Solve voting vector error
This commit is contained in:
parent
7806f961e2
commit
182b07ed90
6
.vscode/launch.json
vendored
6
.vscode/launch.json
vendored
@ -27,15 +27,15 @@
|
|||||||
"-m",
|
"-m",
|
||||||
"AODE",
|
"AODE",
|
||||||
"-p",
|
"-p",
|
||||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
"/home/rmontanana/Code/discretizbench/datasets",
|
||||||
"--stratified",
|
"--stratified",
|
||||||
"-d",
|
"-d",
|
||||||
"letter",
|
"mfeat-morphological",
|
||||||
"--discretize"
|
"--discretize"
|
||||||
// "--hyperparameters",
|
// "--hyperparameters",
|
||||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||||
],
|
],
|
||||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
cmake_minimum_required(VERSION 3.20)
|
cmake_minimum_required(VERSION 3.20)
|
||||||
|
|
||||||
project(BayesNet
|
project(BayesNet
|
||||||
VERSION 0.1.0
|
VERSION 0.2.0
|
||||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
@ -40,8 +40,7 @@ if (CODE_COVERAGE)
|
|||||||
enable_testing()
|
enable_testing()
|
||||||
include(CodeCoverage)
|
include(CodeCoverage)
|
||||||
MESSAGE("Code coverage enabled")
|
MESSAGE("Code coverage enabled")
|
||||||
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0")
|
||||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
|
||||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||||
endif (CODE_COVERAGE)
|
endif (CODE_COVERAGE)
|
||||||
|
|
||||||
|
@ -1 +0,0 @@
|
|||||||
null
|
|
@ -13,7 +13,7 @@ namespace bayesnet {
|
|||||||
m = dataset.size(1);
|
m = dataset.size(1);
|
||||||
n = dataset.size(0) - 1;
|
n = dataset.size(0) - 1;
|
||||||
checkFitParameters();
|
checkFitParameters();
|
||||||
auto n_classes = states[className].size();
|
auto n_classes = states.at(className).size();
|
||||||
metrics = Metrics(dataset, features, className, n_classes);
|
metrics = Metrics(dataset, features, className, n_classes);
|
||||||
model.initialize();
|
model.initialize();
|
||||||
buildModel(weights);
|
buildModel(weights);
|
||||||
|
@ -17,9 +17,13 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||||
vector<int> y_pred_final;
|
vector<int> y_pred_final;
|
||||||
|
int numClasses = states.at(className).size();
|
||||||
|
// y_pred is m x n_models with the prediction of every model for each sample
|
||||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||||
vector<double> votes(y_pred.size(1), 0);
|
// votes store in each index (value of class) the significance added by each model
|
||||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||||
|
vector<double> votes(numClasses, 0.0);
|
||||||
|
for (int j = 0; j < n_models; ++j) {
|
||||||
votes[y_pred_[i][j]] += significanceModels[j];
|
votes[y_pred_[i][j]] += significanceModels[j];
|
||||||
}
|
}
|
||||||
// argsort in descending order
|
// argsort in descending order
|
||||||
@ -34,22 +38,17 @@ namespace bayesnet {
|
|||||||
throw logic_error("Ensemble has not been fitted");
|
throw logic_error("Ensemble has not been fitted");
|
||||||
}
|
}
|
||||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||||
// //Create a threadpool
|
auto threads{ vector<thread>() };
|
||||||
// auto threads{ vector<thread>() };
|
mutex mtx;
|
||||||
// mutex mtx;
|
|
||||||
// for (auto i = 0; i < n_models; ++i) {
|
|
||||||
// threads.push_back(thread([&, i]() {
|
|
||||||
// auto ypredict = models[i]->predict(X);
|
|
||||||
// lock_guard<mutex> lock(mtx);
|
|
||||||
// y_pred.index_put_({ "...", i }, ypredict);
|
|
||||||
// }));
|
|
||||||
// Hacer voting aquí ? ? ?
