boostAode #5
22
.vscode/launch.json
vendored
22
.vscode/launch.json
vendored
@ -25,15 +25,35 @@
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"args": [
|
||||
"-m",
|
||||
"SPODELd",
|
||||
"BoostAODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--discretize",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "manage",
|
||||
"program": "${workspaceFolder}/build/src/Platform/manage",
|
||||
"args": [
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "list",
|
||||
"program": "${workspaceFolder}/build/src/Platform/list",
|
||||
"args": [],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
"type": "cppdbg",
|
||||
|
23
.vscode/tasks.json
vendored
23
.vscode/tasks.json
vendored
@ -32,6 +32,29 @@
|
||||
],
|
||||
"group": "build",
|
||||
"detail": "Task generated by Debugger."
|
||||
},
|
||||
{
|
||||
"type": "cppbuild",
|
||||
"label": "C/C++: g++ build active file",
|
||||
"command": "/usr/bin/g++",
|
||||
"args": [
|
||||
"-fdiagnostics-color=always",
|
||||
"-g",
|
||||
"${file}",
|
||||
"-o",
|
||||
"${fileDirname}/${fileBasenameNoExtension}"
|
||||
],
|
||||
"options": {
|
||||
"cwd": "${fileDirname}"
|
||||
},
|
||||
"problemMatcher": [
|
||||
"$gcc"
|
||||
],
|
||||
"group": {
|
||||
"kind": "build",
|
||||
"isDefault": true
|
||||
},
|
||||
"detail": "Task generated by Debugger."
|
||||
}
|
||||
]
|
||||
}
|
4
Makefile
4
Makefile
@ -15,7 +15,7 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
|
||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
build: ## Build the main and BayesNetSample
|
||||
cmake --build build -t main -t BayesNetSample -j 32
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
|
||||
|
||||
clean: ## Clean the debug info
|
||||
@echo ">>> Cleaning Debug BayesNet ...";
|
||||
@ -35,7 +35,7 @@ release: ## Build a Release version of the project
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
@mkdir build;
|
||||
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
|
||||
cmake --build build -t main -t BayesNetSample -j 32;
|
||||
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
|
||||
@echo ">>> Done";
|
||||
|
||||
test: ## Run tests
|
||||
|
@ -1,2 +1 @@
|
||||
add_library(ArffFiles ArffFiles.cc)
|
||||
#target_link_libraries(BayesNet "${TORCH_LIBRARIES}")
|
||||
add_library(ArffFiles ArffFiles.cc)
|
@ -141,43 +141,58 @@ int main(int argc, char** argv)
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto handler = ArffFiles();
|
||||
handler.load(complete_file_name, class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
[](const pair<string, string>& item) { return item.first; });
|
||||
// Discretize Dataset
|
||||
auto [Xd, maxes] = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
auto clf = platform::Models::instance()->create(model_name);
|
||||
clf->fit(Xd, y, features, className, states);
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
auto lines = clf->show();
|
||||
for (auto line : lines) {
|
||||
cout << line << endl;
|
||||
}
|
||||
cout << "--- Topological Order ---" << endl;
|
||||
auto order = clf->topological_order();
|
||||
for (auto name : order) {
|
||||
cout << name << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
cout << "Score: " << score << endl;
|
||||
auto ypred = torch::tensor({ 1,2,3,2,2,3,4,5,2,1 });
|
||||
auto y = torch::tensor({ 0,0,0,0,2,3,4,0,0,0 });
|
||||
auto weights = torch::ones({ 10 }, kDouble);
|
||||
auto mask = ypred == y;
|
||||
cout << "ypred:" << ypred << endl;
|
||||
cout << "y:" << y << endl;
|
||||
cout << "weights:" << weights << endl;
|
||||
cout << "mask:" << mask << endl;
|
||||
double value_to_add = 0.5;
|
||||
weights += mask.to(torch::kDouble) * value_to_add;
|
||||
cout << "New weights:" << weights << endl;
|
||||
auto masked_weights = weights * mask.to(weights.dtype());
|
||||
double sum_of_weights = masked_weights.sum().item<double>();
|
||||
cout << "Sum of weights: " << sum_of_weights << endl;
|
||||
//weights.index_put_({ mask }, weights + 10);
|
||||
// auto handler = ArffFiles();
|
||||
// handler.load(complete_file_name, class_last);
|
||||
// // Get Dataset X, y
|
||||
// vector<mdlp::samples_t>& X = handler.getX();
|
||||
// mdlp::labels_t& y = handler.getY();
|
||||
// // Get className & Features
|
||||
// auto className = handler.getClassName();
|
||||
// vector<string> features;
|
||||
// auto attributes = handler.getAttributes();
|
||||
// transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
// [](const pair<string, string>& item) { return item.first; });
|
||||
// // Discretize Dataset
|
||||
// auto [Xd, maxes] = discretize(X, y, features);
|
||||
// maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
// map<string, vector<int>> states;
|
||||
// for (auto feature : features) {
|
||||
// states[feature] = vector<int>(maxes[feature]);
|
||||
// }
|
||||
// states[className] = vector<int>(maxes[className]);
|
||||
// auto clf = platform::Models::instance()->create(model_name);
|
||||
// clf->fit(Xd, y, features, className, states);
|
||||
// if (dump_cpt) {
|
||||
// cout << "--- CPT Tables ---" << endl;
|
||||
// clf->dump_cpt();
|
||||
// }
|
||||
// auto lines = clf->show();
|
||||
// for (auto line : lines) {
|
||||
// cout << line << endl;
|
||||
// }
|
||||
// cout << "--- Topological Order ---" << endl;
|
||||
// auto order = clf->topological_order();
|
||||
// for (auto name : order) {
|
||||
// cout << name << ", ";
|
||||
// }
|
||||
// cout << "end." << endl;
|
||||
// auto score = clf->score(Xd, y);
|
||||
// cout << "Score: " << score << endl;
|
||||
// auto graph = clf->graph();
|
||||
// auto dot_file = model_name + "_" + file_name;
|
||||
// ofstream file(dot_file + ".dot");
|
||||
|
@ -2,12 +2,14 @@
|
||||
|
||||
namespace bayesnet {
|
||||
AODE::AODE() : Ensemble() {}
|
||||
void AODE::buildModel()
|
||||
void AODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
