283 lines
12 KiB
C++
283 lines
12 KiB
C++
#include <iostream>
|
|
#include <torch/torch.h>
|
|
#include <string>
|
|
#include <map>
|
|
#include <argparse/argparse.hpp>
|
|
#include <nlohmann/json.hpp>
|
|
#include "ArffFiles.h"
|
|
#include "BayesMetrics.h"
|
|
#include "CPPFImdlp.h"
|
|
#include "Folding.h"
|
|
#include "Models.h"
|
|
#include "modelRegister.h"
|
|
#include <fstream>
|
|
|
|
using namespace std;
|
|
|
|
const string PATH = "../../data/";
|
|
|
|
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
|
{
|
|
vector<mdlp::labels_t>Xd;
|
|
map<string, int> maxes;
|
|
|
|
auto fimdlp = mdlp::CPPFImdlp();
|
|
for (int i = 0; i < X.size(); i++) {
|
|
fimdlp.fit(X[i], y);
|
|
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
|
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
|
Xd.push_back(xd);
|
|
}
|
|
return { Xd, maxes };
|
|
}
|
|
|
|
bool file_exists(const std::string& name)
|
|
{
|
|
if (FILE* file = fopen(name.c_str(), "r")) {
|
|
fclose(file);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
|
|
{
|
|
vector<vector<int>> Xr; // nxm
|
|
vector<int> yr;
|
|
for (int col = 0; col < X.size(); ++col) {
|
|
Xr.push_back(vector<int>());
|
|
}
|
|
for (auto index : indices) {
|
|
for (int col = 0; col < X.size(); ++col) {
|
|
Xr[col].push_back(X[col][index]);
|
|
}
|
|
yr.push_back(y[index]);
|
|
}
|
|
return { Xr, yr };
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
torch::Tensor weights_ = torch::full({ 10 }, 1.0 / 10, torch::kFloat64);
|
|
torch::Tensor y_ = torch::tensor({ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }, torch::kInt32);
|
|
torch::Tensor ypred = torch::tensor({ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0 }, torch::kInt32);
|
|
cout << "Initial weights_: " << endl;
|
|
for (int i = 0; i < 10; i++) {
|
|
cout << weights_.index({ i }).item<double>() << ", ";
|
|
}
|
|
cout << "end." << endl;
|
|
cout << "y_: " << endl;
|
|
for (int i = 0; i < 10; i++) {
|
|
cout << y_.index({ i }).item<int>() << ", ";
|
|
}
|
|
cout << "end." << endl;
|
|
cout << "ypred: " << endl;
|
|
for (int i = 0; i < 10; i++) {
|
|
cout << ypred.index({ i }).item<int>() << ", ";
|
|
}
|
|
cout << "end." << endl;
|
|
auto mask_wrong = ypred != y_;
|
|
auto mask_right = ypred == y_;
|
|
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
|
double epsilon_t = masked_weights.sum().item<double>();
|
|
cout << "epsilon_t: " << epsilon_t << endl;
|
|
double wt = (1 - epsilon_t) / epsilon_t;
|
|
cout << "wt: " << wt << endl;
|
|
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
|
cout << "alpha_t: " << alpha_t << endl;
|
|
// Step 3.2: Update weights for next classifier
|
|
// Step 3.2.1: Update weights of wrong samples
|
|
cout << "exp(alpha_t): " << exp(alpha_t) << endl;
|
|
cout << "exp(-alpha_t): " << exp(-alpha_t) << endl;
|
|
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
|
// Step 3.2.2: Update weights of right samples
|
|
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
|
// Step 3.3: Normalise the weights
|
|
double totalWeights = torch::sum(weights_).item<double>();
|
|
cout << "totalWeights: " << totalWeights << endl;
|
|
cout << "Before normalization: " << endl;
|
|
for (int i = 0; i < 10; i++) {
|
|
cout << weights_.index({ i }).item<double>() << endl;
|
|
}
|
|
weights_ = weights_ / totalWeights;
|
|
cout << "After normalization: " << endl;
|
|
for (int i = 0; i < 10; i++) {
|
|
cout << weights_.index({ i }).item<double>() << endl;
|
|
}
|
|
// map<string, bool> datasets = {
|
|
// {"diabetes", true},
|
|
// {"ecoli", true},
|
|
// {"glass", true},
|
|
// {"iris", true},
|
|
// {"kdd_JapaneseVowels", false},
|
|
// {"letter", true},
|
|
// {"liver-disorders", true},
|
|
// {"mfeat-factors", true},
|
|
// };
|
|
// auto valid_datasets = vector<string>();
|
|
// transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
|
// [](const pair<string, bool>& pair) { return pair.first; });
|
|
// argparse::ArgumentParser program("BayesNetSample");
|
|
// program.add_argument("-d", "--dataset")
|
|
// .help("Dataset file name")
|
|
// .action([valid_datasets](const std::string& value) {
|
|
// if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
|
// return value;
|
|
// }
|
|
// throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
|
// }
|
|
// );
|
|
// program.add_argument("-p", "--path")
|
|
// .help(" folder where the data files are located, default")
|
|
// .default_value(string{ PATH }
|
|
// );
|
|
// program.add_argument("-m", "--model")
|
|
// .help("Model to use " + platform::Models::instance()->toString())
|
|
// .action([](const std::string& value) {
|
|
// static const vector<string> choices = platform::Models::instance()->getNames();
|
|
// if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
|
// return value;
|
|
// }
|
|
// throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
|
// }
|
|
// );
|
|
// program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
|
// program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
|
// program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
|
// program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
|
// program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
|
// try {
|
|
// auto k = stoi(value);
|
|
// if (k < 2) {
|
|
// throw runtime_error("Number of folds must be greater than 1");
