197 lines
7.7 KiB
C++
197 lines
7.7 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
#include "Ensemble.h"
|
|
#include "bayesnet/utils/CountingSemaphore.h"
|
|
|
|
namespace bayesnet {
|
|
|
|
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
|
{
|
|
};
|
|
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
|
void Ensemble::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
|
{
|
|
n_models = models.size();
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
// fit with std::vectors
|
|
models[i]->fit(dataset, features, className, states, smoothing);
|
|
}
|
|
}
|
|
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
|
|
{
|
|
std::vector<int> y_pred;
|
|
for (auto i = 0; i < X.size(); ++i) {
|
|
auto max = std::max_element(X[i].begin(), X[i].end());
|
|
y_pred.push_back(std::distance(X[i].begin(), max));
|
|
}
|
|
return y_pred;
|
|
}
|
|
torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
|
|
{
|
|
auto y_pred = torch::argmax(X, 1);
|
|
return y_pred;
|
|
}
|
|
torch::Tensor Ensemble::voting(torch::Tensor& votes)
|
|
{
|
|
// Convert m x n_models tensor to a m x n_class_states with voting probabilities
|
|
auto y_pred_ = votes.accessor<int, 2>();
|
|
std::vector<int> y_pred_final;
|
|
int numClasses = states.at(className).size();
|
|
// votes is m x n_models with the prediction of every model for each sample
|
|
auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
|
|
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
|
for (int i = 0; i < votes.size(0); ++i) {
|
|
// n_votes store in each index (value of class) the significance added by each model
|
|
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
|
std::vector<double> n_votes(numClasses, 0.0);
|
|
for (int j = 0; j < n_models; ++j) {
|
|
n_votes[y_pred_[i][j]] += significanceModels.at(j);
|
|
}
|
|
result[i] = torch::tensor(n_votes);
|
|
}
|
|
// To only do one division and gain precision
|
|
result /= sum;
|
|
return result;
|
|
}
|
|
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
|
|
{
|
|
if (!fitted) {
|
|
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
|
}
|
|
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
|
|
}
|
|
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
|
|
{
|
|
if (!fitted) {
|
|
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
|
}
|
|
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
|
|
}
|
|
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
|
|
{
|
|
auto res = predict_proba(X);
|
|
return compute_arg_max(res);
|
|
}
|
|
torch::Tensor Ensemble::predict(torch::Tensor& X)
|
|
{
|
|
auto res = predict_proba(X);
|
|
return compute_arg_max(res);
|
|
}
|
|
torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
|
|
{
|
|
auto n_states = models[0]->getClassNumStates();
|
|
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
auto ypredict = models[i]->predict_proba(X);
|
|
y_pred += ypredict * significanceModels[i];
|
|
}
|
|
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
|
y_pred /= sum;
|
|
return y_pred;
|
|
}
|
|
std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
|
|
{
|
|
auto n_states = models[0]->getClassNumStates();
|
|
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
auto ypredict = models[i]->predict_proba(X);
|
|
assert(ypredict.size() == y_pred.size());
|
|
assert(ypredict[0].size() == y_pred[0].size());
|
|
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
|
for (auto j = 0; j < ypredict.size(); ++j) {
|
|
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
|
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
|
}
|
|
}
|
|
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
|
//Divide each element of the prediction by the sum of the significances
|
|
for (auto j = 0; j < y_pred.size(); ++j) {
|
|
std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](double x) { return x / sum; });
|
|
}
|
|
return y_pred;
|
|
}
|
|
std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
|
|
{
|
|
torch::Tensor Xt = bayesnet::vectorToTensor(X, false);
|
|
auto y_pred = predict_average_voting(Xt);
|
|
std::vector<std::vector<double>> result = tensorToVectorDouble(y_pred);
|
|
return result;
|
|
}
|
|
torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
|
|
{
|
|
// Build a m x n_models tensor with the predictions of each model
|
|
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
auto ypredict = models[i]->predict(X);
|
|
y_pred.index_put_({ "...", i }, ypredict);
|
|
}
|
|
return voting(y_pred);
|
|
}
|
|
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
|
|
{
|
|
auto y_pred = predict(X);
|
|
int correct = 0;
|
|
for (int i = 0; i < y_pred.size(0); ++i) {
|
|
if (y_pred[i].item<int>() == y[i].item<int>()) {
|
|
correct++;
|
|
}
|
|
}
|
|
return (double)correct / y_pred.size(0);
|
|
}
|
|
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
|
{
|
|
auto y_pred = predict(X);
|
|
int correct = 0;
|
|
for (int i = 0; i < y_pred.size(); ++i) {
|
|
if (y_pred[i] == y[i]) {
|
|
correct++;
|
|
}
|
|
}
|
|
return (double)correct / y_pred.size();
|
|
}
|
|
std::vector<std::string> Ensemble::show() const
|
|
{
|
|
auto result = std::vector<std::string>();
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
auto res = models[i]->show();
|
|
result.insert(result.end(), res.begin(), res.end());
|
|
}
|
|
return result;
|
|
}
|
|
std::vector<std::string> Ensemble::graph(const std::string& title) const
|
|
{
|
|
auto result = std::vector<std::string>();
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
auto res = models[i]->graph(title + "_" + std::to_string(i));
|
|
result.insert(result.end(), res.begin(), res.end());
|
|
}
|
|
return result;
|
|
}
|
|
int Ensemble::getNumberOfNodes() const
|
|
{
|
|
int nodes = 0;
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
nodes += models[i]->getNumberOfNodes();
|
|
}
|
|
return nodes;
|
|
}
|
|
int Ensemble::getNumberOfEdges() const
|
|
{
|
|
int edges = 0;
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
edges += models[i]->getNumberOfEdges();
|
|
}
|
|
return edges;
|
|
}
|
|
int Ensemble::getNumberOfStates() const
|
|
{
|
|
int nstates = 0;
|
|
for (auto i = 0; i < n_models; ++i) {
|
|
nstates += models[i]->getNumberOfStates();
|
|
}
|
|
return nstates;
|
|
}
|
|
} |