models.push_back(std::make_unique<SPODE>(i));
|
||||
}
|
||||
n_models = models.size();
|
||||
significanceModels = vector<double>(n_models, 1.0);
|
||||
}
|
||||
vector<string> AODE::graph(const string& title) const
|
||||
{
|
||||
|
@ -5,7 +5,7 @@
|
||||
namespace bayesnet {
|
||||
class AODE : public Ensemble {
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODE();
|
||||
virtual ~AODE() {};
|
||||
|
@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
return *this;
|
||||
|
||||
}
|
||||
void AODELd::buildModel()
|
||||
void AODELd::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
@ -27,7 +27,7 @@ namespace bayesnet {
|
||||
}
|
||||
n_models = models.size();
|
||||
}
|
||||
void AODELd::trainModel()
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
for (const auto& model : models) {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
|
@ -8,8 +8,8 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
class AODELd : public Ensemble, public Proposal {
|
||||
protected:
|
||||
void trainModel() override;
|
||||
void buildModel() override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
AODELd();
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
|
||||
|
@ -6,13 +6,14 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel() = 0;
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
public:
|
||||
// X is nxm vector, y is nx1 vector
|
||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
|
@ -21,6 +21,31 @@ namespace bayesnet {
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, unsigned k)
|
||||
{
|
||||
auto n = samples.size(0) - 1;
|
||||
if (k == 0) {
|
||||
k = n;
|
||||
}
|
||||
// compute scores
|
||||
scoresKBest.reserve(n);
|
||||
auto label = samples.index({ -1, "..." });
|
||||
for (int i = 0; i < n; ++i) {
|
||||
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
|
||||
featuresKBest.push_back(i);
|
||||
}
|
||||
// sort & reduce scores and features
|
||||
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
{ return scoresKBest[i] > scoresKBest[j]; });
|
||||
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
|
||||
featuresKBest.resize(k);
|
||||
scoresKBest.resize(k);
|
||||
return featuresKBest;
|
||||
}
|
||||
vector<double> Metrics::getScoresKBest() const
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||
{
|
||||
vector<pair<string, string>> result;
|
||||
@ -32,17 +57,18 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
torch::Tensor Metrics::conditionalEdge()
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = vector<double>();
|
||||
auto source = vector<string>(features);
|
||||
source.push_back(className);
|
||||
auto combinations = doCombinations(source);
|
||||
double totalWeight = weights.sum().item<double>();
|
||||
// Compute class prior
|
||||
auto margin = torch::zeros({ classNumStates });
|
||||
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
|
||||
for (int value = 0; value < classNumStates; ++value) {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
margin[value] = mask.sum().item<float>() / samples.size(1);
|
||||
margin[value] = mask.sum().item<double>() / samples.size(1);
|
||||
}
|
||||
for (auto [first, second] : combinations) {
|
||||
int index_first = find(features.begin(), features.end(), first) - features.begin();
|
||||
@ -52,8 +78,9 @@ namespace bayesnet {
|
||||
auto mask = samples.index({ -1, "..." }) == value;
|
||||
auto first_dataset = samples.index({ index_first, mask });
|
||||
auto second_dataset = samples.index({ index_second, mask });
|
||||
auto mi = mutualInformation(first_dataset, second_dataset);
|
||||
auto pb = margin[value].item<float>();
|
||||
auto weights_dataset = weights.index({ mask });
|
||||
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
|
||||
auto pb = margin[value].item<double>();
|
||||
accumulated += pb * mi;
|
||||
}
|
||||
result.push_back(accumulated);
|
||||
@ -70,31 +97,32 @@ namespace bayesnet {
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
vector<float> Metrics::conditionalEdgeWeights()
|
||||
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
|
||||
{
|
||||
auto matrix = conditionalEdge();
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
double Metrics::entropy(const torch::Tensor& feature)
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount();
|
||||
int totalWeight = counts.sum().item<int>();
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
double totalWeight = counts.sum().item<double>();
|
||||
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
|
||||
torch::Tensor logProbs = torch::log(probs);
|
||||
torch::Tensor entropy = -probs * logProbs;
|
||||
return entropy.nansum().item<double>();
|
||||
}
|
||||
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
int numSamples = firstFeature.sizes()[0];
|
||||
torch::Tensor featureCounts = secondFeature.bincount();
|
||||
torch::Tensor featureCounts = secondFeature.bincount(weights);
|
||||
unordered_map<int, unordered_map<int, double>> jointCounts;
|
||||
double totalWeight = 0;
|
||||
for (auto i = 0; i < numSamples; i++) {
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
|
||||
totalWeight += 1;
|
||||
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
|
||||
totalWeight += weights[i].item<float>();
|
||||
}
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
@ -115,9 +143,9 @@ namespace bayesnet {
|
||||
return entropyValue;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
|
@ -12,16 +12,20 @@ namespace bayesnet {
|
||||
vector<string> features;
|
||||
string className;
|
||||
int classNumStates = 0;
|
||||
vector<double> scoresKBest;
|
||||
vector<int> featuresKBest; // sorted indices of the features
|
||||
double entropy(const Tensor& feature, const Tensor& weights);
|
||||
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
public:
|
||||
Metrics() = default;
|
