataset_, root_node=self.feature_names_in_[self.head_]
|
||||
)
|
||||
self.dag_ = est.estimate(
|
||||
estimator_type="tan",
|
||||
class_node=self.class_name_,
|
||||
show_progress=self.show_progress,
|
||||
)
|
||||
# Code taken from pgmpy
|
||||
n_jobs = -1
|
||||
weights = TreeSearch._get_conditional_weights(
|
||||
self.dataset_,
|
||||
self.class_name_,
|
||||
"mutual_info",
|
||||
n_jobs,
|
||||
self.show_progress,
|
||||
)
|
||||
# Step 4.2: Construct chow-liu DAG on {data.columns - class_node}
|
||||
class_node_idx = np.where(self.dataset_.columns == self.class_name_)[
|
||||
0
|
||||
][0]
|
||||
weights = np.delete(weights, class_node_idx, axis=0)
|
||||
weights = np.delete(weights, class_node_idx, axis=1)
|
||||
reduced_columns = np.delete(self.dataset_.columns, class_node_idx)
|
||||
D = TreeSearch._create_tree_and_dag(
|
||||
weights, reduced_columns, self.feature_names_in_[self.head_]
|
||||
)
|
||||
# Step 4.3: Add edges from class_node to all other nodes.
|
||||
D.add_edges_from(
|
||||
[(self.class_name_, node) for node in reduced_columns]
|
||||
)
|
||||
self.dag_ = D
|
||||
# n_jobs = -1
|
||||
# weights = TreeSearch._get_conditional_weights(
|
||||
# self.dataset_,
|
||||
# self.class_name_,
|
||||
# "mutual_info",
|
||||
# n_jobs,
|
||||
# self.show_progress,
|
||||
# )
|
||||
# # Step 4.2: Construct chow-liu DAG on {data.columns - class_node}
|
||||
# class_node_idx = np.where(self.dataset_.columns == self.class_name_)[
|
||||
# 0
|
||||
# ][0]
|
||||
# weights = np.delete(weights, class_node_idx, axis=0)
|
||||
# weights = np.delete(weights, class_node_idx, axis=1)
|
||||
# reduced_columns = np.delete(self.dataset_.columns, class_node_idx)
|
||||
# D = TreeSearch._create_tree_and_dag(
|
||||
# weights, reduced_columns, self.feature_names_in_[self.head_]
|
||||
# )
|
||||
# # Step 4.3: Add edges from class_node to all other nodes.
|
||||
# D.add_edges_from(
|
||||
# [(self.class_name_, node) for node in reduced_columns]
|
||||
# )
|
||||
# self.dag_ = D
|
||||
|
||||
|
||||
class KDB(BayesBase):
|
||||
@@ -323,7 +342,7 @@ class KDB(BayesBase):
|
||||
# Loops are not allowed
|
||||
pass
|
||||
cond_w[idx, max_minfo] = -1
|
||||
exit_cond = num == n_edges or np.all(cond_w[idx, :] <= 0)
|
||||
exit_cond = num == n_edges or np.all(cond_w[idx, :] <= self.theta)
|
||||
|
||||
def _build(self):
|
||||
"""
|
||||
@@ -345,7 +364,6 @@ class KDB(BayesBase):
|
||||
Compute the conditional probabilility infered by the structure of BN by
|
||||
using counts from DB, and output BN.
|
||||
"""
|
||||
|
||||
# 1. get the mutual information between each feature and the class
|
||||
mutual = mutual_info_classif(self.X_, self.y_, discrete_features=True)
|
||||
# 2. symmetric matrix where each element represents I(X, Y| class_node)
|
||||
@@ -354,42 +372,100 @@ class KDB(BayesBase):
|
||||
)._get_conditional_weights(
|
||||
self.dataset_, self.class_name_, show_progress=self.show_progress
|
||||
)
|
||||
# 3.
|
||||
# 3. Let the used variable list, S, be empty.
|
||||
S_nodes = []
|
||||
# 4.
|
||||
# 4. Let the BN being constructed, BN, begin with a single class node
|
||||
dag = BayesianNetwork()
|
||||
dag.add_node(self.class_name_) # , state_names=self.classes_)
|
||||
# 5. 5.1
|
||||
# 5. Repeat until S includes all domain features
|
||||
# 5.1 Select feature Xmax which is not in S and has the largest value
|
||||
for idx in np.argsort(mutual):
|
||||
# 5.2
|
||||
# 5.2 Add a node to BN representing Xmax.
|
||||
feature = self.feature_names_in_[idx]
|
||||
dag.add_node(feature)
|
||||
# 5.3
|
||||
# 5.3 Add an arc from C to Xmax in BN.
|
||||
dag.add_edge(self.class_name_, feature)
|
||||
# 5.4
|
||||
# 5.4 Add m = min(lSl,/c) arcs from m distinct features Xj in S
|
||||
self._add_m_edges(dag, idx, S_nodes, conditional_weights)
