2024-02-23 19:36:11 +00:00
|
|
|
|
|
|
|
#include "bayesnetUtils.h"
|
|
|
|
namespace bayesnet {
|
|
|
|
// Return the indices in descending order
|
|
|
|
std::vector<int> argsort(std::vector<double>& nums)
|
|
|
|
{
|
|
|
|
int n = nums.size();
|
|
|
|
std::vector<int> indices(n);
|
|
|
|
iota(indices.begin(), indices.end(), 0);
|
|
|
|
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
|
|
|
return indices;
|
|
|
|
}
|
2024-02-23 22:11:14 +00:00
|
|
|
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
|
2024-02-23 19:36:11 +00:00
|
|
|
{
|
2024-02-23 22:11:14 +00:00
|
|
|
// convert mxn tensor to mxn std::vector
|
|
|
|
std::vector<std::vector<double>> result;
|
|
|
|
// Iterate over cols
|
|
|
|
for (int i = 0; i < dtensor.size(0); ++i) {
|
|
|
|
auto col_tensor = dtensor.index({ i, "..." });
|
|
|
|
auto col = std::vector<double>(col_tensor.data_ptr<float>(), col_tensor.data_ptr<float>() + dtensor.size(1));
|
|
|
|
result.push_back(col);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose)
|
|
|
|
{
|
|
|
|
// convert nxm std::vector to mxn tensor if transpose
|
|
|
|
long int m = transpose ? vector[0].size() : vector.size();
|
|
|
|
long int n = transpose ? vector.size() : vector[0].size();
|
2024-02-23 19:36:11 +00:00
|
|
|
auto tensor = torch::zeros({ m, n }, torch::kInt32);
|
|
|
|
for (int i = 0; i < m; ++i) {
|
|
|
|
for (int j = 0; j < n; ++j) {
|
2024-02-23 22:11:14 +00:00
|
|
|
tensor[i][j] = transpose ? vector[j][i] : vector[i][j];
|
2024-02-23 19:36:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return tensor;
|
|
|
|
}
|
|
|
|
}
|