smoothing #30
6
.vscode/launch.json
vendored
6
.vscode/launch.json
vendored
@ -14,11 +14,11 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
|
||||
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
||||
"args": [
|
||||
"[Node]"
|
||||
"[Network]"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build_debug/tests"
|
||||
"cwd": "${workspaceFolder}/build_Debug/tests"
|
||||
},
|
||||
{
|
||||
"name": "(gdb) Launch",
|
||||
|
@ -19,6 +19,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- Add tests to check the correct version of the mdlp, folding and json libraries.
|
||||
- Library documentation generated with Doxygen.
|
||||
- Link to documentation in the README.md.
|
||||
- Three types of smoothing the Bayesian Network OLD_LAPLACE, LAPLACE and CESTNIK.
|
||||
|
||||
### Internal
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 1.0.5.1
|
||||
VERSION 1.0.6
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@ -26,7 +26,7 @@ set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast")
|
||||
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||
endif()
|
||||
|
9
Makefile
9
Makefile
@ -12,7 +12,6 @@ plantuml = plantuml
|
||||
lcov = lcov
|
||||
genhtml = genhtml
|
||||
dot = dot
|
||||
n_procs = -j 16
|
||||
docsrcdir = docs/manual
|
||||
mansrcdir = docs/man3
|
||||
mandestdir = /usr/local/share/man
|
||||
@ -59,10 +58,10 @@ diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/
|
||||
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_debug) -t $(app_targets) --parallel
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_release) -t $(app_targets) --parallel
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
@ -106,7 +105,7 @@ opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel
|
||||
@for t in $(test_targets); do \
|
||||
echo ">>> Running $$t...";\
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
@ -119,7 +118,7 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@which $(lcov) || (echo ">>> Please install lcov"; exit 1)
|
||||
@which $(lcov) || (echo ">>ease install lcov"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ] ; then $(MAKE) test ; fi
|
||||
@echo ">>> Building report..."
|
||||
@cd $(f_debug)/tests; \
|
||||
|
@ -7,7 +7,7 @@
|
||||
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
|
||||
[![Coverage Badge](https://img.shields.io/badge/Coverage-97,3%25-green)](html/index.html)
|
||||
[![Coverage Badge](https://img.shields.io/badge/Coverage-97,1%25-green)](html/index.html)
|
||||
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
|
@ -8,16 +8,18 @@
|
||||
#include <vector>
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "bayesnet/network/Network.h"
|
||||
|
||||
namespace bayesnet {
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
public:
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||
@ -39,7 +41,7 @@ namespace bayesnet {
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
virtual void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
};
|
||||
}
|
@ -1,5 +1,5 @@
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}
|
||||
|
@ -11,7 +11,7 @@
|
||||
namespace bayesnet {
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@ -23,7 +23,7 @@ namespace bayesnet {
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel(weights);
|
||||
trainModel(weights);
|
||||
trainModel(weights, smoothing);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
@ -41,20 +41,20 @@ namespace bayesnet {
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
void Classifier::trainModel(const torch::Tensor& weights)
|
||||
void Classifier::trainModel(const torch::Tensor& weights, Smoothing_t smoothing)
|
||||
{
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
model.fit(dataset, weights, features, className, states, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
@ -63,18 +63,18 @@ namespace bayesnet {
|
||||
auto ytmp = torch::tensor(y, torch::kInt32);
|
||||
buildDataset(ytmp);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
|
@ -8,7 +8,6 @@
|
||||
#define CLASSIFIER_H
|
||||
#include <torch/torch.h>
|
||||
#include "bayesnet/utils/BayesMetrics.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "bayesnet/BaseClassifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@ -16,10 +15,10 @@ namespace bayesnet {
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
@ -51,10 +50,10 @@ namespace bayesnet {
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildDataset(torch::Tensor& y);
|
||||
private:
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
KDB::fit(dataset, features, className, states);
|
||||
KDB::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
@ -15,7 +15,7 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
|
@ -70,7 +70,7 @@ namespace bayesnet {
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states, Smoothing_t::ORIGINAL);
|
||||
}
|
||||
return states;
|
||||
}
|
||||
|
@ -8,25 +8,25 @@
|
||||
|
||||
namespace bayesnet {
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
return commonFit(features_, className_, states_);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||
return commonFit(features_, className_, states_);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
@ -34,7 +34,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
SPODE::fit(dataset, features, className, states);
|
||||
SPODE::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
@ -14,10 +14,10 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit SPODELd(int root);
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
TAN::fit(dataset, features, className, states);
|
||||
TAN::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
|
||||
|
@ -15,10 +15,9 @@ namespace bayesnet {
|
||||
public:
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
@ -10,7 +10,7 @@ namespace bayesnet {
|
||||
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
|
||||
{
|
||||
}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@ -21,7 +21,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
Ensemble::fit(dataset, features, className, states);
|
||||
Ensemble::fit(dataset, features, className, states, smoothing);
|
||||
return *this;
|
||||
|
||||
}
|
||||
@ -34,10 +34,10 @@ namespace bayesnet {
|
||||
n_models = models.size();
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
void AODELd::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
for (const auto& model : models) {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
model->fit(Xf, y, features, className, states, smoothing);
|
||||
}
|
||||
}
|
||||
std::vector<std::string> AODELd::graph(const std::string& name) const
|
||||
|
@ -15,10 +15,10 @@ namespace bayesnet {
|
||||
public:
|
||||
AODELd(bool predict_voting = true);
|
||||
virtual ~AODELd() = default;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
};
|
||||
}
|
||||
|
@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
BoostA2DE::BoostA2DE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
}
|
||||
std::vector<int> BoostA2DE::initializeModels()
|
||||
std::vector<int> BoostA2DE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
@ -32,7 +32,7 @@ namespace bayesnet {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
auto parents = { featuresSelected[i], featuresSelected[j] };