|
||||
# 5.5
|
||||
# 5.5 Add Xmax to S.
|
||||
S_nodes.append(idx)
|
||||
self.dag_ = dag
|
||||
|
||||
|
||||
class AODE(BayesBase, BaseEnsemble):
|
||||
def __init__(self, show_progress=False, random_state=None):
|
||||
super().__init__(
|
||||
show_progress=show_progress, random_state=random_state
|
||||
)
|
||||
def build_spodes(features, class_name):
|
||||
"""Build SPODE estimators (Super Parent One Dependent Estimator)"""
|
||||
class_edges = [(class_name, f) for f in features]
|
||||
for idx in range(len(features)):
|
||||
feature_edges = [
|
||||
(features[idx], f) for f in features if f != features[idx]
|
||||
]
|
||||
feature_edges.extend(class_edges)
|
||||
model = BayesianNetwork(feature_edges, show_progress=False)
|
||||
yield model
|
||||
|
||||
|
||||
class SPODE(BayesBase):
|
||||
def _check_params(self, X, y, kwargs):
|
||||
expected_args = ["class_name", "features", "state_names"]
|
||||
return self._check_params_fit(X, y, expected_args, kwargs)
|
||||
|
||||
def nodes_edges(self):
|
||||
nodes = 0
|
||||
edges = 0
|
||||
|
||||
class AODE(ClassifierMixin, BaseEnsemble):
|
||||
def __init__(
|
||||
self,
|
||||
show_progress=False,
|
||||
random_state=None,
|
||||
estimator=None,
|
||||
):
|
||||
self.show_progress = show_progress
|
||||
self.random_state = random_state
|
||||
super().__init__(estimator=estimator)
|
||||
|
||||
def _validate_estimator(self) -> None:
|
||||
"""Check the estimator and set the estimator_ attribute."""
|
||||
super()._validate_estimator(
|
||||
default=SPODE(
|
||||
random_state=self.random_state,
|
||||
show_progress=self.show_progress,
|
||||
)
|
||||
)
|
||||
|
||||
def fit(self, X, y, **kwargs):
|
||||
self.n_features_in_ = X.shape[1]
|
||||
self.feature_names_in_ = kwargs.get(
|
||||
"features", default_feature_names(self.n_features_in_)
|
||||
)
|
||||
self.class_name_ = kwargs.get("class_name", "class")
|
||||
# build estimator
|
||||
self._validate_estimator()
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
self.estimators_ = []
|
||||
self._train(kwargs)
|
||||
# To keep compatiblity with the benchmark platform
|
||||
self.fitted_ = True
|
||||
self.nodes_leaves = self.nodes_edges
|
||||
return self
|
||||
|
||||
def _train(self, kwargs):
|
||||
for dag in build_spodes(self.feature_names_in_, self.class_name_):
|
||||
estimator = clone(self.estimator_)
|
||||
estimator.dag_ = estimator.model_ = dag
|
||||
estimator.fit(self.X_, self.y_, **kwargs)
|
||||
self.estimators_.append(estimator)
|
||||
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
n_samples = X.shape[0]
|
||||
n_estimators = len(self.estimators_)
|
||||
result = np.empty((n_samples, n_estimators))
|
||||
for index, estimator in enumerate(self.estimators_):
|
||||
result[:, index] = estimator.predict(X)
|
||||
return mode(result, axis=1, keepdims=False).mode.ravel()
|
||||
|
||||
def version(self):
|
||||
if hasattr(self, "fitted_"):
|
||||
nodes = sum([len(x) for x in self.models_])
|
||||
edges = sum([len(x.edges()) for x in self.models_])
|
||||
return nodes, edges
|
||||
return self.estimator_.version()
|
||||
return SPODE(None, False).version()
|
||||
|
||||
@property
|
||||
def states_(self):
|
||||
@@ -397,54 +473,293 @@ class AODE(BayesBase, BaseEnsemble):
|
||||
return sum(
|
||||
[
|
||||
len(item)
|
||||
for model in self.models_
|
||||
for _, item in model.states.items()
|
||||
for model in self.estimators_
|
||||
for _, item in model.model_.states.items()
|
||||
]
|
||||
) / len(self.models_)
|
||||
) / len(self.estimators_)
|
||||
return 0
|
||||
|
||||
def _build(self):
|
||||
self.dag_ = None
|
||||
@property
|
||||
def depth_(self):
|
||||
return self.states_
|
||||
|
||||
def _train(self, kwargs):
|
||||
"""Build SPODE estimators (Super Parent One Dependent Estimator)"""
|
||||
self.models_ = []
|
||||
class_edges = [(self.class_name_, f) for f in self.feature_names_in_]
|
||||