||||
Metrics(const Tensor&, const vector<string>&, const string&, const int);
|
||||
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
|
||||
double entropy(const Tensor&);
|
||||
double conditionalEntropy(const Tensor&, const Tensor&);
|
||||
double mutualInformation(const Tensor&, const Tensor&);
|
||||
vector<float> conditionalEdgeWeights(); // To use in Python
|
||||
Tensor conditionalEdge();
|
||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
|
||||
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
|
||||
vector<int> SelectKBestWeighted(const torch::Tensor& weights, unsigned k = 0);
|
||||
vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
|
||||
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
|
||||
Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
|
||||
};
|
||||
}
|
||||
|
82
src/BayesNet/BoostAODE.cc
Normal file
82
src/BayesNet/BoostAODE.cc
Normal file
@ -0,0 +1,82 @@
|
||||
#include "BoostAODE.h"
|
||||
#include "BayesMetrics.h"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
n_models = 0;
|
||||
int max_models = .1 * n > 10 ? .1 * n : n;
|
||||
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
bool exitCondition = false;
|
||||
bool repeatSparent = false;
|
||||
vector<int> featuresUsed;
|
||||
// Step 0: Set the finish condition
|
||||
// if not repeatSparent a finish condition is run out of features
|
||||
// n_models == max_models
|
||||
int numClasses = states[className].size();
|
||||
while (!exitCondition) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, n); // Get all the features sorted
|
||||
auto feature = featureSelection[0];
|
||||
unique_ptr<Classifier> model;
|
||||
if (!repeatSparent) {
|
||||
if (n_models == 0) {
|
||||
models.resize(n); // Resize for n==nfeatures SPODEs
|
||||
significanceModels.resize(n);
|
||||
}
|
||||
bool found = false;
|
||||
for (int i = 0; i < featureSelection.size(); ++i) {
|
||||
if (find(featuresUsed.begin(), featuresUsed.end(), i) != featuresUsed.end()) {
|
||||
continue;
|
||||
}
|
||||
found = true;
|
||||
feature = i;
|
||||
featuresUsed.push_back(feature);
|
||||
n_models++;
|
||||
break;
|
||||
}
|
||||
if (!found) {
|
||||
exitCondition = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
if (!repeatSparent) {
|
||||
models[feature] = std::move(model);
|
||||
significanceModels[feature] = significance;
|
||||
} else {
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
n_models++;
|
||||
}
|
||||
exitCondition = n_models == max_models;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
}
|
||||
vector<string> BoostAODE::graph(const string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
16
src/BayesNet/BoostAODE.h
Normal file
16
src/BayesNet/BoostAODE.h
Normal file
@ -0,0 +1,16 @@
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include "Ensemble.h"
|
||||
#include "SPODE.h"
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
BoostAODE();
|
||||
virtual ~BoostAODE() {};
|
||||
vector<string> graph(const string& title = "BoostAODE") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
@ -3,5 +3,6 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@ -16,12 +16,11 @@ namespace bayesnet {
|
||||
auto n_classes = states[className].size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel();
|
||||
trainModel();
|
||||
buildModel(weights);
|
||||
trainModel(weights);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Classifier::buildDataset(Tensor& ytmp)
|
||||
{
|
||||
try {
|
||||
@ -35,16 +34,17 @@ namespace bayesnet {
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
void Classifier::trainModel()
|
||||
void Classifier::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
model.fit(dataset, features, className, states);
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
return build(features, className, states);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
@ -55,12 +55,19 @@ namespace bayesnet {
|
||||
}
|
||||
auto ytmp = torch::tensor(y, kInt32);
|
||||
buildDataset(ytmp);
|
||||
return build(features, className, states);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
|
@ -11,25 +11,26 @@ namespace bayesnet {
|
||||
class Classifier : public BaseClassifier {
|
||||
private:
|
||||
void buildDataset(torch::Tensor& y);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
protected:
|
||||
bool fitted;
|
||||
Network model;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
Network model;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
void checkFitParameters();
|
||||
virtual void buildModel() = 0;
|
||||
void trainModel() override;
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
|
@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble() : Classifier(Network()) {}
|
||||
|
||||
void Ensemble::trainModel()
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
@ -18,9 +18,9 @@ namespace bayesnet {
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
vector<int> y_pred_final;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<float> votes(y_pred.size(1), 0);
|
||||
vector<double> votes(y_pred.size(1), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += 1;
|
||||
votes[y_pred_[i][j]] += significanceModels[j];
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
|
@ -14,7 +14,8 @@ namespace bayesnet {
|
||||
protected:
|
||||
unsigned n_models;
|
||||
vector<unique_ptr<Classifier>> models;
|
||||
void trainModel() override;
|
||||
vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
vector<int> voting(Tensor& y_pred);
|
||||
public:
|
||||
Ensemble();
|
||||
|
@ -4,7 +4,7 @@ namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||
void KDB::buildModel()
|
||||
void KDB::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
/*
|
||||
1. For each feature Xi, compute mutual information, I(X;C),
|
||||
@ -29,13 +29,13 @@ namespace bayesnet {
|
||||
// where C is the class.