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPnDE>(parents);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
@ -41,7 +41,7 @@ namespace bayesnet {
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostA2DE::trainModel(const torch::Tensor& weights)
|
||||
void BoostA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
@ -58,7 +58,7 @@ namespace bayesnet {
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
@ -96,7 +96,7 @@ namespace bayesnet {
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<SPnDE>(std::vector<int>({ feature_pair.first, feature_pair.second }));
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
|
@ -17,9 +17,9 @@ namespace bayesnet {
|
||||
virtual ~BoostA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels();
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
@ -16,13 +16,13 @@ namespace bayesnet {
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
}
|
||||
std::vector<int> BoostAODE::initializeModels()
|
||||
std::vector<int> BoostAODE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
for (const int& feature : featuresSelected) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
@ -30,7 +30,7 @@ namespace bayesnet {
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
@ -47,7 +47,7 @@ namespace bayesnet {
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
@ -89,7 +89,7 @@ namespace bayesnet {
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
|
@ -18,9 +18,9 @@ namespace bayesnet {
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels();
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
@ -3,22 +3,21 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "Ensemble.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||
{
|
||||
|
||||
};
|
||||
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
void Ensemble::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
models[i]->fit(dataset, features, className, states, smoothing);
|
||||
}
|
||||
}
|
||||
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
|
||||
@ -85,17 +84,9 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
y_pred /= sum;
|
||||
@ -105,23 +96,15 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
//Divide each element of the prediction by the sum of the significances
|
||||
@ -141,17 +124,9 @@ namespace bayesnet {
|
||||
{
|
||||
// Build a m x n_models tensor with the predictions of each model
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict(X);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
|
@ -46,7 +46,7 @@ namespace bayesnet {
|
||||
unsigned n_models;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
bool predict_voting;
|
||||
};
|
||||
}
|
||||
|
@ -5,20 +5,20 @@
|
||||
// ***************************************************************
|
||||
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <sstream>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include "Network.h"
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
#include <pthread.h>
|
||||
#include <fstream>
|
||||
namespace bayesnet {
|
||||
Network::Network() : fitted{ false }, maxThreads{ 0.95 }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
|
||||
Network::Network() : fitted{ false }, classNumStates{ 0 }
|
||||
{
|
||||
}
|
||||
Network::Network(float maxT) : fitted{ false }, maxThreads{ maxT }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
|
||||
{
|
||||
|
||||
}
|
||||
Network::Network(const Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
maxThreads(other.getMaxThreads()), fitted(other.fitted), samples(other.samples)
|
||||
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
fitted(other.fitted), samples(other.samples)
|
||||
{
|
||||
if (samples.defined())
|
||||
samples = samples.clone();
|
||||
@ -35,16 +35,15 @@ namespace bayesnet {
|
||||
nodes.clear();
|
||||
samples = torch::Tensor();
|
||||
}
|
||||
float Network::getMaxThreads() const
|
||||
{
|
||||
return maxThreads;
|
||||
}
|
||||
torch::Tensor& Network::getSamples()
|
||||
{
|
||||
return samples;
|
||||
}
|
||||
void Network::addNode(const std::string& name)
|
||||
{
|
||||
if (fitted) {
|
||||
throw std::invalid_argument("Cannot add node to a fitted network. Initialize first.");
|
||||
}
|
||||
if (name == "") {
|
||||
throw std::invalid_argument("Node name cannot be empty");
|
||||
}
|
||||
@ -94,12 +93,21 @@ namespace bayesnet {
|
||||
}
|
||||
void Network::addEdge(const std::string& parent, const std::string& child)
|
||||
{
|
||||
if (fitted) {
|
||||
throw std::invalid_argument("Cannot add edge to a fitted network. Initialize first.");
|
||||
}
|
||||
if (nodes.find(parent) == nodes.end()) {
|
||||
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
||||
}
|
||||
if (nodes.find(child) == nodes.end()) {
|
||||
throw std::invalid_argument("Child node " + child + " does not exist");
|
||||
}
|
||||
// Check if the edge is already in the graph
|
||||
for (auto& node : nodes[parent]->getChildren()) {
|
||||
if (node->getName() == child) {
|
||||
throw std::invalid_argument("Edge " + parent + " -> " + child + " already exists");
|
||||
}
|
||||
}
|
||||
// Temporarily add edge to check for cycles
|
||||
nodes[parent]->addChild(nodes[child].get());
|
||||
nodes[child]->addParent(nodes[parent].get());
|
||||
@ -155,7 +163,7 @@ namespace bayesnet {
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
@ -164,17 +172,17 @@ namespace bayesnet {
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
@ -185,21 +193,57 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
const double n_samples = static_cast<double>(samples.size(1));
|
||||
auto worker = [&](std::pair<const std::string, std::unique_ptr<Node>>& node, int i) {
|
||||
std::string threadName = "FitWorker-" + std::to_string(i);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
double numStates = static_cast<double>(node.second->getNumStates());
|
||||
double smoothing_factor = 0.0;
|
||||
switch (smoothing) {
|
||||
case Smoothing_t::ORIGINAL:
|
||||
smoothing_factor = 1.0 / n_samples;
|
||||
break;
|
||||
case Smoothing_t::LAPLACE:
|
||||
smoothing_factor = 1.0;
|
||||
break;
|
||||
case Smoothing_t::CESTNIK:
|
||||
smoothing_factor = 1 / numStates;
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Smoothing method not recognized " + std::to_string(static_cast<int>(smoothing)));
|
||||
}
|
||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||
semaphore.release();
|
||||
};
|
||||
int i = 0;
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, std::ref(node), i++);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
// std::fstream file;
|
||||
// file.open("cpt.txt", std::fstream::out | std::fstream::app);
|
||||
// file << std::string(80, '*') << std::endl;
|
||||
// for (const auto& item : graph("Test")) {
|
||||
// file << item << std::endl;
|
||||
// }
|
||||
// file << std::string(80, '-') << std::endl;
|
||||
// file << dump_cpt() << std::endl;
|
||||
// file << std::string(80, '=') << std::endl;
|
||||
// file.close();
|
||||
fitted = true;
|
||||
}
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
@ -207,14 +251,38 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (samples.size(0) != features.size() - 1) {
|
||||