states = dict(state_names=kwargs.pop("state_names", []))
|
||||
for idx in range(self.n_features_in_):
|
||||
feature_edges = [
|
||||
(self.feature_names_in_[idx], f)
|
||||
for f in self.feature_names_in_
|
||||
if f != self.feature_names_in_[idx]
|
||||
]
|
||||
feature_edges.extend(class_edges)
|
||||
model = BayesianNetwork(
|
||||
feature_edges, show_progress=self.show_progress
|
||||
)
|
||||
model.fit(
|
||||
self.dataset_,
|
||||
estimator=BayesianEstimator,
|
||||
prior_type="K2",
|
||||
**states,
|
||||
)
|
||||
self.models_.append(model)
|
||||
def nodes_edges(self):
|
||||
nodes = 0
|
||||
edges = 0
|
||||
if hasattr(self, "fitted_"):
|
||||
nodes = sum([len(x.dag_) for x in self.estimators_])
|
||||
edges = sum([len(x.dag_.edges()) for x in self.estimators_])
|
||||
return nodes, edges
|
||||
|
||||
def plot(self, title=""):
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
for idx, model in enumerate(self.models_):
|
||||
self.model_ = model
|
||||
super().plot(title=f"{idx} {title}")
|
||||
for idx, model in enumerate(self.estimators_):
|
||||
model.plot(title=f"{idx} {title}")
|
||||
|
||||
|
||||
class TANNew(TAN):
|
||||
def __init__(
|
||||
self,
|
||||
show_progress=False,
|
||||
random_state=None,
|
||||
discretizer_depth=1e6,
|
||||
discretizer_length=3,
|
||||
discretizer_cuts=0,
|
||||
):
|
||||
self.discretizer_depth = discretizer_depth
|
||||
self.discretizer_length = discretizer_length
|
||||
self.discretizer_cuts = discretizer_cuts
|
||||
super().__init__(
|
||||
show_progress=show_progress, random_state=random_state
|
||||
)
|
||||
|
||||
def fit(self, X, y, **kwargs):
|
||||
self.estimator_ = Proposal(self)
|
||||
self.estimator_.fit(X, y, **kwargs)
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
return self.estimator_.predict(X)
|
||||
|
||||
|
||||
class KDBNew(KDB):
|
||||
def __init__(
|
||||
self,
|
||||
k=2,
|
||||
show_progress=False,
|
||||
random_state=None,
|
||||
discretizer_depth=1e6,
|
||||
discretizer_length=3,
|
||||
discretizer_cuts=0,
|
||||
):
|
||||
self.discretizer_depth = discretizer_depth
|
||||
self.discretizer_length = discretizer_length
|
||||
self.discretizer_cuts = discretizer_cuts
|
||||
super().__init__(
|
||||
k=k, show_progress=show_progress, random_state=random_state
|
||||
)
|
||||
|
||||
def fit(self, X, y, **kwargs):
|
||||
self.estimator_ = Proposal(self)
|
||||
self.estimator_.fit(X, y, **kwargs)
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
return self.estimator_.predict(X)
|
||||
|
||||
|
||||
class SPODENew(SPODE):
|
||||
"""This class implements a classifier for the SPODE algorithm similar to
|
||||
TANNew and KDBNew"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
random_state,
|
||||
show_progress,
|
||||
discretizer_depth=1e6,
|
||||
discretizer_length=3,
|
||||
discretizer_cuts=0,
|
||||
):
|
||||
super().__init__(
|
||||
random_state=random_state, show_progress=show_progress
|
||||
)
|
||||
self.discretizer_depth = discretizer_depth
|
||||
self.discretizer_length = discretizer_length
|
||||
self.discretizer_cuts = discretizer_cuts
|
||||
|
||||
|
||||
class AODENew(AODE):
|
||||
def __init__(
|
||||
self,
|
||||
random_state=None,
|
||||
show_progress=False,
|
||||
discretizer_depth=1e6,
|
||||
discretizer_length=3,
|
||||
discretizer_cuts=0,
|
||||
):
|
||||
self.discretizer_depth = discretizer_depth
|
||||
self.discretizer_length = discretizer_length
|
||||
self.discretizer_cuts = discretizer_cuts
|
||||
super().__init__(
|
||||
random_state=random_state,
|
||||
show_progress=show_progress,
|
||||
estimator=Proposal(
|
||||
SPODENew(
|
||||
random_state=random_state,
|
||||
show_progress=show_progress,
|
||||
discretizer_depth=discretizer_depth,
|
||||
discretizer_length=discretizer_length,
|
||||
discretizer_cuts=discretizer_cuts,
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
def _train(self, kwargs):
|
||||
for dag in build_spodes(self.feature_names_in_, self.class_name_):