|
||||
addNodes();
|
||||
const Tensor& y = dataset.index({ -1, "..." });
|
||||
vector <float> mi;
|
||||
vector<double> mi;
|
||||
for (auto i = 0; i < features.size(); i++) {
|
||||
Tensor firstFeature = dataset.index({ i, "..." });
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y));
|
||||
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
|
||||
}
|
||||
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge();
|
||||
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
|
||||
// 3. Let the used variable list, S, be empty.
|
||||
vector<int> S;
|
||||
// 4. Let the DAG network being constructed, BN, begin with a single
|
||||
|
@ -1,5 +1,6 @@
|
||||
#ifndef KDB_H
|
||||
#define KDB_H
|
||||
#include <torch/torch.h>
|
||||
#include "Classifier.h"
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
@ -11,7 +12,7 @@ namespace bayesnet {
|
||||
float theta;
|
||||
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
|
@ -5,7 +5,6 @@
|
||||
namespace bayesnet {
|
||||
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
|
||||
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
||||
getmaxThreads()), fitted(other.fitted)
|
||||
{
|
||||
@ -104,8 +103,11 @@ namespace bayesnet {
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
if (weights.size(0) != n_samples) {
|
||||
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
|
||||
}
|
||||
if (n_samples != n_samples_y) {
|
||||
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||
}
|
||||
@ -136,28 +138,29 @@ namespace bayesnet {
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X , ytmp }, 0);
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
// Build tensor of samples (nxm) (n+1 because of the class)
|
||||
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
|
||||
@ -165,11 +168,12 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states);
|
||||
completeFit(states, weights);
|
||||
}
|
||||
void Network::completeFit(const map<string, vector<int>>& states)
|
||||
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
@ -182,7 +186,7 @@ namespace bayesnet {
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
@ -191,7 +195,7 @@ namespace bayesnet {
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing);
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
@ -343,7 +347,7 @@ namespace bayesnet {
|
||||
}
|
||||
// Normalize result
|
||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Network::show() const
|
||||
@ -431,6 +435,7 @@ namespace bayesnet {
|
||||
{
|
||||
for (auto& node : nodes) {
|
||||
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
|
||||
cout << node.second->getCPT() << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -13,19 +13,18 @@ namespace bayesnet {
|
||||
int classNumStates;
|
||||
vector<string> features; // Including classname
|
||||
string className;
|
||||
int laplaceSmoothing = 1;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // nxm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
vector<double> predict_sample(const vector<int>&);
|
||||
vector<double> predict_sample(const torch::Tensor&);
|
||||
vector<double> exactInference(map<string, int>&);
|
||||
double computeFactor(map<string, int>&);
|
||||
void completeFit(const map<string, vector<int>>&);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
|
||||
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const map<string, vector<int>>&);
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float, int);
|
||||
explicit Network(float);
|
||||
explicit Network(Network&);
|
||||
torch::Tensor& getSamples();
|
||||
@ -39,9 +38,9 @@ namespace bayesnet {
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
|
@ -84,7 +84,7 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
@ -111,7 +111,7 @@ namespace bayesnet {
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
|
||||
}
|
||||
// Normalize the counts
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
|
@ -26,7 +26,7 @@ namespace bayesnet {
|
||||
vector<Node*>& getParents();
|
||||
vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor&, const vector<string>&, const int);
|
||||
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
|
@ -65,7 +65,8 @@ namespace bayesnet {
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
model.fit(pDataset, pFeatures, pClassName, states);
|
||||
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
||||
}
|
||||
return states;
|
||||
}
|
||||
|
@ -4,7 +4,7 @@ namespace bayesnet {
|
||||
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||
|
||||
void SPODE::buildModel()
|
||||
void SPODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
|
@ -7,7 +7,7 @@ namespace bayesnet {
|
||||
private:
|
||||
int root;
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() {};
|
||||
|
@ -21,7 +21,6 @@ namespace bayesnet {
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
|
||||
y = dataset.index({ -1, "..." }).clone();
|
||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||
features = features_;
|
||||
|
@ -5,7 +5,7 @@ namespace bayesnet {
|
||||
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
|
||||
void TAN::buildModel()
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
@ -15,15 +15,15 @@ namespace bayesnet {
|
||||
Tensor class_dataset = dataset.index({ -1, "..." });
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
Tensor feature_dataset = dataset.index({ i, "..." });
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
|
||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights = metrics.conditionalEdge();
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
auto mst = metrics.maximumSpanningTree(features, weights, root);
|
||||
auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
|
||||
// 4. Add edges from the maximum spanning tree to the model
|
||||
for (auto i = 0; i < mst.size(); ++i) {
|
||||
auto [from, to] = mst[i];
|
||||
|
@ -7,7 +7,7 @@ namespace bayesnet {