throw std::invalid_argument("(T) Sample size (" + std::to_string(samples.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
torch::Tensor result;
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
auto worker = [&](const torch::Tensor& sample, int i) {
|
||||
std::string threadName = "PredictWorker-" + std::to_string(i);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
auto psample = predict_sample(sample);
|
||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||
result.index_put_({ i, "..." }, temp);
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result.index_put_({ i, "..." }, temp);
|
||||
}
|
||||
semaphore.release();
|
||||
};
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
semaphore.acquire();
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
threads.emplace_back(worker, sample, i);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
if (proba)
|
||||
return result;
|
||||
@ -239,18 +307,38 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
std::vector<int> predictions;
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (tsamples.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::vector<int> predictions(tsamples[0].size(), 0);
|
||||
std::vector<int> sample;
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](const std::vector<int>& sample, const int row, int& prediction) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
auto classProbabilities = predict_sample(sample);
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
prediction = predictedClass;
|
||||
semaphore.release();
|
||||
};
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
predictions.push_back(predictedClass);
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
@ -261,14 +349,36 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict_proba()");
|
||||
}
|
||||
std::vector<std::vector<double>> predictions;
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (tsamples.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::vector<std::vector<double>> predictions(tsamples[0].size(), std::vector<double>(classNumStates, 0.0));
|
||||
std::vector<int> sample;
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](const std::vector<int>& sample, int row, std::vector<double>& predictions) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
predictions = classProbabilities;
|
||||
semaphore.release();
|
||||
};
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
predictions.push_back(predict_sample(sample));
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
@ -286,11 +396,6 @@ namespace bayesnet {
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(); ++i) {
|
||||
evidence[features[i]] = sample[i];
|
||||
@ -300,44 +405,26 @@ namespace bayesnet {
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size(0) != features.size() - 1) {
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(0); ++i) {
|
||||
evidence[features[i]] = sample[i].item<int>();
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
|
||||
{
|
||||
double result = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
result *= node.second->getFactorValue(completeEvidence);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||
{
|
||||
std::vector<double> result(classNumStates, 0.0);
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result[i] = factor;
|
||||
});
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
completeEvidence[getClassName()] = i;
|
||||
double partial = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
partial *= node.second->getFactorValue(completeEvidence);
|
||||
}
|
||||
result[i] = partial;
|
||||
}
|
||||
// Normalize result
|
||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||
double sum = std::accumulate(result.begin(), result.end(), 0.0);
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
|
@ -12,14 +12,18 @@
|
||||
#include "Node.h"
|
||||
|
||||
namespace bayesnet {
|
||||
enum class Smoothing_t {
|
||||
NONE = -1,
|
||||
ORIGINAL = 0,
|
||||
LAPLACE,
|
||||
CESTNIK
|
||||
};
|
||||
class Network {
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(const Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getMaxThreads() const;
|
||||
void addNode(const std::string&);
|
||||
void addEdge(const std::string&, const std::string&);
|
||||
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
||||
@ -32,9 +36,9 @@ namespace bayesnet {
|
||||
/*
|
||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||
*/
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
@ -50,19 +54,16 @@ namespace bayesnet {
|
||||
private:
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
float maxThreads = 0.95;
|
||||
int classNumStates;
|
||||
std::vector<std::string> features; // Including classname
|
||||
std::string className;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // n+1xm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
std::vector<double> predict_sample(const std::vector<int>&);
|
||||
std::vector<double> predict_sample(const torch::Tensor&);
|
||||
std::vector<double> exactInference(std::map<std::string, int>&);
|
||||
double computeFactor(std::map<std::string, int>&);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
void checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const std::map<std::string, std::vector<int>>&);
|
||||
};
|
||||
}
|
||||
|
@ -90,51 +90,54 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
// Get dimensions of the CPT
|
||||
dimensions.push_back(numStates);
|
||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
// Create a tensor of zeros with the dimensions of the CPT
|
||||
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
||||
cpTable = torch::zeros(dimensions, torch::kDouble) + smoothing;
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||
}
|
||||
int name_index = pos - features.begin();
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||
coordinates.clear();
|
||||
auto sample = dataset.index({ "...", n_sample });
|
||||
coordinates.push_back(sample[name_index]);
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
}
|
||||
int parent_index = pos - features.begin();
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
coordinates.push_back(sample[parent_index]);
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
|
||||
cpTable.index_put_({ coordinates }, weights.index({ n_sample }), true);
|
||||
}
|
||||
// Normalize the counts
|
||||
// Divide each row by the sum of the row
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
}
|
||||
float Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
double Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
// following predetermined order of indices in the cpTable (see Node.h)
|
||||
coordinates.push_back(at::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||
return cpTable.index({ coordinates }).item<float>();
|
||||
return cpTable.index({ coordinates }).item<double>();
|
||||
}
|
||||
std::vector<std::string> Node::graph(const std::string& className)
|
||||
{
|
||||
auto output = std::vector<std::string>();
|
||||
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
||||
output.push_back(name + " [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
|
||||