|
||||
proposal = clone(self.estimator_)
|
||||
proposal.estimator.dag_ = proposal.estimator.model_ = dag
|
||||
self.estimators_.append(proposal.fit(self.X_, self.y_, **kwargs))
|
||||
self.n_estimators_ = len(self.estimators_)
|
||||
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
check_is_fitted(self, ["X_", "y_", "fitted_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
n_samples = X.shape[0]
|
||||
n_estimators = len(self.models_)
|
||||
result = np.empty((n_samples, n_estimators))
|
||||
dataset = pd.DataFrame(
|
||||
X, columns=self.feature_names_in_, dtype=np.int32
|
||||
)
|
||||
for index, model in enumerate(self.models_):
|
||||
result[:, index] = model.predict(dataset).values.ravel()
|
||||
result = np.empty((X.shape[0], self.n_estimators_))
|
||||
for index, model in enumerate(self.estimators_):
|
||||
result[:, index] = model.predict(X)
|
||||
return mode(result, axis=1, keepdims=False).mode.ravel()
|
||||
|
||||
@property
|
||||
def states_(self):
|
||||
if hasattr(self, "fitted_"):
|
||||
return sum(
|
||||
[
|
||||
len(item)
|
||||
for model in self.estimators_
|
||||
for _, item in model.estimator.model_.states.items()
|
||||
]
|
||||
) / len(self.estimators_)
|
||||
return 0
|
||||
|
||||
@property
|
||||
def depth_(self):
|
||||
return self.states_
|
||||
|
||||
def nodes_edges(self):
|
||||
nodes = 0
|
||||
edges = 0
|
||||
if hasattr(self, "fitted_"):
|
||||
nodes = sum([len(x.estimator.dag_) for x in self.estimators_])
|
||||
edges = sum(
|
||||
[len(x.estimator.dag_.edges()) for x in self.estimators_]
|
||||
)
|
||||
return nodes, edges
|
||||
|
||||
def plot(self, title=""):
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
for idx, model in enumerate(self.estimators_):
|
||||
model.estimator.plot(title=f"{idx} {title}")
|
||||
|
||||
def version(self):
|
||||
if hasattr(self, "fitted_"):
|
||||
return self.estimator_.estimator.version()
|
||||
return SPODENew(None, False).version()
|
||||
|
||||
|
||||
class Proposal(BaseEstimator):
|
||||
def __init__(self, estimator):
|
||||
self.estimator = estimator
|
||||
self.class_type = estimator.__class__
|
||||
|
||||
def fit(self, X, y, **kwargs):
|
||||
# Check parameters
|
||||
self.estimator._check_params(X, y, kwargs)
|
||||
# Discretize train data
|
||||
self.discretizer_ = FImdlp(
|
||||
n_jobs=1,
|
||||
max_depth=self.estimator.discretizer_depth,
|
||||
min_length=self.estimator.discretizer_length,
|
||||
max_cuts=self.estimator.discretizer_cuts,
|
||||
)
|
||||
self.Xd = self.discretizer_.fit_transform(X, y)
|
||||
kwargs = self.update_kwargs(y, kwargs)
|
||||
# Build the model
|
||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
# Local discretization based on the model
|
||||
self._local_discretization()
|
||||
# self.check_integrity("fit", self.Xd)
|
||||
self.fitted_ = True
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, ["fitted_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
Xd = self.discretizer_.transform(X)
|
||||
# self.check_integrity("predict", Xd)
|
||||
return super(self.class_type, self.estimator).predict(Xd)
|
||||
|
||||
def update_kwargs(self, y, kwargs):
|
||||
features = (
|
||||
kwargs["features"]
|
||||
if "features" in kwargs
|
||||
else default_feature_names(self.Xd.shape[1])
|
||||
)
|
||||
states = {
|
||||
features[i]: self.discretizer_.get_states_feature(i)
|
||||
for i in range(self.Xd.shape[1])
|
||||
}
|
||||
class_name = (
|
||||
kwargs["class_name"]
|
||||
if "class_name" in kwargs
|
||||
else self.estimator.default_class_name()
|
||||
)
|
||||
states[class_name] = np.unique(y).tolist()
|
||||
kwargs["state_names"] = states
|
||||
self.state_names_ = states
|
||||
self.features_ = features
|
||||
kwargs["features"] = features
|
||||
kwargs["class_name"] = class_name
|
||||
return kwargs
|
||||
|
||||
def _local_discretization(self):
|
||||
"""Discretize each feature with its fathers and the class"""
