mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-15 15:45:54 +00:00
Use ancest-order to process local discretization
Fix local discretization Refactor tests Unifiy iris dataset from sklearn with iris.arff
This commit is contained in:
@@ -47,6 +47,12 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
def default_class_name():
|
||||
return "class"
|
||||
|
||||
def build_dataset(self):
|
||||
self.dataset_ = pd.DataFrame(
|
||||
self.X_, columns=self.feature_names_in_, dtype=np.int32
|
||||
)
|
||||
self.dataset_[self.class_name_] = self.y_
|
||||
|
||||
def _check_params_fit(self, X, y, expected_args, kwargs):
|
||||
"""Check the common parameters passed to fit"""
|
||||
# Check that X and y have correct shape
|
||||
@@ -64,6 +70,10 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
else:
|
||||
raise ValueError(f"Unexpected argument: {key}")
|
||||
self.feature_names_in_ = self.features_
|
||||
# used for local discretization
|
||||
self.indexed_features_ = {
|
||||
feature: i for i, feature in enumerate(self.features_)
|
||||
}
|
||||
if self.random_state is not None:
|
||||
random.seed(self.random_state)
|
||||
if len(self.feature_names_in_) != X.shape[1]:
|
||||
@@ -125,10 +135,7 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
# Store the information needed to build the model
|
||||
self.X_ = X_
|
||||
self.y_ = y_
|
||||
self.dataset_ = pd.DataFrame(
|
||||
self.X_, columns=self.feature_names_in_, dtype=np.int32
|
||||
)
|
||||
self.dataset_[self.class_name_] = self.y_
|
||||
self.build_dataset()
|
||||
# Build the DAG
|
||||
self._build()
|
||||
# Train the model
|
||||
@@ -660,14 +667,8 @@ class Proposal(BaseEstimator):
|
||||
# Build the model
|
||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
# Local discretization based on the model
|
||||
features = kwargs["features"]
|
||||
# assign indices to feature names
|
||||
self.idx_features_ = dict(list(zip(features, range(len(features)))))
|
||||
upgraded, self.Xd = self._local_discretization()
|
||||
self._local_discretization()
|
||||
# self.check_integrity("fit", self.Xd)
|
||||
if upgraded:
|
||||
kwargs = self.update_kwargs(y, kwargs)
|
||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
self.fitted_ = True
|
||||
return self
|
||||
|
||||
@@ -705,27 +706,45 @@ class Proposal(BaseEstimator):
|
||||
|
||||
def _local_discretization(self):
|
||||
"""Discretize each feature with its fathers and the class"""
|
||||
res = self.Xd.copy()
|
||||
upgraded = False
|
||||
# print("-" * 80)
|
||||
for idx, feature in enumerate(self.estimator.feature_names_in_):
|
||||
upgrade = False
|
||||
# order of local discretization is important. no good 0, 1, 2...
|
||||
ancestral_order = list(nx.topological_sort(self.estimator.dag_))
|
||||
for feature in ancestral_order:
|
||||
if feature == self.estimator.class_name_:
|
||||
continue
|
||||
idx = self.estimator.indexed_features_[feature]
|
||||
fathers = self.estimator.dag_.get_parents(feature)
|
||||
if len(fathers) > 1:
|
||||
# print(
|
||||
# "Discretizing " + feature + " with " + str(fathers),
|
||||
# end=" ",
|
||||
# )
|
||||
# First remove the class name as it will be added later
|
||||
fathers.remove(self.estimator.class_name_)
|
||||
# Get the fathers indices
|
||||
features = [self.idx_features_[f] for f in fathers]
|
||||
features = [
|
||||
self.estimator.indexed_features_[f] for f in fathers
|
||||
]
|
||||
# Update the discretization of the feature
|
||||
res[:, idx] = self.discretizer_.join_fit(
|
||||
target=idx, features=features, data=self.Xd
|
||||
self.Xd[:, idx] = self.discretizer_.join_fit(
|
||||
# each feature has to use previous discretization data=res
|
||||
target=idx,
|
||||
features=features,
|
||||
data=self.Xd,
|
||||
)
|
||||
# print(self.discretizer.y_join[:5])
|
||||
upgraded = True
|
||||
return upgraded, res
|
||||
upgrade = True
|
||||
if upgrade:
|
||||
# Update the dataset
|
||||
self.estimator.X_ = self.Xd
|
||||
self.estimator.build_dataset()
|
||||
self.state_names_ = {
|
||||
key: self.discretizer_.get_states_feature(value)
|
||||
for key, value in self.estimator.indexed_features_.items()
|
||||
}
|
||||
states = {"state_names": self.state_names_}
|
||||
# Update the model
|
||||
self.estimator.model_.fit(
|
||||
self.estimator.dataset_,
|
||||
estimator=BayesianEstimator,
|
||||
prior_type="K2",
|
||||
**states,
|
||||
)
|
||||
|
||||
# def check_integrity(self, source, X):
|
||||
# # print(f"Checking integrity of {source} data")
|
||||
|
19
bayesclass/test.py
Normal file
19
bayesclass/test.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from bayesclass.clfs import AODENew, TANNew, KDBNew, AODE
|
||||
from benchmark.datasets import Datasets
|
||||
import os
|
||||
|
||||
os.chdir("../discretizbench")
|
||||
dt = Datasets()
|
||||
clfan = AODENew()
|
||||
clftn = TANNew()
|
||||
clfkn = KDBNew()
|
||||
# clfa = AODE()
|
||||
X, y = dt.load("iris")
|
||||
# clfa.fit(X, y)
|
||||
clfan.fit(X, y)
|
||||
clftn.fit(X, y)
|
||||
clfkn.fit(X, y)
|
||||
|
||||
|
||||
self.discretizer_.target_
|
||||
self.estimator.indexed_features_
|
Binary file not shown.
