Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
baa631dd66 |
@ -51,10 +51,15 @@ endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
|
||||
|
||||
if (CODE_COVERAGE)
|
||||
get_property(LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
|
||||
message("ALL LANGUAGES: ${LANGUAGES}")
|
||||
foreach(LANG ${LANGUAGES})
|
||||
message("${LANG} compiler is \"${CMAKE_${LANG}_COMPILER_ID}\"")
|
||||
endforeach()
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
#include(CodeCoverage)
|
||||
#MESSAGE("Code coverage enabled")
|
||||
#SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
if (ENABLE_CLANG_TIDY)
|
||||
|
@ -9,7 +9,15 @@
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false), device(torch::kCPU)
|
||||
{
|
||||
if (torch::cuda::is_available()) {
|
||||
device = torch::Device(torch::kCUDA);
|
||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
||||
} else {
|
||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
||||
}
|
||||
}
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
@ -31,7 +39,7 @@ namespace bayesnet {
|
||||
{
|
||||
try {
|
||||
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ dataset, yresized }, 0);
|
||||
dataset = torch::cat({ dataset, yresized }, 0).to(device);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::stringstream oss;
|
||||
@ -50,7 +58,7 @@ namespace bayesnet {
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble).to(device);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
|
@ -38,6 +38,7 @@ namespace bayesnet {
|
||||
std::string dump_cpt() const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
protected:
|
||||
torch::Device device;
|
||||
bool fitted;
|
||||
unsigned int m, n; // m: number of samples, n: number of features
|
||||
Network model;
|
||||
|
@ -97,7 +97,7 @@ namespace bayesnet {
|
||||
dimensions.push_back(numStates);
|
||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
// Create a tensor of zeros with the dimensions of the CPT
|
||||
cpTable = torch::zeros(dimensions, torch::kDouble) + smoothing;
|
||||
cpTable = torch::zeros(dimensions, torch::kDouble).to(device) + smoothing;
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include <ArffFiles.hpp>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <bayesnet/ensembles/BoostAODE.h>
|
||||
#include <torch/torch.h>
|
||||
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
@ -19,7 +20,8 @@ std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, m
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last)
|
||||
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, torch::Device device)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(name, class_last);
|
||||
@ -34,16 +36,16 @@ tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<s
|
||||
torch::Tensor Xd;
|
||||
auto states = map<std::string, std::vector<int>>();
|
||||
auto Xr = discretizeDataset(X, y);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32).to(device);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32).to(device));
|
||||
}
|
||||
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
return { Xd, torch::tensor(y, torch::kInt32).to(device), features, className, states };
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
@ -53,16 +55,22 @@ int main(int argc, char* argv[])
|
||||
return 1;
|
||||
}
|
||||
std::string file_name = argv[1];
|
||||
torch::Device device(torch::kCPU);
|
||||
if (torch::cuda::is_available()) {
|
||||
device = torch::Device(torch::kCUDA);
|
||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
||||
} else {
|
||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
||||
}
|
||||
torch::Tensor X, y;
|
||||
std::vector<std::string> features;
|
||||
std::string className;
|
||||
map<std::string, std::vector<int>> states;
|
||||
auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
|
||||
std::cout << "Library version: " << clf.getVersion() << std::endl;
|
||||
tie(X, y, features, className, states) = loadDataset(file_name, true);
|
||||
tie(X, y, features, className, states) = loadDataset(file_name, true, device);
|
||||
clf.fit(X, y, features, className, states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto score = clf.score(X, y);
|
||||
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user