|
||||
upgrade = False
|
||||
# order of local discretization is important. no good 0, 1, 2...
|
||||
ancestral_order = list(nx.topological_sort(self.estimator.dag_))
|
||||
for feature in ancestral_order:
|
||||
if feature == self.estimator.class_name_:
|
||||
continue
|
||||
idx = self.estimator.indexed_features_[feature]
|
||||
fathers = self.estimator.dag_.get_parents(feature)
|
||||
if len(fathers) > 1:
|
||||
# First remove the class name as it will be added later
|
||||
fathers.remove(self.estimator.class_name_)
|
||||
# Get the fathers indices
|
||||
features = [
|
||||
self.estimator.indexed_features_[f] for f in fathers
|
||||
]
|
||||
# Update the discretization of the feature
|
||||
self.Xd[:, idx] = self.discretizer_.join_fit(
|
||||
# each feature has to use previous discretization data=res
|
||||
target=idx,
|
||||
features=features,
|
||||
data=self.Xd,
|
||||
)
|
||||
upgrade = True
|
||||
if upgrade:
|
||||
# Update the dataset
|
||||
self.estimator.X_ = self.Xd
|
||||
self.estimator.build_dataset()
|
||||
self.state_names_ = {
|
||||
key: self.discretizer_.get_states_feature(value)
|
||||
for key, value in self.estimator.indexed_features_.items()
|
||||
}
|
||||
states = {"state_names": self.state_names_}
|
||||
# Update the model
|
||||
self.estimator.model_.fit(
|
||||
self.estimator.dataset_,
|
||||
estimator=BayesianEstimator,
|
||||
prior_type="K2",
|
||||
**states,
|
||||
)
|
||||
|
||||
# def check_integrity(self, source, X):
|
||||
# # print(f"Checking integrity of {source} data")
|
||||
# for i in range(X.shape[1]):
|
||||
# if not set(np.unique(X[:, i]).tolist()).issubset(
|
||||
# set(self.state_names_[self.features_[i]])
|
||||
# ):
|
||||
# print(
|
||||
# "i",
|
||||
# i,
|
||||
# "features[i]",
|
||||
# self.features_[i],
|
||||
# "np.unique(X[:, i])",
|
||||
# np.unique(X[:, i]),
|
||||
# "np.array(state_names[features[i]])",
|
||||
# np.array(self.state_names_[self.features_[i]]),
|
||||
# )
|
||||
# raise ValueError("Discretization error")
|
||||
|
19
bayesclass/test.py
Normal file
19
bayesclass/test.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from bayesclass.clfs import AODENew, TANNew, KDBNew, AODE
|
||||
from benchmark.datasets import Datasets
|
||||
import os
|
||||
|
||||
os.chdir("../discretizbench")
|
||||
dt = Datasets()
|
||||
clfan = AODENew()
|
||||
clftn = TANNew()
|
||||
clfkn = KDBNew()
|
||||
# clfa = AODE()
|
||||
X, y = dt.load("iris")
|
||||
# clfa.fit(X, y)
|
||||
clfan.fit(X, y)
|
||||
clftn.fit(X, y)
|
||||
clfkn.fit(X, y)
|
||||
|
||||
|
||||
self.discretizer_.target_
|
||||
self.estimator.indexed_features_
|
Binary file not shown.
After Width: | Height: | Size: 55 KiB |
Binary file not shown.
After Width: | Height: | Size: 55 KiB |
Binary file not shown.
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 49 KiB |
Binary file not shown.
After Width: | Height: | Size: 49 KiB |
Binary file not shown.
After Width: | Height: | Size: 44 KiB |
38
bayesclass/tests/conftest.py
Normal file
38
bayesclass/tests/conftest.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import pytest
|
||||
from sklearn.datasets import load_iris
|
||||
from fimdlp.mdlp import FImdlp
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def iris():
|
||||
dataset = load_iris()
|
||||
X = dataset["data"]
|
||||
y = dataset["target"]
|
||||
features = dataset["feature_names"]
|
||||
# To make iris dataset has the same values as our iris.arff dataset
|
||||
patch = {(34, 3): (0.2, 0.1), (37, 1): (3.6, 3.1), (37, 2): (1.4, 1.5)}
|
||||
for key, value in patch.items():
|
||||
X[key] = value[1]
|
||||
return X, y, features
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data(iris):
|
||||
return iris[0], iris[1]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def features(iris):
|
||||
return iris[2]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def class_name():
|
||||
return "class"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data_disc(data):
|
||||
clf = FImdlp()
|
||||
X, y = data
|
||||
return clf.fit_transform(X, y), y
|
@@ -1,6 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
@@ -10,26 +9,19 @@ from bayesclass.clfs import AODE
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return AODE()
|
||||
return AODE(random_state=17)
|
||||
|
||||
|
||||
def test_AODE_default_hyperparameters(data, clf):
|
||||
def test_AODE_default_hyperparameters(data_disc, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf = AODE(show_progress=True, random_state=17)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf.fit(*data)
|
||||
clf = AODE(show_progress=True)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf.fit(*data_disc)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
@@ -42,67 +34,66 @@ def test_AODE_default_hyperparameters(data, clf):
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_AODE"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_AODE_plot(data, clf):
|
||||
def test_AODE_plot(data_disc, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data_disc, features=features)
|
||||
clf.plot("AODE Iris")
|
||||
|
||||
|
||||
def test_AODE_version(clf):
|
||||
def test_AODE_version(clf, features, data_disc):
|
||||
"""Check AODE version."""