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel() override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() {};
|
||||
|
@ -4,7 +4,7 @@ namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
// Return the indices in descending order
|
||||
vector<int> argsort(vector<float>& nums)
|
||||
vector<int> argsort(vector<double>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
vector<int> indices(n);
|
||||
|
@ -5,7 +5,7 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
vector<int> argsort(vector<float>& nums);
|
||||
vector<int> argsort(vector<double>& nums);
|
||||
vector<vector<int>> tensorToVector(Tensor& tensor);
|
||||
}
|
||||
#endif //BAYESNET_UTILS_H
|
10
src/Platform/BestResult.h
Normal file
10
src/Platform/BestResult.h
Normal file
@ -0,0 +1,10 @@
|
||||
#ifndef BESTRESULT_H
|
||||
#define BESTRESULT_H
|
||||
#include <string>
|
||||
class BestResult {
|
||||
public:
|
||||
static std::string title() { return "STree_default (linear-ovo)"; }
|
||||
static double score() { return 22.109799; }
|
||||
static std::string scoreName() { return "accuracy"; }
|
||||
};
|
||||
#endif
|
@ -5,4 +5,8 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
add_executable(manage manage.cc Results.cc Report.cc)
|
||||
add_executable(list list.cc platformUtils Datasets.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(manage "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
14
src/Platform/Colors.h
Normal file
14
src/Platform/Colors.h
Normal file
@ -0,0 +1,14 @@
|
||||
#ifndef COLORS_H
|
||||
#define COLORS_H
|
||||
class Colors {
|
||||
public:
|
||||
static std::string MAGENTA() { return "\033[1;35m"; }
|
||||
static std::string BLUE() { return "\033[1;34m"; }
|
||||
static std::string CYAN() { return "\033[1;36m"; }
|
||||
static std::string GREEN() { return "\033[1;32m"; }
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
@ -24,75 +24,110 @@ namespace platform {
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
|
||||
return result;
|
||||
}
|
||||
vector<string> Datasets::getFeatures(string name)
|
||||
vector<string> Datasets::getFeatures(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getFeatures();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getFeatures();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Datasets::getStates(string name)
|
||||
map<string, vector<int>> Datasets::getStates(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getStates();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getStates();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
string Datasets::getClassName(string name)
|
||||
void Datasets::loadDataset(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getClassName();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return;
|
||||
} else {
|
||||
datasets.at(name)->load();
|
||||
}
|
||||
}
|
||||
string Datasets::getClassName(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getClassName();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNSamples(string name)
|
||||
int Datasets::getNSamples(const string& name) const
|
||||
{
|
||||
if (datasets[name]->isLoaded()) {
|
||||
return datasets[name]->getNSamples();
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getNSamples();
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(string name)
|
||||
int Datasets::getNClasses(const string& name)
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto className = datasets.at(name)->getClassName();
|
||||
if (discretize) {
|
||||
auto states = getStates(name);
|
||||
return states.at(className).size();
|
||||
}
|
||||
auto [Xv, yv] = getVectors(name);
|
||||
return *max_element(yv.begin(), yv.end()) + 1;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
vector<int> Datasets::getClassesCounts(const string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto [Xv, yv] = datasets.at(name)->getVectors();
|
||||
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
|
||||
for (auto y : yv) {
|
||||
counts[y]++;
|
||||
}
|
||||
return counts;
|
||||
} else {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectors();
|
||||
}
|
||||
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(string name)
|
||||
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectorsDiscretized();
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(string name)
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getTensors();
|
||||
}
|
||||
bool Datasets::isDataset(const string& name)
|
||||
bool Datasets::isDataset(const string& name) const
|
||||
{
|
||||
return datasets.find(name) != datasets.end();
|
||||
}
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
string Dataset::getName()
|
||||
string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
string Dataset::getClassName()
|
||||
string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
vector<string> Dataset::getFeatures()
|
||||
vector<string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
@ -100,7 +135,7 @@ namespace platform {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures()
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
@ -108,7 +143,7 @@ namespace platform {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples()
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
@ -116,7 +151,7 @@ namespace platform {
|
||||
throw invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<string, vector<int>> Dataset::getStates()
|
||||
map<string, vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
|
@ -29,15 +29,15 @@ namespace platform {
|
||||
public:
|
||||
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
string getName();
|
||||
string getClassName();
|
||||
vector<string> getFeatures();
|
||||
map<string, vector<int>> getStates();
|
||||
string getName() const;
|
||||
string getClassName() const;
|
||||
vector<string> getFeatures() const;
|
||||
map<string, vector<int>> getStates() const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors();
