BayesNet/docs/algorithm.md

98 lines
2.0 KiB
Markdown

1. // initialization
2. $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
3. $W \leftarrow W_0$
4. $Vars \leftarrow {\cal{X}}$
5. $\delta \leftarrow 10^{-4}$
6. $convergence \leftarrow True$
7. $maxTolerancia \leftarrow 3$
8. $bisection \leftarrow False$
9. $error \leftarrow \inf$
10. $finished \leftarrow False$
11. $AODE \leftarrow \emptyset$ // the ensemble
12. $tolerance \leftarrow 0$
13. $numModelsInPack \leftarrow 0$
15. // main loop
16. While (!finished)
1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
2. $k \leftarrow 2^{tolerance}$
3. if ($tolerance == 0$)
$numItemsPack \leftarrow0$
4. $P \leftarrow Head(\pi,k)$ // first k features in order
6. $i \leftarrow 0$
7. While ($i < size(P)$)
1. $X \leftarrow P[i]$
2. $i \leftarrow i + 1$
3. $numItemsPack \leftarrow numItemsPack + 1$
4. $Vars.remove(X)$
5. $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
6. $\hat{y}[] \leftarrow spode.Predict(D[W])$
7. $\epsilon \leftarrow error(\hat{y}[], y[])$
8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
9. if ($\epsilon > 0.5$)
1. $finished \leftarrow True$
2. break
10. $AODE.add( (spode,\alpha_t) )$
11. $W \leftarrow UpdateWeights(D[W],\alpha,y[],\hat{y}[])$
8. if ($convergence$ $\And$ $! finished$)
1. $\hat{y}[] \leftarrow AODE.Predict(D[W])$
2. $e \leftarrow error(\hat{y}[], y[])$
3. if $(e > (error+\delta))$ // result doesn't improve
1. if $(tolerance == maxTolerance)\; finished\leftarrow True$
2. else $tolerance \leftarrow tolerance+1$
4. else
1. $tolerance \leftarrow 0$
2. $error \leftarrow min(error,e)$
9. if $(Vars == \emptyset) \; finished \leftarrow True$
17. if ($tolerance == maxTolerance$) // algorithm finished because of
lack of convergence
1. $removeModels(AODE, numItemsPack)$
2. $W \leftarrow W_B$
18. Return $AODE$