|
|
||||||
// }
|
|
||||||
// for (auto& thread : threads) {
|
|
||||||
// thread.join();
|
|
||||||
// }
|
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
y_pred.index_put_({ "...", i }, models[i]->predict(X));
|
threads.push_back(thread([&, i]() {
|
||||||
|
auto ypredict = models[i]->predict(X);
|
||||||
|
lock_guard<mutex> lock(mtx);
|
||||||
|
y_pred.index_put_({ "...", i }, ypredict);
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
}
|
}
|
||||||
return torch::tensor(voting(y_pred));
|
return torch::tensor(voting(y_pred));
|
||||||
}
|
}
|
||||||
|
@ -299,25 +299,19 @@ namespace bayesnet {
|
|||||||
vector<double> Network::exactInference(map<string, int>& evidence)
|
vector<double> Network::exactInference(map<string, int>& evidence)
|
||||||
{
|
{
|
||||||
vector<double> result(classNumStates, 0.0);
|
vector<double> result(classNumStates, 0.0);
|
||||||
// vector<thread> threads;
|
vector<thread> threads;
|
||||||
// mutex mtx;
|
mutex mtx;
|
||||||
// for (int i = 0; i < classNumStates; ++i) {
|
|
||||||
// threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
|
||||||
// auto completeEvidence = map<string, int>(evidence);
|
|
||||||
// completeEvidence[getClassName()] = i;
|
|
||||||
// double factor = computeFactor(completeEvidence);
|
|
||||||
// lock_guard<mutex> lock(mtx);
|
|
||||||
// result[i] = factor;
|
|
||||||
// });
|
|
||||||
// }
|
|
||||||
// for (auto& thread : threads) {
|
|
||||||
// thread.join();
|
|
||||||
// }
|
|
||||||
for (int i = 0; i < classNumStates; ++i) {
|
for (int i = 0; i < classNumStates; ++i) {
|
||||||
auto completeEvidence = map<string, int>(evidence);
|
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||||
completeEvidence[getClassName()] = i;
|
auto completeEvidence = map<string, int>(evidence);
|
||||||
double factor = computeFactor(completeEvidence);
|
completeEvidence[getClassName()] = i;
|
||||||
result[i] = factor;
|
double factor = computeFactor(completeEvidence);
|
||||||
|
lock_guard<mutex> lock(mtx);
|
||||||
|
result[i] = factor;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
}
|
}
|
||||||
// Normalize result
|
// Normalize result
|
||||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||||
|
@ -100,7 +100,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
int name_index = pos - features.begin();
|
int name_index = pos - features.begin();
|
||||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||||
for (auto parent : parents) {
|
for (auto parent : parents) {
|
||||||
pos = find(features.begin(), features.end(), parent->getName());
|
pos = find(features.begin(), features.end(), parent->getName());
|
||||||
@ -118,10 +118,10 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
float Node::getFactorValue(map<string, int>& evidence)
|
float Node::getFactorValue(map<string, int>& evidence)
|
||||||
{
|
{
|
||||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||||
// following predetermined order of indices in the cpTable (see Node.h)
|
// following predetermined order of indices in the cpTable (see Node.h)
|
||||||
coordinates.push_back(torch::tensor(evidence[name]));
|
coordinates.push_back(at::tensor(evidence[name]));
|
||||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
|
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||||
return cpTable.index({ coordinates }).item<float>();
|
return cpTable.index({ coordinates }).item<float>();
|
||||||
}
|
}
|
||||||
vector<string> Node::graph(const string& className)
|
vector<string> Node::graph(const string& className)
|
||||||
|
@ -53,15 +53,6 @@ namespace bayesnet {
|
|||||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||||
discretizers[feature]->fit(xvf, yxv);
|
discretizers[feature]->fit(xvf, yxv);
|
||||||
//
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// auto tmp = discretizers[feature]->transform(xvf);
|
|
||||||
// Xv[index] = tmp;
|
|
||||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
|
||||||
// iota(xStates.begin(), xStates.end(), 0);
|
|
||||||
// //Update new states of the feature/node
|
|
||||||
// states[feature] = xStates;
|
|
||||||
}
|
}
|
||||||
if (upgrade) {
|
if (upgrade) {
|
||||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||||
|
@ -213,10 +213,11 @@ namespace platform {
|
|||||||
{
|
{
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
auto item = states.at(features[i]);
|
||||||
|
iota(begin(item), end(item), 0);
|
||||||
}
|
}
|
||||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||||
iota(begin(states[className]), end(states[className]), 0);
|
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||||
}
|
}
|
||||||
void Dataset::load_arff()
|
void Dataset::load_arff()
|
||||||
{
|
{
|
||||||
|
@ -182,6 +182,7 @@ namespace platform {
|
|||||||
clf.reset();
|
clf.reset();
|
||||||
}
|
}
|
||||||
cout << "end. " << flush;
|
cout << "end. " << flush;
|
||||||
|
delete fold;
|
||||||
}
|
}
|
||||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||||
|
@ -69,11 +69,12 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
|||||||
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
auto item = states.at(features[i]);
|
||||||
|
iota(begin(item), end(item), 0);
|
||||||
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
||||||
}
|
}
|
||||||
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||||
iota(begin(states[className]), end(states[className]), 0);
|
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||||
} else {
|
} else {
|
||||||
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
|
Loading…
Reference in New Issue
Block a user