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures();
|
||||
int getNSamples();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
@ -51,14 +51,17 @@ namespace platform {
|
||||
public:
|
||||
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
|
||||
vector<string> getNames();
|
||||
vector<string> getFeatures(string name);
|
||||
int getNSamples(string name);
|
||||
string getClassName(string name);
|
||||
map<string, vector<int>> getStates(string name);
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors(string name);
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name);
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors(string name);
|
||||
bool isDataset(const string& name);
|
||||
vector<string> getFeatures(const string& name) const;
|
||||
int getNSamples(const string& name) const;
|
||||
string getClassName(const string& name) const;
|
||||
int getNClasses(const string& name);
|
||||
vector<int> getClassesCounts(const string& name) const;
|
||||
map<string, vector<int>> getStates(const string& name) const;
|
||||
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
|
||||
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
|
||||
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
|
||||
bool isDataset(const string& name) const;
|
||||
void loadDataset(const string& name) const;
|
||||
};
|
||||
};
|
||||
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "KDBLd.h"
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "BoostAODE.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
|
11
src/Platform/Paths.h
Normal file
11
src/Platform/Paths.h
Normal file
@ -0,0 +1,11 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets() { return "datasets/"; }
|
||||
static std::string results() { return "results/"; }
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,4 +1,8 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "Report.h"
|
||||
#include "BestResult.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
string headerLine(const string& text)
|
||||
@ -9,59 +13,103 @@ namespace platform {
|
||||
}
|
||||
string Report::fromVector(const string& key)
|
||||
{
|
||||
string result = "";
|
||||
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
result += to_string(item) + ", ";
|
||||
oss << sep << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
string fVector(const json& data)
|
||||
string fVector(const string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
string result = "";
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
result += to_string(item) + ", ";
|
||||
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
void Report::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
footer();
|
||||
}
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
void Report::header()
|
||||
{
|
||||
cout << string(MAXL, '*') << endl;
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
stringstream oss;
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||
cout << headerLine(data["title"].get<string>());
|
||||
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
|
||||
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
|
||||
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
|
||||
cout << headerLine(oss.str());
|
||||
cout << headerLine("Score is " + data["score_name"].get<string>());
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << endl;
|
||||
}
|
||||
void Report::body()
|
||||
{
|
||||
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
|
||||
json lastResult;
|
||||
totalScore = 0;
|
||||
bool odd = true;
|
||||
for (const auto& r : data["results"]) {
|
||||
cout << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
|
||||
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
|
||||
cout << " " << r["hyperparameters"].get<string>();
|
||||
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
|
||||
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
|
||||
try {
|
||||
cout << r["hyperparameters"].get<string>();
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cout << r["hyperparameters"];
|
||||
}
|
||||
cout << endl;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
odd = !odd;
|
||||
}
|
||||
if (data["results"].size() == 1) {
|
||||
cout << string(MAXL, '*') << endl;
|
||||
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
|
||||
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
|
||||
cout << headerLine("Train times: " + fVector(r["times_train"]));
|
||||
cout << headerLine("Test times: " + fVector(r["times_test"]));
|
||||
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
|
||||
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
|
||||
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
|
||||
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
|
||||
cout << string(MAXL, '*') << endl;
|
||||
}
|
||||
}
|
||||
void Report::footer()
|
||||
{
|
||||
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
|
||||
auto score = data["score_name"].get<string>();
|
||||
if (score == BestResult::scoreName()) {
|
||||
stringstream oss;
|
||||
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
|
||||
cout << headerLine(oss.str());
|
||||
}
|
||||
cout << string(MAXL, '*') << endl << Colors::RESET();
|
||||
|
||||
}
|
||||
}
|
@ -3,9 +3,10 @@
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Colors.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 121;
|
||||
const int MAXL = 128;
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
class Report {
|
||||
@ -16,8 +17,10 @@ namespace platform {
|
||||
private:
|
||||
void header();
|
||||
void body();
|
||||
void footer();
|
||||
string fromVector(const string& key);
|
||||
json data;
|
||||
double totalScore; // Total score of all results in a report
|
||||
};
|
||||
};
|
||||
#endif
|
239
src/Platform/Results.cc
Normal file
239
src/Platform/Results.cc
Normal file
@ -0,0 +1,239 @@
|
||||
#include <filesystem>
|
||||
#include "platformUtils.h"
|