output.push_back("\"" + name + "\" [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return "\"" + name + "\" -> \"" + child->getName() + "\""; });
|
||||
return output;
|
||||
}
|
||||
}
|
@ -23,12 +23,12 @@ namespace bayesnet {
|
||||
std::vector<Node*>& getParents();
|
||||
std::vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
float getFactorValue(std::map<std::string, int>&);
|
||||
double getFactorValue(std::map<std::string, int>&);
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
|
46
bayesnet/utils/CountingSemaphore.h
Normal file
46
bayesnet/utils/CountingSemaphore.h
Normal file
@ -0,0 +1,46 @@
|
||||
#ifndef COUNTING_SEMAPHORE_H
|
||||
#define COUNTING_SEMAPHORE_H
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <algorithm>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <thread>
|
||||
|
||||
class CountingSemaphore {
|
||||
public:
|
||||
static CountingSemaphore& getInstance()
|
||||
{
|
||||
static CountingSemaphore instance;
|
||||
return instance;
|
||||
}
|
||||
// Delete copy constructor and assignment operator
|
||||
CountingSemaphore(const CountingSemaphore&) = delete;
|
||||
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
|
||||
void acquire()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx_);
|
||||
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||
--count_;
|
||||
}
|
||||
void release()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx_);
|
||||
++count_;
|
||||
if (count_ <= max_count_) {
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
private:
|
||||
CountingSemaphore()
|
||||
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||
count_(max_count_)
|
||||
{
|
||||
}
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cv_;
|
||||
const uint max_count_;
|
||||
uint count_;
|
||||
};
|
||||
#endif
|
2
lib/json
2
lib/json
@ -1 +1 @@
|
||||
Subproject commit 8c391e04fe4195d8be862c97f38cfe10e2a3472e
|
||||
Subproject commit 960b763ecd144f156d05ec61f577b04107290137
|
2
lib/mdlp
2
lib/mdlp
@ -1 +1 @@
|
||||
Subproject commit 236d1b2f8be185039493fe7fce04a83e02ed72e5
|
||||
Subproject commit 2db60e007d70da876379373c53b6421f281daeac
|
@ -8,7 +8,7 @@ find_package(Torch REQUIRED)
|
||||
find_library(BayesNet NAMES BayesNet.a libBayesNet.a REQUIRED)
|
||||
|
||||
include_directories(
|
||||
lib/Files
|
||||
../tests/lib/Files
|
||||
lib/mdlp
|
||||
lib/json/include
|
||||
/usr/local/include
|
||||
|
@ -60,9 +60,9 @@ int main(int argc, char* argv[])
|
||||
auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
|
||||
std::cout << "Library version: " << clf.getVersion() << std::endl;
|
||||
tie(X, y, features, className, states) = loadDataset(file_name, true);
|
||||
clf.fit(X, y, features, className, states);
|
||||
clf.fit(X, y, features, className, states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto score = clf.score(X, y);
|
||||
std::cout << "File: " << file_name << " score: " << score << std::endl;
|
||||
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,7 @@ if(ENABLE_TESTING)
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/tests/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
|
@ -16,7 +16,7 @@ TEST_CASE("Fit and Score", "[A2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::A2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.831776).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.getNumberOfNodes() == 360);
|
||||
REQUIRE(clf.getNumberOfEdges() == 756);
|
||||
@ -30,18 +30,18 @@ TEST_CASE("Test score with predict_voting", "[A2DE]")
|
||||
{"predict_voting", true},
|
||||
};
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.82243).epsilon(raw.epsilon));
|
||||
hyperparameters["predict_voting"] = false;
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.83178).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Test graph", "[A2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::A2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = clf.graph();
|
||||
REQUIRE(graph.size() == 78);
|
||||
REQUIRE(graph[0] == "digraph BayesNet {\nlabel=<BayesNet A2DE_0>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
|
||||
|
@ -18,38 +18,38 @@ TEST_CASE("Test Cannot build dataset with wrong data vector", "[Classifier]")
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
raw.yv.pop_back();
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
}
|
||||
TEST_CASE("Test Cannot build dataset with wrong data tensor", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto yshort = torch::zeros({ 149 }, torch::kInt32);
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states, raw.smoothing), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
||||
}
|
||||
TEST_CASE("Invalid data type", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", false);
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states), "dataset (X, y) must be of type Integer");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), "dataset (X, y) must be of type Integer");
|
||||
}
|
||||
TEST_CASE("Invalid number of features", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto Xt = torch::cat({ raw.Xt, torch::zeros({ 1, 150 }, torch::kInt32) }, 0);
|
||||
REQUIRE_THROWS_AS(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states), "Classifier: X 5 and features 4 must have the same number of features");
|
||||
REQUIRE_THROWS_AS(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), "Classifier: X 5 and features 4 must have the same number of features");
|
||||
}
|
||||
TEST_CASE("Invalid class name", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states), "class name not found in states");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states, raw.smoothing), "class name not found in states");
|
||||
}
|
||||
TEST_CASE("Invalid feature name", "[Classifier]")
|
||||
{
|
||||
@ -57,8 +57,8 @@ TEST_CASE("Invalid feature name", "[Classifier]")
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto statest = raw.states;
|
||||
statest.erase("petallength");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest), "feature [petallength] not found in states");
|
||||
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest, raw.smoothing), "feature [petallength] not found in states");
|
||||
}
|
||||
TEST_CASE("Invalid hyperparameter", "[Classifier]")
|
||||
{
|
||||
@ -71,7 +71,7 @@ TEST_CASE("Topological order", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto order = model.topological_order();
|
||||
REQUIRE(order.size() == 4);
|
||||
REQUIRE(order[0] == "petallength");
|
||||
@ -83,7 +83,7 @@ TEST_CASE("Dump_cpt", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::TAN();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto cpt = model.dump_cpt();
|
||||
REQUIRE(cpt.size() == 1713);
|
||||
}
|
||||
@ -111,7 +111,7 @@ TEST_CASE("KDB Graph", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::KDB(2);
|
||||
auto raw = RawDatasets("iris", true);
|
||||
model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = model.graph();
|
||||
REQUIRE(graph.size() == 15);
|
||||
}
|
||||
@ -119,7 +119,7 @@ TEST_CASE("KDBLd Graph", "[Classifier]")
|
||||
{
|
||||
auto model = bayesnet::KDBLd(2);
|
||||
auto raw = RawDatasets("iris", false);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = model.graph();
|
||||
REQUIRE(graph.size() == 15);