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 49 KiB |
Binary file not shown.
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 49 KiB |
Binary file not shown.
Before Width: | Height: | Size: 41 KiB After Width: | Height: | Size: 44 KiB |
38
bayesclass/tests/conftest.py
Normal file
38
bayesclass/tests/conftest.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import pytest
|
||||
from sklearn.datasets import load_iris
|
||||
from fimdlp.mdlp import FImdlp
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def iris():
|
||||
dataset = load_iris()
|
||||
X = dataset["data"]
|
||||
y = dataset["target"]
|
||||
features = dataset["feature_names"]
|
||||
# To make iris dataset has the same values as our iris.arff dataset
|
||||
patch = {(34, 3): (0.2, 0.1), (37, 1): (3.6, 3.1), (37, 2): (1.4, 1.5)}
|
||||
for key, value in patch.items():
|
||||
X[key] = value[1]
|
||||
return X, y, features
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data(iris):
|
||||
return iris[0], iris[1]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def features(iris):
|
||||
return iris[2]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def class_name():
|
||||
return "class"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data_disc(data):
|
||||
clf = FImdlp()
|
||||
X, y = data
|
||||
return clf.fit_transform(X, y), y
|
@@ -1,6 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
@@ -10,26 +9,19 @@ from bayesclass.clfs import AODE
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return AODE(random_state=17)
|
||||
|
||||
|
||||
def test_AODE_default_hyperparameters(data, clf):
|
||||
def test_AODE_default_hyperparameters(data_disc, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf = AODE(show_progress=True)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
@@ -42,37 +34,35 @@ def test_AODE_default_hyperparameters(data, clf):
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_AODE"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_AODE_plot(data, clf):
|
||||
def test_AODE_plot(data_disc, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data_disc, features=features)
|
||||
clf.plot("AODE Iris")
|
||||
|
||||
|
||||
def test_AODE_version(clf, data):
|
||||
def test_AODE_version(clf, features, data_disc):
|
||||
"""Check AODE version."""
|
||||
assert __version__ == clf.version()
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data_disc, features=features)
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_AODE_nodes_edges(clf, data):
|
||||
def test_AODE_nodes_edges(clf, data_disc):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.nodes_leaves() == (20, 28)
|
||||
|
||||
|
||||
def test_AODE_states(clf, data):
|
||||
def test_AODE_states(clf, data_disc):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
clf.fit(*data_disc)
|
||||
assert clf.states_ == 19
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_AODE_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
def test_AODE_classifier(data_disc, clf):
|
||||
clf.fit(*data_disc)
|
||||
attribs = [
|
||||
"feature_names_in_",
|
||||
"class_name_",
|
||||
@@ -82,28 +72,28 @@ def test_AODE_classifier(data, clf):
|
||||
]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
X = data_disc[0]
|
||||
y = data_disc[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
def test_AODE_wrong_num_features(data, clf):
|
||||
def test_AODE_wrong_num_features(data_disc, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
clf.fit(*data_disc, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_AODE_wrong_hyperparam(data, clf):
|
||||
def test_AODE_wrong_hyperparam(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
clf.fit(*data_disc, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_AODE_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
def test_AODE_error_size_predict(data_disc, clf):
|
||||
X, y = data_disc
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
|
@@ -1,7 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
@@ -10,13 +8,6 @@ from bayesclass.clfs import AODENew
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return AODENew(random_state=17)
|
||||
@@ -44,19 +35,17 @@ def test_AODENew_default_hyperparameters(data, clf):
|
||||
remove_text=True,
|
||||
extensions=["png"],
|
||||
)
|
||||
def test_AODENew_plot(data, clf):
|
||||
def test_AODENew_plot(data, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data, features=features)
|
||||
clf.plot("AODE Iris")
|
||||
|
||||
|
||||
def test_AODENew_version(clf, data):
|
||||
"""Check AODENew version."""