||||
#include "Results.h"
|
||||
#include "Report.h"
|
||||
#include "BestResult.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
Result::Result(const string& path, const string& filename)
|
||||
: path(path)
|
||||
, filename(filename)
|
||||
{
|
||||
auto data = load();
|
||||
date = data["date"];
|
||||
score = 0;
|
||||
for (const auto& result : data["results"]) {
|
||||
score += result["score"].get<double>();
|
||||
}
|
||||
scoreName = data["score_name"];
|
||||
if (scoreName == BestResult::scoreName()) {
|
||||
score /= BestResult::score();
|
||||
}
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
}
|
||||
json Result::load() const
|
||||
{
|
||||
ifstream resultData(path + "/" + filename);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
|
||||
}
|
||||
void Results::load()
|
||||
{
|
||||
using std::filesystem::directory_iterator;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto filename = file.path().filename().string();
|
||||
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
|
||||
auto result = Result(path, filename);
|
||||
bool addResult = true;
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
|
||||
addResult = false;
|
||||
if (addResult)
|
||||
files.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
string Result::to_string() const
|
||||
{
|
||||
stringstream oss;
|
||||
oss << date << " ";
|
||||
oss << setw(12) << left << model << " ";
|
||||
oss << setw(11) << left << scoreName << " ";
|
||||
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
|
||||
oss << setw(9) << setprecision(3) << fixed << duration << " ";
|
||||
oss << setw(50) << left << title << " ";
|
||||
return oss.str();
|
||||
}
|
||||
void Results::show() const
|
||||
{
|
||||
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
|
||||
cout << "-------------------" << endl;
|
||||
auto i = 0;
|
||||
cout << " # Date Model Score Name Score Duration Title" << endl;
|
||||
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
|
||||
bool odd = true;
|
||||
for (const auto& result : files) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
cout << color << setw(3) << fixed << right << i++ << " ";
|
||||
cout << result.to_string() << endl;
|
||||
if (i == max && max != 0) {
|
||||
break;
|
||||
}
|
||||
odd = !odd;
|
||||
}
|
||||
}
|
||||
int Results::getIndex(const string& intent) const
|
||||
{
|
||||
string color;
|
||||
if (intent == "delete") {
|
||||
color = Colors::RED();
|
||||
} else {
|
||||
color = Colors::YELLOW();
|
||||
}
|
||||
cout << color << "Choose result to " << intent << " (cancel=-1): ";
|
||||
string line;
|
||||
getline(cin, line);
|
||||
int index = stoi(line);
|
||||
if (index >= -1 && index < static_cast<int>(files.size())) {
|
||||
return index;
|
||||
}
|
||||
cout << "Invalid index" << endl;
|
||||
return -1;
|
||||
}
|
||||
void Results::report(const int index) const
|
||||
{
|
||||
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
|
||||
auto data = files.at(index).load();
|
||||
Report report(data);
|
||||
report.show();
|
||||
}
|
||||
void Results::menu()
|
||||
{
|
||||
char option;
|
||||
int index;
|
||||
bool finished = false;
|
||||
string filename, line, options = "qldhsr";
|
||||
while (!finished) {
|
||||
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r'): ";
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
if (options.find(line[0]) != string::npos) {
|
||||
if (line.size() > 1) {
|
||||
cout << "Invalid option" << endl;
|
||||
continue;
|
||||
}
|
||||
option = line[0];
|
||||
} else {
|
||||
index = stoi(line);
|
||||
if (index >= 0 && index < files.size()) {
|
||||
report(index);
|
||||
} else {
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
switch (option) {
|
||||
case 'q':
|
||||
finished = true;
|
||||
break;
|
||||
case 'l':
|
||||
show();
|
||||
break;
|
||||
case 'd':
|
||||
index = getIndex("delete");
|
||||
if (index == -1)
|
||||
break;
|
||||
filename = files[index].getFilename();
|
||||
cout << "Deleting " << filename << endl;
|
||||
remove((path + "/" + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
cout << "File: " + filename + " deleted!" << endl;
|
||||
show();
|
||||
break;
|
||||
case 'h':
|
||||
index = getIndex("hide");
|
||||
if (index == -1)
|
||||
break;
|
||||
filename = files[index].getFilename();
|
||||
cout << "Hiding " << filename << endl;
|
||||
rename((path + "/" + filename).c_str(), (path + "/." + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
show();
|
||||
menu();
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
show();
|
||||
break;
|
||||
case 'r':
|
||||
index = getIndex("report");
|
||||
if (index == -1)
|
||||
break;
|
||||
report(index);
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
void Results::sortList()
|
||||
{
|
||||
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
|
||||
string line;
|
||||
char option;
|
||||
getline(cin, line);
|
||||
if (line.size() == 0)
|
||||
return;
|
||||
if (line.size() > 1) {
|
||||
cout << "Invalid option" << endl;
|
||||
return;
|
||||
}
|
||||
option = line[0];
|
||||
switch (option) {
|
||||
case 'd':
|
||||
sortDate();
|
||||
break;
|
||||
case 's':
|
||||
sortScore();
|
||||
break;
|
||||
case 'u':
|
||||
sortDuration();
|
||||
break;
|
||||
case 'm':
|
||||
sortModel();
|
||||
break;
|
||||
default:
|
||||
cout << "Invalid option" << endl;
|
||||
}
|
||||
}
|
||||
void Results::sortDate()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDate() > b.getDate();
|
||||
});
|
||||
}
|
||||
void Results::sortModel()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getModel() > b.getModel();
|
||||
});
|
||||
}
|
||||
void Results::sortDuration()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDuration() > b.getDuration();
|
||||
});
|
||||
}
|
||||
void Results::sortScore()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getScore() > b.getScore();
|
||||
});
|
||||
}
|
||||
void Results::manage()
|
||||