|
||||
assert __version__ == clf.version()
|
||||
clf.fit(*data_disc, features=features)
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_AODE_nodes_edges(clf, data):
|
||||
def test_AODE_nodes_edges(clf, data_disc):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.nodes_leaves() == (20, 28)
|
||||
|
||||
|
||||
def test_AODE_states(clf, data):
|
||||
def test_AODE_states(clf, data_disc):
|
||||
assert clf.states_ == 0
|
||||
clf = AODE(random_state=17)
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
clf.fit(*data_disc)
|
||||
assert clf.states_ == 19
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_AODE_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
def test_AODE_classifier(data_disc, clf):
|
||||
clf.fit(*data_disc)
|
||||
attribs = [
|
||||
"classes_",
|
||||
"X_",
|
||||
"y_",
|
||||
"feature_names_in_",
|
||||
"class_name_",
|
||||
"n_features_in_",
|
||||
"X_",
|
||||
"y_",
|
||||
]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
X = data_disc[0]
|
||||
y = data_disc[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
def test_AODE_wrong_num_features(data, clf):
|
||||
def test_AODE_wrong_num_features(data_disc, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
clf.fit(*data_disc, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_AODE_wrong_hyperparam(data, clf):
|
||||
def test_AODE_wrong_hyperparam(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
clf.fit(*data_disc, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_AODE_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
def test_AODE_error_size_predict(data_disc, clf):
|
||||
X, y = data_disc
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
|
123
bayesclass/tests/test_AODENew.py
Normal file
123
bayesclass/tests/test_AODENew.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
|
||||
from bayesclass.clfs import AODENew
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return AODENew(random_state=17)
|
||||
|
||||
|
||||
def test_AODENew_default_hyperparameters(data, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf = AODENew(show_progress=True)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf.fit(*data)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
"feature_1",
|
||||
"feature_2",
|
||||
"feature_3",
|
||||
]
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_AODENew"],
|
||||
remove_text=True,
|
||||
extensions=["png"],
|
||||
)
|
||||
def test_AODENew_plot(data, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
clf.fit(*data, features=features)
|
||||
clf.plot("AODE Iris")
|
||||
|
||||
|
||||
def test_AODENew_version(clf, data):
|
||||
"""Check AODENew version."""
|
||||
assert __version__ == clf.version()
|
||||
clf.fit(*data)
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_AODENew_nodes_edges(clf, data):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
assert clf.nodes_leaves() == (20, 28)
|
||||
|
||||
|
||||
def test_AODENew_states(clf, data):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 17.75
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_AODENew_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
attribs = [
|
||||
"feature_names_in_",
|
||||
"class_name_",
|
||||
"n_features_in_",
|
||||
"X_",
|
||||
"y_",
|
||||
]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
def test_AODENew_local_discretization(clf, data_disc):
|
||||
expected_data = [
|
||||
[-1, [0, -1], [0, -1], [0, -1]],
|
||||
[[1, -1], -1, [1, -1], [1, -1]],
|
||||
[[2, -1], [2, -1], -1, [2, -1]],
|
||||
[[3, -1], [3, -1], [3, -1], -1],
|
||||
]
|
||||
clf.fit(*data_disc)
|
||||
for idx, estimator in enumerate(clf.estimators_):
|
||||
expected = expected_data[idx]
|
||||
for feature in range(4):
|
||||
computed = estimator.discretizer_.target_[feature]
|
||||
if type(computed) == list:
|
||||
for j, k in zip(expected[feature], computed):
|
||||
assert j == k
|
||||
else:
|
||||
assert (
|
||||
expected[feature]
|
||||
== estimator.discretizer_.target_[feature]
|
||||
)
|
||||
|
||||
|
||||
def test_AODENew_wrong_num_features(data, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_AODENew_wrong_hyperparam(data, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_AODENew_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
clf.predict(X_diff_size)
|
@@ -1,6 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
@@ -11,19 +10,12 @@ from bayesclass.clfs import KDB
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return KDB(k=3)
|
||||
|
||||
|
||||
def test_KDB_default_hyperparameters(data, clf):
|
||||
def test_KDB_default_hyperparameters(data_disc, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
@@ -32,7 +24,7 @@ def test_KDB_default_hyperparameters(data, clf):
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
assert clf.k == 3
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
@@ -47,58 +39,56 @@ def test_KDB_version(clf):
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_KDB_nodes_edges(clf, data):
|
||||
def test_KDB_nodes_edges(clf, data_disc):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
assert clf.nodes_leaves() == (5, 10)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.nodes_leaves() == (5, 9)
|
||||
|
||||
|
||||
def test_KDB_states(clf, data):
|
||||
def test_KDB_states(clf, data_disc):
|
||||
assert clf.states_ == 0
|
||||
clf = KDB(k=3, random_state=17)
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
clf.fit(*data_disc)
|
||||
assert clf.states_ == 19
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_KDB_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
def test_KDB_classifier(data_disc, clf):
|
||||
clf.fit(*data_disc)
|
||||
attribs = ["classes_", "X_", "y_", "feature_names_in_", "class_name_"]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
X = data_disc[0]
|
||||
y = data_disc[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 148
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_KDB"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_KDB_plot(data, clf):
|
||||
def test_KDB_plot(data_disc, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data_disc, features=features)
|
||||
clf.plot("KDB Iris")
|
||||
|
||||
|
||||
def test_KDB_wrong_num_features(data, clf):
|
||||
def test_KDB_wrong_num_features(data_disc, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
clf.fit(*data_disc, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_KDB_wrong_hyperparam(data, clf):
|
||||
def test_KDB_wrong_hyperparam(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
clf.fit(*data_disc, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_KDB_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
def test_KDB_error_size_predict(data_disc, clf):
|
||||
X, y = data_disc
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
|
133
bayesclass/tests/test_KDBNew.py
Normal file
133
bayesclass/tests/test_KDBNew.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
from pgmpy.models import BayesianNetwork
|
||||
|
||||
|
||||
from bayesclass.clfs import KDBNew
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return KDBNew(k=3)
|
||||
|
||||
|
||||
def test_KDBNew_default_hyperparameters(data, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
assert clf.theta == 0.03
|
||||
clf = KDBNew(show_progress=True, random_state=17, k=3)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
assert clf.k == 3
|
||||
clf.fit(*data)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
"feature_1",
|
||||
"feature_2",
|
||||
"feature_3",
|
||||
]
|
||||
|
||||
|
||||
def test_KDBNew_version(clf):
|
||||
"""Check KDBNew version."""