|
||||
}
|
@ -18,7 +18,7 @@ TEST_CASE("Topological Order", "[Ensemble]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto order = clf.topological_order();
|
||||
REQUIRE(order.size() == 0);
|
||||
}
|
||||
@ -26,7 +26,7 @@ TEST_CASE("Dump CPT", "[Ensemble]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto dump = clf.dump_cpt();
|
||||
REQUIRE(dump == "");
|
||||
}
|
||||
@ -34,7 +34,7 @@ TEST_CASE("Number of States", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfStates() == 76);
|
||||
}
|
||||
TEST_CASE("Show", "[Ensemble]")
|
||||
@ -46,7 +46,7 @@ TEST_CASE("Show", "[Ensemble]")
|
||||
{"maxTolerance", 1},
|
||||
{"convergence", false},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::string> expected = {
|
||||
"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> sepallength, sepalwidth, petalwidth, ",
|
||||
@ -78,16 +78,16 @@ TEST_CASE("Graph", "[Ensemble]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto graph = clf.graph();
|
||||
REQUIRE(graph.size() == 56);
|
||||
auto clf2 = bayesnet::AODE();
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
graph = clf2.graph();
|
||||
REQUIRE(graph.size() == 56);
|
||||
raw = RawDatasets("glass", false);
|
||||
auto clf3 = bayesnet::AODELd();
|
||||
clf3.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
clf3.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
graph = clf3.graph();
|
||||
REQUIRE(graph.size() == 261);
|
||||
}
|
||||
|
@ -20,7 +20,7 @@
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
const std::string ACTUAL_VERSION = "1.0.5.1";
|
||||
const std::string ACTUAL_VERSION = "1.0.6";
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{
|
||||
@ -54,7 +54,7 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
auto clf = models[name];
|
||||
auto discretize = name.substr(name.length() - 2) != "Ld";
|
||||
auto raw = RawDatasets(file_name, discretize);
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf->score(raw.Xt, raw.yt);
|
||||
INFO("Classifier: " << name << " File: " << file_name);
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
||||
@ -81,7 +81,7 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 19);
|
||||
@ -93,7 +93,7 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
{
|
||||
auto clf = bayesnet::TANLd();
|
||||
auto raw = RawDatasets("iris", false);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 19);
|
||||
@ -106,7 +106,7 @@ TEST_CASE("Get num features & num edges", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
||||
@ -166,7 +166,7 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
SECTION("Test " + model + " predict_proba")
|
||||
{
|
||||
auto clf = models[model];
|
||||
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
||||
auto y_pred = clf->predict(raw.Xv);
|
||||
@ -203,7 +203,7 @@ TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::AODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
@ -222,9 +222,9 @@ TEST_CASE("SPODELd dataset", "[Models]")
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
// raw.dataset.to(torch::kFloat32);
|
||||
clf.fit(raw.dataset, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
@ -233,13 +233,13 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
clf.setHyperparameters({
|
||||
{"k", 3},
|
||||
{"theta", 0.7},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto scoret = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
@ -248,7 +248,7 @@ TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states), std::runtime_error);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
}
|
||||
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
{
|
||||
|
@ -15,6 +15,7 @@
|
||||
#include "bayesnet/network/Node.h"
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
|
||||
const double threshold = 1e-4;
|
||||
void buildModel(bayesnet::Network& net, const std::vector<std::string>& features, const std::string& className)
|
||||
{
|
||||
std::vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
|
||||
@ -29,13 +30,11 @@ void buildModel(bayesnet::Network& net, const std::vector<std::string>& features
|
||||
net.addEdge(className, feature);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
{
|
||||
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto net = bayesnet::Network();
|
||||
double threshold = 1e-4;
|
||||
|
||||
SECTION("Test get features")
|
||||
{
|
||||
@ -115,9 +114,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
REQUIRE(children == children3);
|
||||
}
|
||||
// Fit networks
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
net2.fit(raw.dataset, raw.weights, raw.features, raw.className, raw.states);
|
||||
net3.fit(raw.Xt, raw.yt, raw.weights, raw.features, raw.className, raw.states);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
net2.fit(raw.dataset, raw.weights, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
net3.fit(raw.Xt, raw.yt, raw.weights, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(net.getStates() == net2.getStates());
|
||||
REQUIRE(net.getStates() == net3.getStates());
|
||||
REQUIRE(net.getFeatures() == net2.getFeatures());
|
||||
@ -150,6 +149,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test show")
|
||||
{
|
||||
INFO("Test show");
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
@ -163,6 +163,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test topological_sort")
|
||||
{
|
||||
INFO("Test topological sort");
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
@ -176,6 +177,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test graph")
|
||||
{
|
||||
INFO("Test graph");
|
||||
net.addNode("A");
|
||||
net.addNode("B");
|
||||
net.addNode("C");
|
||||
@ -193,8 +195,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test predict")
|
||||
{
|
||||
INFO("Test predict");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||
std::vector<int> y_test = { 2, 2, 0, 2, 1 };
|
||||
auto y_pred = net.predict(test);
|
||||
@ -202,8 +205,9 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test predict_proba")
|
||||
{
|
||||
INFO("Test predict_proba");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||
std::vector<std::vector<double>> y_test = {
|
||||
{0.450237, 0.0866621, 0.463101},
|
||||
@ -223,15 +227,17 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test score")
|
||||
{
|
||||
INFO("Test score");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = net.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.97333333).margin(threshold));
|
||||
}
|
||||
SECTION("Copy constructor")
|
||||
{
|
||||
INFO("Test copy constructor");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto net2 = bayesnet::Network(net);
|
||||
REQUIRE(net.getFeatures() == net2.getFeatures());
|
||||
REQUIRE(net.getEdges() == net2.getEdges());
|
||||
@ -253,6 +259,7 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
}
|
||||
SECTION("Test oddities")
|
||||
{
|
||||
INFO("Test oddities");
|
||||
buildModel(net, raw.features, raw.className);
|
||||
// predict without fitting
|
||||
std::vector<std::vector<int>> test = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1}, {2, 2, 2, 2, 1} };
|
||||
@ -268,27 +275,27 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
// predict with wrong data