{
|
||||
if (files.size() == 0) {
|
||||
cout << "No results found!" << endl;
|
||||
exit(0);
|
||||
}
|
||||
show();
|
||||
menu();
|
||||
cout << "Done!" << endl;
|
||||
}
|
||||
|
||||
}
|
56
src/Platform/Results.h
Normal file
56
src/Platform/Results.h
Normal file
@ -0,0 +1,56 @@
|
||||
#ifndef RESULTS_H
|
||||
#define RESULTS_H
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Result {
|
||||
public:
|
||||
Result(const string& path, const string& filename);
|
||||
json load() const;
|
||||
string to_string() const;
|
||||
string getFilename() const { return filename; };
|
||||
string getDate() const { return date; };
|
||||
double getScore() const { return score; };
|
||||
string getTitle() const { return title; };
|
||||
double getDuration() const { return duration; };
|
||||
string getModel() const { return model; };
|
||||
string getScoreName() const { return scoreName; };
|
||||
private:
|
||||
string path;
|
||||
string filename;
|
||||
string date;
|
||||
double score;
|
||||
string title;
|
||||
double duration;
|
||||
string model;
|
||||
string scoreName;
|
||||
};
|
||||
class Results {
|
||||
public:
|
||||
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
|
||||
void manage();
|
||||
private:
|
||||
string path;
|
||||
int max;
|
||||
string model;
|
||||
string scoreName;
|
||||
vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
void show() const;
|
||||
void report(const int index) const;
|
||||
int getIndex(const string& intent) const;
|
||||
void menu();
|
||||
void sortList();
|
||||
void sortDate();
|
||||
void sortScore();
|
||||
void sortModel();
|
||||
void sortDuration();
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
57
src/Platform/list.cc
Normal file
57
src/Platform/list.cc
Normal file
@ -0,0 +1,57 @@
|
||||
#include <iostream>
|
||||
#include <locale>
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
#include "Datasets.h"
|
||||
|
||||
using namespace std;
|
||||
const int BALANCE_LENGTH = 75;
|
||||
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void outputBalance(const string& balance)
|
||||
{
|
||||
auto temp = string(balance);
|
||||
while (temp.size() > BALANCE_LENGTH - 1) {
|
||||
auto part = temp.substr(0, BALANCE_LENGTH);
|
||||
cout << part << endl;
|
||||
cout << setw(48) << " ";
|
||||
temp = temp.substr(BALANCE_LENGTH);
|
||||
}
|
||||
cout << temp << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto data = platform::Datasets(platform::Paths().datasets(), false);
|
||||
locale mylocale(cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
cout.imbue(mylocale);
|
||||
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << endl;
|
||||
string balanceBars = string(BALANCE_LENGTH, '=');
|
||||
cout << "============================== ====== ===== === " << balanceBars << endl;
|
||||
bool odd = true;
|
||||
for (const auto& dataset : data.getNames()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
cout << color << setw(30) << left << dataset << " ";
|
||||
data.loadDataset(dataset);
|
||||
auto nSamples = data.getNSamples(dataset);
|
||||
cout << setw(6) << right << nSamples << " ";
|
||||
cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
|
||||
cout << setw(3) << right << data.getNClasses(dataset) << " ";
|
||||
stringstream oss;
|
||||
string sep = "";
|
||||
for (auto number : data.getClassesCounts(dataset)) {
|
||||
oss << sep << setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
|
||||
sep = " / ";
|
||||
}
|
||||
outputBalance(oss.str());
|
||||
odd = !odd;
|
||||
}
|
||||
cout << Colors::RESET() << endl;
|
||||
return 0;
|
||||
}
|
@ -6,20 +6,19 @@
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "Paths.h"
|
||||
|
||||
|
||||
using namespace std;
|
||||
const string PATH_RESULTS = "results";
|
||||
const string PATH_DATASETS = "datasets";
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ PATH_DATASETS }
|
||||
);
|
||||
.default_value(string{ platform::Paths::datasets() });
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
@ -104,7 +103,7 @@ int main(int argc, char** argv)
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
auto experiment = platform::Experiment();
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
for (auto seed : seeds) {
|
||||
@ -115,7 +114,7 @@ int main(int argc, char** argv)
|
||||
experiment.go(filesToTest, path);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults)
|
||||
experiment.save(PATH_RESULTS);
|
||||
experiment.save(platform::Paths::results());
|
||||
else
|
||||
experiment.report();
|
||||
cout << "Done!" << endl;
|
||||
|
41
src/Platform/manage.cc
Normal file
41
src/Platform/manage.cc
Normal file
@ -0,0 +1,41 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
#include "Results.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("manage");
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
if (number < 0) {
|
||||
throw runtime_error("Number of results must be greater than or equal to 0");
|
||||
}
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
auto model = program.get<string>("model");
|
||||
auto score = program.get<string>("score");
|
||||
auto results = platform::Results(platform::Paths::results(), number, model, score);
|
||||
results.manage();
|
||||
return 0;
|
||||
}
|
@ -16,4 +16,6 @@ static platform::Registrar registrarA("AODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||
static platform::Registrar registrarALD("AODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||
static platform::Registrar registrarBA("BoostAODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
||||
#endif
|
@ -1,4 +1,5 @@
|
||||
#include "platformUtils.h"
|
||||
#include "Paths.h"
|
||||
|
||||
using namespace torch;
|
||||
|
||||
@ -85,7 +86,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(PATH + static_cast<string>(name) + ".arff");
|
||||
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
|
Loading…
Reference in New Issue
Block a user