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_KDBNew_nodes_edges(clf, data):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
assert clf.nodes_leaves() == (5, 9)
|
||||
|
||||
|
||||
def test_KDBNew_states(clf, data):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 22
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_KDBNew_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
attribs = ["classes_", "X_", "y_", "feature_names_in_", "class_name_"]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 145
|
||||
|
||||
|
||||
def test_KDBNew_local_discretization(clf, data):
|
||||
expected = [[1, -1], -1, [0, 1, 3, -1], [1, -1]]
|
||||
clf.fit(*data)
|
||||
for feature in range(4):
|
||||
computed = clf.estimator_.discretizer_.target_[feature]
|
||||
print("computed:", computed)
|
||||
if type(computed) == list:
|
||||
for j, k in zip(expected[feature], computed):
|
||||
assert j == k
|
||||
else:
|
||||
assert (
|
||||
expected[feature]
|
||||
== clf.estimator_.discretizer_.target_[feature]
|
||||
)
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_KDBNew"],
|
||||
remove_text=True,
|
||||
extensions=["png"],
|
||||
)
|
||||
def test_KDBNew_plot(data, features, class_name, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
clf.fit(*data, features=features, class_name=class_name)
|
||||
clf.plot("KDBNew Iris")
|
||||
|
||||
|
||||
def test_KDBNew_wrong_num_features(data, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_KDBNew_wrong_hyperparam(data, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_KDBNew_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
clf.predict(X_diff_size)
|
||||
|
||||
|
||||
def test_KDBNew_dont_do_cycles():
|
||||
clf = KDBNew(k=4)
|
||||
dag = BayesianNetwork()
|
||||
clf.feature_names_in_ = [
|
||||
"feature_0",
|
||||
"feature_1",
|
||||
"feature_2",
|
||||
"feature_3",
|
||||
]
|
||||
nodes = list(range(4))
|
||||
weights = np.ones((4, 4))
|
||||
for idx in range(1, 4):
|
||||
dag.add_edge(clf.feature_names_in_[0], clf.feature_names_in_[idx])
|
||||
dag.add_edge(clf.feature_names_in_[1], clf.feature_names_in_[2])
|
||||
dag.add_edge(clf.feature_names_in_[1], clf.feature_names_in_[3])
|
||||
dag.add_edge(clf.feature_names_in_[2], clf.feature_names_in_[3])
|
||||
for idx in range(4):
|
||||
clf._add_m_edges(dag, idx, nodes, weights)
|
||||
assert len(dag.edges()) == 6
|
@@ -1,7 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
@@ -10,26 +8,19 @@ from bayesclass.clfs import TAN
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return TAN()
|
||||
return TAN(random_state=17)
|
||||
|
||||
|
||||
def test_TAN_default_hyperparameters(data, clf):
|
||||
def test_TAN_default_hyperparameters(data_disc, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf = TAN(show_progress=True, random_state=17)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf.fit(*data)
|
||||
clf = TAN(show_progress=True)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf.fit(*data_disc)
|
||||
assert clf.head_ == 0
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
@@ -45,29 +36,26 @@ def test_TAN_version(clf):
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_TAN_nodes_edges(clf, data):
|
||||
def test_TAN_nodes_edges(clf, data_disc):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf = TAN(random_state=17)
|
||||
clf.fit(*data, head="random")
|
||||
clf.fit(*data_disc, head="random")
|
||||
assert clf.nodes_leaves() == (5, 7)
|
||||
|
||||
|
||||
def test_TAN_states(clf, data):
|
||||
def test_TAN_states(clf, data_disc):
|
||||
assert clf.states_ == 0
|
||||
clf = TAN(random_state=17)
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
clf.fit(*data_disc)
|
||||
assert clf.states_ == 19
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_TAN_random_head(data):
|
||||
clf = TAN(random_state=17)
|
||||
clf.fit(*data, head="random")
|
||||
def test_TAN_random_head(clf, data_disc):
|
||||
clf.fit(*data_disc, head="random")
|
||||
assert clf.head_ == 3
|
||||
|
||||
|
||||
def test_TAN_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
def test_TAN_classifier(data_disc, clf):
|
||||
clf.fit(*data_disc)
|
||||
attribs = [
|
||||
"classes_",
|
||||
"X_",
|
||||
@@ -78,44 +66,43 @@ def test_TAN_classifier(data, clf):
|
||||
]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
X = data_disc[0]
|
||||
y = data_disc[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_TAN"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_TAN_plot(data, clf):