|
||||
auto netx = bayesnet::Network();
|
||||
buildModel(netx, raw.features, raw.className);
|
||||
netx.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
netx.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
std::vector<std::vector<int>> test2 = { {1, 2, 0, 1, 1}, {0, 1, 2, 0, 1}, {0, 0, 0, 0, 1} };
|
||||
auto test_tensor2 = bayesnet::vectorToTensor(test2, false);
|
||||
REQUIRE_THROWS_AS(netx.predict(test2), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test2), "Sample size (3) does not match the number of features (4)");
|
||||
REQUIRE_THROWS_AS(netx.predict(test_tensor2), std::logic_error);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test_tensor2), "Sample size (3) does not match the number of features (4)");
|
||||
REQUIRE_THROWS_AS(netx.predict(test2), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test2), "(V) Sample size (3) does not match the number of features (4)");
|
||||
REQUIRE_THROWS_AS(netx.predict(test_tensor2), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(netx.predict(test_tensor2), "(T) Sample size (3) does not match the number of features (4)");
|
||||
// fit with wrong data
|
||||
// Weights
|
||||
auto net2 = bayesnet::Network();
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
std::string invalid_weights = "Weights (0) must have the same number of elements as samples (150) in Network::fit";
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.features, raw.className, raw.states), invalid_weights);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, std::vector<double>(), raw.features, raw.className, raw.states, raw.smoothing), invalid_weights);
|
||||
// X & y
|
||||
std::string invalid_labels = "X and y must have the same number of samples in Network::fit (150 != 0)";
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.features, raw.className, raw.states), invalid_labels);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, std::vector<int>(), raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing), invalid_labels);
|
||||
// Features
|
||||
std::string invalid_features = "X and features must have the same number of features in Network::fit (4 != 0)";
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.className, raw.states), invalid_features);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, std::vector<std::string>(), raw.className, raw.states, raw.smoothing), invalid_features);
|
||||
// Different number of features
|
||||
auto net3 = bayesnet::Network();
|
||||
auto test2y = { 1, 2, 3, 4, 5 };
|
||||
@ -296,23 +303,23 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
auto features3 = raw.features;
|
||||
features3.pop_back();
|
||||
std::string invalid_features2 = "X and local features must have the same number of features in Network::fit (3 != 4)";
|
||||
REQUIRE_THROWS_AS(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.className, raw.states), invalid_features2);
|
||||
REQUIRE_THROWS_AS(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net3.fit(test2, test2y, std::vector<double>(5, 0), features3, raw.className, raw.states, raw.smoothing), invalid_features2);
|
||||
// Uninitialized network
|
||||
std::string network_invalid = "The network has not been initialized. You must call addNode() before calling fit()";
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states), network_invalid);
|
||||
REQUIRE_THROWS_AS(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net2.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), network_invalid);
|
||||
// Classname
|
||||
std::string invalid_classname = "Class Name not found in Network::features";
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states), invalid_classname);
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, "duck", raw.states, raw.smoothing), invalid_classname);
|
||||
// Invalid feature
|
||||
auto features2 = raw.features;
|
||||
features2.pop_back();
|
||||
features2.push_back("duck");
|
||||
std::string invalid_feature = "Feature duck not found in Network::features";
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.className, raw.states), invalid_feature);
|
||||
REQUIRE_THROWS_AS(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.fit(raw.Xv, raw.yv, raw.weightsv, features2, raw.className, raw.states, raw.smoothing), invalid_feature);
|
||||
// Add twice the same node name to the network => Nothing should happen
|
||||
net.addNode("A");
|
||||
net.addNode("A");
|
||||
@ -320,8 +327,8 @@ TEST_CASE("Test Bayesian Network", "[Network]")
|
||||
auto net4 = bayesnet::Network();
|
||||
buildModel(net4, raw.features, raw.className);
|
||||
std::string invalid_state = "Feature sepallength not found in states";
|
||||
REQUIRE_THROWS_AS(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>()), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>()), invalid_state);
|
||||
REQUIRE_THROWS_AS(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net4.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, std::map<std::string, std::vector<int>>(), raw.smoothing), invalid_state);
|
||||
}
|
||||
|
||||
}
|
||||
@ -342,15 +349,6 @@ TEST_CASE("Cicle in Network", "[Network]")
|
||||
REQUIRE_THROWS_AS(net.addEdge("C", "A"), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.addEdge("C", "A"), "Adding this edge forms a cycle in the graph.");
|
||||
}
|
||||
TEST_CASE("Test max threads constructor", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
REQUIRE(net.getMaxThreads() == 0.95f);
|
||||
auto net2 = bayesnet::Network(4);
|
||||
REQUIRE(net2.getMaxThreads() == 4);
|
||||
auto net3 = bayesnet::Network(1.75);
|
||||
REQUIRE(net3.getMaxThreads() == 1.75);
|
||||
}
|
||||
TEST_CASE("Edges troubles", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
@ -360,13 +358,16 @@ TEST_CASE("Edges troubles", "[Network]")
|
||||
REQUIRE_THROWS_WITH(net.addEdge("A", "C"), "Child node C does not exist");
|
||||
REQUIRE_THROWS_AS(net.addEdge("C", "A"), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.addEdge("C", "A"), "Parent node C does not exist");
|
||||
net.addEdge("A", "B");
|
||||
REQUIRE_THROWS_AS(net.addEdge("A", "B"), std::invalid_argument);
|
||||
REQUIRE_THROWS_WITH(net.addEdge("A", "B"), "Edge A -> B already exists");
|
||||
}
|
||||
TEST_CASE("Dump CPT", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
buildModel(net, raw.features, raw.className);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states);
|
||||
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto res = net.dump_cpt();
|
||||
std::string expected = R"(* class: (3) : [3]
|
||||
0.3333
|
||||
@ -459,3 +460,108 @@ TEST_CASE("Dump CPT", "[Network]")
|
||||
REQUIRE(res == expected);
|
||||
}
|
||||
|
||||
TEST_CASE("Test Smoothing A", "[Network]")
|
||||
{
|
||||
/*
|
||||
Tomando m = 1 Pa = 0.5
|
||||
Si estoy calculando P(A | C), con C en{ 0,1,2 } y tengo :
|
||||
AC = { 11, 12, 11, 10, 10, 12, 10, 01, 00, 02 }
|
||||
Entonces:
|
||||
P(A = 1 | C = 0) = (3 + 1 / 2 * 1) / (4 + 1) = 3.5 / 5
|
||||
P(A = 0 | C = 0) = (1 + 1 / 2 * 1) / (4 + 1) = 1.5 / 5
|
||||
Donde m aquí es el número de veces de C = 0 que es la que condiciona y la a priori vuelve a ser sobre A que es sobre las que estaríamos calculando esas marginales.
