BayesNet/sample/sample.cc

76 lines
3.2 KiB
C++

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <ArffFiles.hpp>
#include <CPPFImdlp.h>
#include <bayesnet/ensembles/BoostAODE.h>
#include <torch/torch.h>
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
std::vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, torch::Device device)
{
auto handler = ArffFiles();
handler.load(name, class_last);
// Get Dataset X, y
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
torch::Tensor Xd;
auto states = map<std::string, std::vector<int>>();
auto Xr = discretizeDataset(X, y);
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32).to(device);
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32).to(device));
}
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
return { Xd, torch::tensor(y, torch::kInt32).to(device), features, className, states };
}
int main(int argc, char* argv[])
{
if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " <file_name>" << std::endl;
return 1;
}
std::string file_name = argv[1];
torch::Device device(torch::kCPU);
if (torch::cuda::is_available()) {
device = torch::Device(torch::kCUDA);
std::cout << "CUDA is available! Using GPU." << std::endl;
} else {
std::cout << "CUDA is not available. Using CPU." << std::endl;
}
torch::Tensor X, y;
std::vector<std::string> features;
std::string className;
map<std::string, std::vector<int>> states;
auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
std::cout << "Library version: " << clf.getVersion() << std::endl;
tie(X, y, features, className, states) = loadDataset(file_name, true, device);
clf.fit(X, y, features, className, states, bayesnet::Smoothing_t::LAPLACE);
auto score = clf.score(X, y);
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
return 0;
}