|
||||
def test_TAN_plot(data_disc, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"], head=0)
|
||||
clf.fit(*data_disc, features=features, head=0)
|
||||
clf.plot("TAN Iris head=0")
|
||||
|
||||
|
||||
def test_TAN_wrong_num_features(data, clf):
|
||||
def test_TAN_wrong_num_features(data_disc, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
clf.fit(*data_disc, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_TAN_wrong_hyperparam(data, clf):
|
||||
def test_TAN_wrong_hyperparam(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
clf.fit(*data_disc, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_TAN_head_out_of_range(data, clf):
|
||||
def test_TAN_head_out_of_range(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Head index out of range"):
|
||||
clf.fit(*data, head=4)
|
||||
clf.fit(*data_disc, head=4)
|
||||
|
||||
|
||||
def test_TAN_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
def test_TAN_error_size_predict(data_disc, clf):
|
||||
X, y = data_disc
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
|
120
bayesclass/tests/test_TANNew.py
Normal file
120
bayesclass/tests/test_TANNew.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
|
||||
from bayesclass.clfs import TANNew
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return TANNew(random_state=17)
|
||||
|
||||
|
||||
def test_TANNew_default_hyperparameters(data, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf = TANNew(show_progress=True)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf.fit(*data)
|
||||
assert clf.head_ == 0
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
"feature_1",
|
||||
"feature_2",
|
||||
"feature_3",
|
||||
]
|
||||
|
||||
|
||||
def test_TANNew_version(clf):
|
||||
"""Check TANNew version."""
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_TANNew_nodes_edges(clf, data):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data, head="random")
|
||||
assert clf.nodes_leaves() == (5, 7)
|
||||
|
||||
|
||||
def test_TANNew_states(clf, data):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 18
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_TANNew_random_head(clf, data):
|
||||
clf.fit(*data, head="random")
|
||||
assert clf.head_ == 3
|
||||
|
||||
|
||||
def test_TANNew_local_discretization(clf, data):
|
||||
expected = [-1, [0, -1], [0, -1], [1, -1]]
|
||||
clf.fit(*data)
|
||||
for feature in range(4):
|
||||
assert (
|
||||
expected[feature] == clf.estimator_.discretizer_.target_[feature]
|
||||
)
|
||||
|
||||
|
||||
def test_TANNew_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
attribs = [
|
||||
"classes_",
|
||||
"X_",
|
||||
"y_",
|
||||
"head_",
|
||||
"feature_names_in_",
|
||||
"class_name_",
|
||||
]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_TANNew"],
|
||||
remove_text=True,
|
||||
extensions=["png"],
|
||||
)
|
||||
def test_TANNew_plot(data, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
clf.fit(*data, features=features, head=0)
|
||||
clf.plot("TANNew Iris head=0")
|
||||
|
||||
|
||||
def test_TANNew_wrong_num_features(data, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_TANNew_wrong_hyperparam(data, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_TANNew_head_out_of_range(data, clf):
|
||||
with pytest.raises(ValueError, match="Head index out of range"):
|
||||
clf.fit(*data, head=4)
|
||||
|
||||
|
||||
def test_TANNew_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
clf.predict(X_diff_size)
|
@@ -1,8 +1,23 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from sklearn.utils.estimator_checks import check_estimator
|
||||
|
||||
from bayesclass.clfs import TAN, KDB, AODE
|
||||
from bayesclass.clfs import BayesBase, TAN, KDB, AODE
|
||||
|
||||
|
||||
def test_more_tags():
|
||||
expected = {
|
||||
"requires_positive_X": True,
|
||||
"requires_positive_y": True,
|
||||
"preserve_dtype": [np.int32, np.int64],
|
||||
"requires_y": True,
|
||||
}
|
||||
clf = BayesBase(None, True)
|
||||
computed = clf._more_tags()
|
||||
for key, value in expected.items():
|
||||
assert key in computed
|
||||
assert computed[key] == value
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("estimators", [TAN(), KDB(k=2), AODE()])
|
||||
|
@@ -25,6 +25,7 @@ dependencies = [
|
||||
"pgmpy",
|
||||
"networkx",
|
||||
"matplotlib",
|
||||
"fimdlp",
|
||||
]
|
||||
requires-python = ">=3.8"
|
||||
classifiers = [
|
||||
|
Reference in New Issue
Block a user