|
||||
P(A = 1 | C = 1) = (2 + 1 / 2 * 1) / (3 + 1) = 2.5 / 4
|
||||
P(A = 0 | C = 1) = (1 + 1 / 2 * 1) / (3 + 1) = 1.5 / 4
|
||||
P(A = 1 | C = 2) = (2 + 1 / 2 * 1) / (3 + 1) = 2.5 / 5
|
||||
P(A = 0 | C = 2) = (1 + 1 / 2 * 1) / (3 + 1) = 1.5 / 5
|
||||
En realidad es parecido a Laplace, que en este caso p.e.con C = 0 sería
|
||||
P(A = 1 | C = 0) = (3 + 1) / (4 + 2) = 4 / 6
|
||||
P(A = 0 | C = 0) = (1 + 1) / (4 + 2) = 2 / 6
|
||||
*/
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A");
|
||||
net.addNode("C");
|
||||
net.addEdge("C", "A");
|
||||
std::vector<int> C = { 1, 2, 1, 0, 0, 2, 0, 1, 0, 2 };
|
||||
std::vector<std::vector<int>> A = { { 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 } };
|
||||
std::map<std::string, std::vector<int>> states = { { "A", {0, 1} }, { "C", {0, 1, 2} } };
|
||||
auto weights = std::vector<double>(C.size(), 1);
|
||||
//
|
||||
// Laplace
|
||||
//
|
||||
net.fit(A, C, weights, { "A" }, "C", states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto cpt_c_laplace = net.getNodes().at("C")->getCPT();
|
||||
REQUIRE(cpt_c_laplace.size(0) == 3);
|
||||
auto laplace_c = std::vector<float>({ 0.3846, 0.3077, 0.3077 });
|
||||
for (int i = 0; i < laplace_c.size(); ++i) {
|
||||
REQUIRE(cpt_c_laplace.index({ i }).item<float>() == Catch::Approx(laplace_c[i]).margin(threshold));
|
||||
}
|
||||
auto cpt_a_laplace = net.getNodes().at("A")->getCPT();
|
||||
REQUIRE(cpt_a_laplace.size(0) == 2);
|
||||
REQUIRE(cpt_a_laplace.size(1) == 3);
|
||||
auto laplace_a = std::vector<std::vector<float>>({ {0.3333, 0.4000,0.4000}, {0.6667, 0.6000, 0.6000} });
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
REQUIRE(cpt_a_laplace.index({ i, j }).item<float>() == Catch::Approx(laplace_a[i][j]).margin(threshold));
|
||||
}
|
||||
}
|
||||
//
|
||||
// Cestnik
|
||||
//
|
||||
net.fit(A, C, weights, { "A" }, "C", states, bayesnet::Smoothing_t::CESTNIK);
|
||||
auto cpt_c_cestnik = net.getNodes().at("C")->getCPT();
|
||||
REQUIRE(cpt_c_cestnik.size(0) == 3);
|
||||
auto cestnik_c = std::vector<float>({ 0.3939, 0.3030, 0.3030 });
|
||||
for (int i = 0; i < laplace_c.size(); ++i) {
|
||||
REQUIRE(cpt_c_cestnik.index({ i }).item<float>() == Catch::Approx(cestnik_c[i]).margin(threshold));
|
||||
}
|
||||
auto cpt_a_cestnik = net.getNodes().at("A")->getCPT();
|
||||
REQUIRE(cpt_a_cestnik.size(0) == 2);
|
||||
REQUIRE(cpt_a_cestnik.size(1) == 3);
|
||||
auto cestnik_a = std::vector<std::vector<float>>({ {0.3000, 0.3750, 0.3750}, {0.7000, 0.6250, 0.6250} });
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
REQUIRE(cpt_a_cestnik.index({ i, j }).item<float>() == Catch::Approx(cestnik_a[i][j]).margin(threshold));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_CASE("Test Smoothing B", "[Network]")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("X");
|
||||
net.addNode("Y");
|
||||
net.addNode("Z");
|
||||
net.addNode("C");
|
||||
net.addEdge("C", "X");
|
||||
net.addEdge("C", "Y");
|
||||
net.addEdge("C", "Z");
|
||||
net.addEdge("Y", "Z");
|
||||
std::vector<int> C = { 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1 };
|
||||
std::vector<std::vector<int>> Data = {
|
||||
{ 0,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,0},
|
||||
{ 1,2,0,2,2,2,1,0,0,1,1,1,0,1,2,1,0,2},
|
||||
{ 2,1,3,3,2,0,0,1,3,2,1,2,2,3,0,0,1,2}
|
||||
};
|
||||
std::map<std::string, std::vector<int>> states = {
|
||||
{ "X", {0, 1} },
|
||||
{ "Y", {0, 1, 2} },
|
||||
{ "Z", {0, 1, 2, 3} },
|
||||
{ "C", {0, 1} }
|
||||
};
|
||||
auto weights = std::vector<double>(C.size(), 1);
|
||||
// Simple
|
||||
std::cout << "LAPLACE\n";
|
||||
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::LAPLACE);
|
||||
std::cout << net.dump_cpt();
|
||||
std::cout << "Predict proba of {0, 1, 2} y {1, 2, 3} = " << net.predict_proba({ {0, 1}, {1, 2}, {2, 3} }) << std::endl;
|
||||
std::cout << "ORIGINAL\n";
|
||||
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::ORIGINAL);
|
||||
std::cout << net.dump_cpt();
|
||||
std::cout << "Predict proba of {0, 1, 2} y {1, 2, 3} = " << net.predict_proba({ {0, 1}, {1, 2}, {2, 3} }) << std::endl;
|
||||
std::cout << "CESTNIK\n";
|
||||
net.fit(Data, C, weights, { "X", "Y", "Z" }, "C", states, bayesnet::Smoothing_t::CESTNIK);
|
||||
std::cout << net.dump_cpt();
|
||||
std::cout << "Predict proba of {0, 1, 2} y {1, 2, 3} = " << net.predict_proba({ {0, 1}, {1, 2}, {2, 3} }) << std::endl;
|
||||
|
||||
|
||||
}
|
||||
|
@ -17,7 +17,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::BoostA2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 342);
|
||||
REQUIRE(clf.getNumberOfEdges() == 684);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
@ -32,7 +32,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// auto raw = RawDatasets("glass", true);
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -44,7 +44,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// auto raw = RawDatasets("glass", true);
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -60,7 +60,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// {"convergence", true},
|
||||
// {"select_features","CFS"},
|
||||
// });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -75,7 +75,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// {