|
|
// }
|
|
// return k;
|
|
// }
|
|
// catch (const runtime_error& err) {
|
|
// throw runtime_error(err.what());
|
|
// }
|
|
// catch (...) {
|
|
// throw runtime_error("Number of folds must be an integer");
|
|
// }});
|
|
// program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
|
// bool class_last, stratified, tensors, dump_cpt;
|
|
// string model_name, file_name, path, complete_file_name;
|
|
// int nFolds, seed;
|
|
// try {
|
|
// program.parse_args(argc, argv);
|
|
// file_name = program.get<string>("dataset");
|
|
// path = program.get<string>("path");
|
|
// model_name = program.get<string>("model");
|
|
// complete_file_name = path + file_name + ".arff";
|
|
// stratified = program.get<bool>("stratified");
|
|
// tensors = program.get<bool>("tensors");
|
|
// nFolds = program.get<int>("folds");
|
|
// seed = program.get<int>("seed");
|
|
// dump_cpt = program.get<bool>("dumpcpt");
|
|
// class_last = datasets[file_name];
|
|
// if (!file_exists(complete_file_name)) {
|
|
// throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
|
// }
|
|
// }
|
|
// catch (const exception& err) {
|
|
// cerr << err.what() << endl;
|
|
// cerr << program;
|
|
// exit(1);
|
|
// }
|
|
|
|
/*
|
|
* Begin Processing
|
|
*/
|
|
// auto handler = ArffFiles();
|
|
// handler.load(complete_file_name, class_last);
|
|
// // Get Dataset X, y
|
|
// vector<mdlp::samples_t>& X = handler.getX();
|
|
// mdlp::labels_t& y = handler.getY();
|
|
// // Get className & Features
|
|
// auto className = handler.getClassName();
|
|
// vector<string> features;
|
|
// auto attributes = handler.getAttributes();
|
|
// transform(attributes.begin(), attributes.end(), back_inserter(features),
|
|
// [](const pair<string, string>& item) { return item.first; });
|
|
// // Discretize Dataset
|
|
// auto [Xd, maxes] = discretize(X, y, features);
|
|
// maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
|
// map<string, vector<int>> states;
|
|
// for (auto feature : features) {
|
|
// states[feature] = vector<int>(maxes[feature]);
|
|
// }
|
|
// states[className] = vector<int>(maxes[className]);
|
|
// auto clf = platform::Models::instance()->create(model_name);
|
|
// clf->fit(Xd, y, features, className, states);
|
|
// if (dump_cpt) {
|
|
// cout << "--- CPT Tables ---" << endl;
|
|
// clf->dump_cpt();
|
|
// }
|
|
// auto lines = clf->show();
|
|
// for (auto line : lines) {
|
|
// cout << line << endl;
|
|
// }
|
|
// cout << "--- Topological Order ---" << endl;
|
|
// auto order = clf->topological_order();
|
|
// for (auto name : order) {
|
|
// cout << name << ", ";
|
|
// }
|
|
// cout << "end." << endl;
|
|
// auto score = clf->score(Xd, y);
|
|
// cout << "Score: " << score << endl;
|
|
// auto graph = clf->graph();
|
|
// auto dot_file = model_name + "_" + file_name;
|
|
// ofstream file(dot_file + ".dot");
|
|
// file << graph;
|
|
// file.close();
|
|
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
|
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
|
// string stratified_string = stratified ? " Stratified" : "";
|
|
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
|
// cout << "==========================================" << endl;
|
|
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
|
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
|
// for (int i = 0; i < features.size(); ++i) {
|
|
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
|
// }
|
|
// float total_score = 0, total_score_train = 0, score_train, score_test;
|
|
// platform::Fold* fold;
|
|
// if (stratified)
|
|
// fold = new platform::StratifiedKFold(nFolds, y, seed);
|
|
// else
|
|
// fold = new platform::KFold(nFolds, y.size(), seed);
|
|
// for (auto i = 0; i < nFolds; ++i) {
|
|
// auto [train, test] = fold->getFold(i);
|
|
// cout << "Fold: " << i + 1 << endl;
|
|
// if (tensors) {
|
|
// auto ttrain = torch::tensor(train, torch::kInt64);
|
|
// auto ttest = torch::tensor(test, torch::kInt64);
|
|
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
|
// torch::Tensor ytraint = yt.index({ ttrain });
|
|
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
|
// torch::Tensor ytestt = yt.index({ ttest });
|
|
// clf->fit(Xtraint, ytraint, features, className, states);
|
|
// auto temp = clf->predict(Xtraint);
|
|
// score_train = clf->score(Xtraint, ytraint);
|
|
// score_test = clf->score(Xtestt, ytestt);
|
|
// } else {
|
|
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
|
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
|
// clf->fit(Xtrain, ytrain, features, className, states);
|
|
// score_train = clf->score(Xtrain, ytrain);
|
|
// score_test = clf->score(Xtest, ytest);
|
|
// }
|
|
// if (dump_cpt) {
|
|
// cout << "--- CPT Tables ---" << endl;
|
|
// clf->dump_cpt();
|
|
// }
|
|
// total_score_train += score_train;
|
|
// total_score += score_test;
|
|
// cout << "Score Train: " << score_train << endl;
|
|
// cout << "Score Test : " << score_test << endl;
|
|
// cout << "-------------------------------------------------------------------------------" << endl;
|
|
// }
|
|
// cout << "**********************************************************************************" << endl;
|
|
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
|
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
|
} |