|
||||
assert __version__ == clf.version()
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data)
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
@@ -69,7 +58,7 @@ def test_AODENew_nodes_edges(clf, data):
|
||||
def test_AODENew_states(clf, data):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 22.75
|
||||
assert clf.states_ == 17.75
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
@@ -88,17 +77,17 @@ def test_AODENew_classifier(data, clf):
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
def test_AODENew_local_discretization(clf, data):
|
||||
def test_AODENew_local_discretization(clf, data_disc):
|
||||
expected_data = [
|
||||
[-1, [0, -1], [0, -1], [0, -1]],
|
||||
[[1, -1], -1, [1, -1], [1, -1]],
|
||||
[[2, -1], [2, -1], -1, [2, -1]],
|
||||
[[3, -1], [3, -1], [3, -1], -1],
|
||||
]
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
for idx, estimator in enumerate(clf.estimators_):
|
||||
expected = expected_data[idx]
|
||||
for feature in range(4):
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
@@ -11,19 +10,12 @@ from bayesclass.clfs import KDB
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return KDB(k=3)
|
||||
|
||||
|
||||
def test_KDB_default_hyperparameters(data, clf):
|
||||
def test_KDB_default_hyperparameters(data_disc, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
@@ -32,7 +24,7 @@ def test_KDB_default_hyperparameters(data, clf):
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
assert clf.k == 3
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
"feature_0",
|
||||
@@ -47,57 +39,56 @@ def test_KDB_version(clf):
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_KDB_nodes_edges(clf, data):
|
||||
def test_KDB_nodes_edges(clf, data_disc):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
assert clf.nodes_leaves() == (5, 10)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.nodes_leaves() == (5, 9)
|
||||
|
||||
|
||||
def test_KDB_states(clf, data):
|
||||
def test_KDB_states(clf, data_disc):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
clf.fit(*data_disc)
|
||||
assert clf.states_ == 19
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_KDB_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
def test_KDB_classifier(data_disc, clf):
|
||||
clf.fit(*data_disc)
|
||||
attribs = ["classes_", "X_", "y_", "feature_names_in_", "class_name_"]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
X = data_disc[0]
|
||||
y = data_disc[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 148
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_KDB"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_KDB_plot(data, clf):
|
||||
def test_KDB_plot(data_disc, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data_disc, features=features)
|
||||
clf.plot("KDB Iris")
|
||||
|
||||
|
||||
def test_KDB_wrong_num_features(data, clf):
|
||||
def test_KDB_wrong_num_features(data_disc, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
clf.fit(*data_disc, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_KDB_wrong_hyperparam(data, clf):
|
||||
def test_KDB_wrong_hyperparam(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
clf.fit(*data_disc, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_KDB_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
def test_KDB_error_size_predict(data_disc, clf):
|
||||
X, y = data_disc
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
|
@@ -1,7 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
from pgmpy.models import BayesianNetwork
|
||||
@@ -11,13 +9,6 @@ from bayesclass.clfs import KDBNew
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return KDBNew(k=3)
|
||||
@@ -50,13 +41,13 @@ def test_KDBNew_version(clf):
|
||||
def test_KDBNew_nodes_edges(clf, data):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data)
|
||||
assert clf.nodes_leaves() == (5, 10)
|
||||
assert clf.nodes_leaves() == (5, 9)
|
||||
|
||||
|
||||
def test_KDBNew_states(clf, data):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
assert clf.states_ == 22
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
@@ -69,14 +60,15 @@ def test_KDBNew_classifier(data, clf):
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 148
|
||||
assert sum(y == y_pred) == 145
|
||||
|
||||
|
||||
def test_KDBNew_local_discretization(clf, data):
|
||||
expected = [[1, -1], -1, [0, 1, 3, -1], [1, 0, -1]]
|
||||
expected = [[1, -1], -1, [0, 1, 3, -1], [1, -1]]
|
||||
clf.fit(*data)
|
||||
for feature in range(4):
|
||||
computed = clf.estimator_.discretizer_.target_[feature]
|
||||
print("computed:", computed)