|
||||
// auto raw = RawDatasets("iris", true);
|
||||
// auto clf = bayesnet::BoostAODE(false);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
// auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
// clf.setHyperparameters({
|
||||
@ -104,7 +104,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// {"maxTolerance", 1},
|
||||
// {"convergence", false},
|
||||
// });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
// INFO("BoostAODE order: " + order);
|
||||
@ -136,7 +136,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// for (const auto& hyper : bad_hyper_fit.items()) {
|
||||
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
// clf.setHyperparameters(hyper.value());
|
||||
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing, std::invalid_argument);
|
||||
// }
|
||||
// }
|
||||
|
||||
@ -151,7 +151,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// {"block_update", false},
|
||||
// {"convergence_best", false},
|
||||
// });
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 210);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 378);
|
||||
// REQUIRE(clf.getNotes().size() == 1);
|
||||
@ -172,13 +172,13 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// {"convergence_best", true},
|
||||
// };
|
||||
// clf.setHyperparameters(hyperparameters);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score_best = clf.score(raw.X_test, raw.y_test);
|
||||
// REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
|
||||
// // Now we will set the hyperparameter to use the last accuracy
|
||||
// hyperparameters["convergence_best"] = false;
|
||||
// clf.setHyperparameters(hyperparameters);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
// REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||
// }
|
||||
@ -193,7 +193,7 @@ TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
// {"maxTolerance", 3},
|
||||
// {"convergence", true},
|
||||
// });
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 868);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 1724);
|
||||
// REQUIRE(clf.getNotes().size() == 3);
|
||||
|
@ -18,7 +18,7 @@ TEST_CASE("Feature_select CFS", "[BoostAODE]")
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "CFS"} });
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -30,7 +30,7 @@ TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -42,7 +42,7 @@ TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -58,7 +58,7 @@ TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
{"convergence", true},
|
||||
{"select_features","CFS"},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
@ -73,7 +73,7 @@ TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
@ -102,7 +102,7 @@ TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
{"maxTolerance", 1},
|
||||
{"convergence", false},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("BoostAODE order: " << order);
|
||||
@ -134,7 +134,7 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
||||
for (const auto& hyper : bad_hyper_fit.items()) {
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
clf.setHyperparameters(hyper.value());
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
}
|
||||
}
|
||||
|
||||
@ -149,7 +149,7 @@ TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
{"block_update", false},
|
||||
{"convergence_best", false},
|
||||
});
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 210);
|
||||
REQUIRE(clf.getNumberOfEdges() == 378);
|
||||
REQUIRE(clf.getNotes().size() == 1);
|
||||
@ -170,13 +170,13 @@ TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||
{"convergence_best", true},
|
||||
};
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_best = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
|
||||
// Now we will set the hyperparameter to use the last accuracy
|
||||
hyperparameters["convergence_best"] = false;
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||
}
|
||||
@ -191,7 +191,7 @@ TEST_CASE("Block Update", "[BoostAODE]")
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
});
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 868);
|
||||
REQUIRE(clf.getNumberOfEdges() == 1724);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
|
@ -16,10 +16,10 @@
|
||||
#include "TestUtils.h"
|
||||
|
||||
std::map<std::string, std::string> modules = {
|
||||
{ "mdlp", "1.1.2" },
|
||||
{ "mdlp", "2.0.0" },
|
||||
{ "Folding", "1.1.0" },
|
||||
{ "json", "3.11" },
|
||||
{ "ArffFiles", "1.0.0" }
|
||||
{ "ArffFiles", "1.1.0" }
|
||||
};
|
||||
|
||||
TEST_CASE("MDLP", "[Modules]")
|
||||
|
@ -14,6 +14,7 @@
|
||||
#include <ArffFiles.hpp>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <folding.hpp>
|
||||
#include <bayesnet/network/Network.h>
|
||||
|
||||
|
||||
class RawDatasets {
|
||||
@ -32,6 +33,7 @@ public:
|
||||
bool discretize;
|
||||
int num_samples = 0;
|
||||
bool shuffle = false;
|
||||
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::ORIGINAL;
|
||||
private:
|
||||
std::string to_string()
|
||||
{
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit 40ac38011a2445e00df8a18048c67abaff16fa59
|
||||
Subproject commit a5316928d408266aa425f64131ab0f592b010a8d
|
Loading…
Reference in New Issue
Block a user