Remove unoptimized implementation of conditionalEntropy

This commit is contained in:
Ricardo Montañana Gómez 2024-05-15 01:24:27 +02:00
parent e2e0fb0c40
commit 521bfd2a8e
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
4 changed files with 67 additions and 62 deletions

View File

@ -177,6 +177,8 @@ namespace bayesnet {
// Total weight sum // Total weight sum
double totalWeight = torch::sum(weights).item<double>(); double totalWeight = torch::sum(weights).item<double>();
if (totalWeight == 0)
return 0;
// Compute the conditional entropy // Compute the conditional entropy
double conditionalEntropy = 0.0; double conditionalEntropy = 0.0;
@ -192,63 +194,8 @@ namespace bayesnet {
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc); conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
} }
} }
return conditionalEntropy; return conditionalEntropy;
} }
double Metrics::conditionalEntropy2(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
{
int numSamples = firstFeature.size(0);
// Get unique values for each variable
auto [uniqueX, countsX] = at::_unique(firstFeature);
auto [uniqueC, countsC] = at::_unique(labels);
// Compute p(x,c) for each unique value of X and C
std::map<int, std::map<std::pair<int, int>, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
int x = firstFeature[i].item<int>();
int y = secondFeature[i].item<int>();
int c = labels[i].item<int>();
const auto key = std::make_pair(x, c);
jointCounts[y][key] += weights[i].item<double>();
totalWeight += weights[i].item<float>();
}
if (totalWeight == 0)
return 0;
double entropyValue = 0;
// Iterate over unique values of X and C
for (int i = 0; i < uniqueX.size(0); i++) {
int x_val = uniqueX[i].item<int>();
for (int j = 0; j < uniqueC.size(0); j++) {
int c_val = uniqueC[j].item<int>();
double p_xc = 0; // Probability of (X=x, C=c)
double entropy_f = 0;
// Find joint counts for this specific (X,C) combination
for (auto& [y, jointCount] : jointCounts) {
auto joint_count_xc = jointCount.find({ x_val, c_val });
if (joint_count_xc != jointCount.end()) {
p_xc += joint_count_xc->second;
}
}
// Only calculate conditional entropy if p(X=x, C=c) > 0
if (p_xc > 0) {
p_xc /= totalWeight;
for (auto& [y, jointCount] : jointCounts) {
auto key = std::make_pair(x_val, c_val);
double p_y_xc = jointCount[key] / p_xc;
if (p_y_xc > 0) {
entropy_f -= p_y_xc * log(p_y_xc);
}
}
}
entropyValue += p_xc * entropy_f;
}
}
return entropyValue;
return 0;
}
// I(X;Y) = H(Y) - H(Y|X) // I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights) double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{ {

View File

@ -25,7 +25,6 @@ namespace bayesnet {
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14 // Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
double entropy(const torch::Tensor& feature, const torch::Tensor& weights); double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights); double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
double conditionalEntropy2(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
protected: protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className; std::string className;

View File

@ -9,6 +9,7 @@
#include <catch2/generators/catch_generators.hpp> #include <catch2/generators/catch_generators.hpp>
#include "bayesnet/utils/BayesMetrics.h" #include "bayesnet/utils/BayesMetrics.h"
#include "TestUtils.h" #include "TestUtils.h"
#include "Timer.h"
TEST_CASE("Metrics Test", "[Metrics]") TEST_CASE("Metrics Test", "[Metrics]")
@ -100,15 +101,32 @@ TEST_CASE("Entropy Test", "[Metrics]")
} }
TEST_CASE("Conditional Entropy", "[Metrics]") TEST_CASE("Conditional Entropy", "[Metrics]")
{ {
auto raw = RawDatasets("iris", true); auto raw = RawDatasets("mfeat-factors", true);
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates); bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
bayesnet::Metrics metrics2(raw.dataset, raw.features, raw.className, raw.classNumStates);
auto feature0 = raw.dataset.index({ 0, "..." }); auto feature0 = raw.dataset.index({ 0, "..." });
auto feature1 = raw.dataset.index({ 1, "..." }); auto feature1 = raw.dataset.index({ 1, "..." });
auto feature2 = raw.dataset.index({ 2, "..." }); auto feature2 = raw.dataset.index({ 2, "..." });
auto feature3 = raw.dataset.index({ 3, "..." }); auto feature3 = raw.dataset.index({ 3, "..." });
auto labels = raw.dataset.index({ 4, "..." }); platform::Timer timer;
auto result = metrics.conditionalEntropy(feature0, feature1, labels, raw.weights); double result, greatest = 0;
auto result2 = metrics.conditionalEntropy2(feature0, feature1, labels, raw.weights); int best_i, best_j;
std::cout << "Result=" << result << "\n"; timer.start();
std::cout << "Result2=" << result2 << "\n"; for (int i = 0; i < raw.features.size() - 1; ++i) {
if (i % 50 == 0) {
std::cout << "i=" << i << " Time=" << timer.getDurationString(true) << std::endl;
}
for (int j = i + 1; j < raw.features.size(); ++j) {
result = metrics.conditionalMutualInformation(raw.dataset.index({ i, "..." }), raw.dataset.index({ j, "..." }), raw.yt, raw.weights);
if (result > greatest) {
greatest = result;
best_i = i;
best_j = j;
}
}
}
timer.stop();
std::cout << "CMI(" << best_i << "," << best_j << ")=" << greatest << "\n";
std::cout << "Time=" << timer.getDurationString() << std::endl;
// Se pueden precalcular estos valores y utilizarlos en el algoritmo como entrada
} }

41
tests/Timer.h Normal file
View File

@ -0,0 +1,41 @@
#pragma once
#include <chrono>
#include <string>
#include <sstream>
namespace platform {
class Timer {
private:
std::chrono::high_resolution_clock::time_point begin;
std::chrono::high_resolution_clock::time_point end;
public:
Timer() = default;
~Timer() = default;
void start() { begin = std::chrono::high_resolution_clock::now(); }
void stop() { end = std::chrono::high_resolution_clock::now(); }
double getDuration()
{
stop();
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
return time_span.count();
}
double getLapse()
{
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
return time_span.count();
}
std::string getDurationString(bool lapse = false)
{
double duration = lapse ? getLapse() : getDuration();
return translate2String(duration);
}
std::string translate2String(double duration)
{
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
return ss.str();
}
};
} /* namespace platform */