|
||||
if type(computed) == list:
|
||||
for j, k in zip(expected[feature], computed):
|
||||
assert j == k
|
||||
@@ -92,11 +84,10 @@ def test_KDBNew_local_discretization(clf, data):
|
||||
remove_text=True,
|
||||
extensions=["png"],
|
||||
)
|
||||
def test_KDBNew_plot(data, clf):
|
||||
def test_KDBNew_plot(data, features, class_name, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.fit(*data, features=features, class_name=class_name)
|
||||
clf.plot("KDBNew Iris")
|
||||
|
||||
|
||||
|
@@ -1,7 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
@@ -10,26 +8,19 @@ from bayesclass.clfs import TAN
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return TAN(random_state=17)
|
||||
|
||||
|
||||
def test_TAN_default_hyperparameters(data, clf):
|
||||
def test_TAN_default_hyperparameters(data_disc, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf = TAN(show_progress=True)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf.fit(*data)
|
||||
clf.fit(*data_disc)
|
||||
assert clf.head_ == 0
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.feature_names_in_ == [
|
||||
@@ -45,26 +36,26 @@ def test_TAN_version(clf):
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_TAN_nodes_edges(clf, data):
|
||||
def test_TAN_nodes_edges(clf, data_disc):
|
||||
assert clf.nodes_edges() == (0, 0)
|
||||
clf.fit(*data, head="random")
|
||||
clf.fit(*data_disc, head="random")
|
||||
assert clf.nodes_leaves() == (5, 7)
|
||||
|
||||
|
||||
def test_TAN_states(clf, data):
|
||||
def test_TAN_states(clf, data_disc):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 23
|
||||
clf.fit(*data_disc)
|
||||
assert clf.states_ == 19
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
def test_TAN_random_head(clf, data):
|
||||
clf.fit(*data, head="random")
|
||||
def test_TAN_random_head(clf, data_disc):
|
||||
clf.fit(*data_disc, head="random")
|
||||
assert clf.head_ == 3
|
||||
|
||||
|
||||
def test_TAN_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
def test_TAN_classifier(data_disc, clf):
|
||||
clf.fit(*data_disc)
|
||||
attribs = [
|
||||
"classes_",
|
||||
"X_",
|
||||
@@ -75,44 +66,43 @@ def test_TAN_classifier(data, clf):
|
||||
]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
X = data_disc[0]
|
||||
y = data_disc[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_TAN"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_TAN_plot(data, clf):
|
||||
def test_TAN_plot(data_disc, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"], head=0)
|
||||
clf.fit(*data_disc, features=features, head=0)
|
||||
clf.plot("TAN Iris head=0")
|
||||
|
||||
|
||||
def test_TAN_wrong_num_features(data, clf):
|
||||
def test_TAN_wrong_num_features(data_disc, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
clf.fit(*data_disc, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_TAN_wrong_hyperparam(data, clf):
|
||||
def test_TAN_wrong_hyperparam(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
clf.fit(*data_disc, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_TAN_head_out_of_range(data, clf):
|
||||
def test_TAN_head_out_of_range(data_disc, clf):
|
||||
with pytest.raises(ValueError, match="Head index out of range"):
|
||||
clf.fit(*data, head=4)
|
||||
clf.fit(*data_disc, head=4)
|
||||
|
||||
|
||||
def test_TAN_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
def test_TAN_error_size_predict(data_disc, clf):
|
||||
X, y = data_disc
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
|
@@ -1,7 +1,5 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
@@ -10,13 +8,6 @@ from bayesclass.clfs import TANNew
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return TANNew(random_state=17)
|
||||
@@ -54,7 +45,7 @@ def test_TANNew_nodes_edges(clf, data):
|
||||
def test_TANNew_states(clf, data):
|
||||
assert clf.states_ == 0
|
||||
clf.fit(*data)
|
||||
assert clf.states_ == 22
|
||||
assert clf.states_ == 18
|
||||
assert clf.depth_ == clf.states_
|
||||
|
||||
|
||||
@@ -88,7 +79,7 @@ def test_TANNew_classifier(data, clf):
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 145
|
||||
assert sum(y == y_pred) == 146
|
||||
|
||||
|
||||
@image_comparison(
|
||||
@@ -96,11 +87,10 @@ def test_TANNew_classifier(data, clf):
|
||||
remove_text=True,
|
||||
extensions=["png"],
|
||||
)
|
||||
def test_TANNew_plot(data, clf):
|
||||
def test_TANNew_plot(data, features, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"], head=0)
|
||||
clf.fit(*data, features=features, head=0)
|
||||
clf.plot("TANNew Iris head=0")
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user