BayesNet/bayesnet/ensembles/AODELd.cc

48 lines
1.8 KiB
C++
Raw Normal View History

2024-04-11 16:02:49 +00:00
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
2023-08-06 09:31:44 +00:00
#include "AODELd.h"
namespace bayesnet {
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
{
}
2024-06-11 09:40:45 +00:00
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
2023-08-06 09:31:44 +00:00
{
2023-08-24 10:09:35 +00:00
checkInput(X_, y_);
2023-08-06 09:31:44 +00:00
features = features_;
className = className_;
2023-08-07 23:53:41 +00:00
Xf = X_;
y = y_;
2023-11-08 17:45:35 +00:00
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
2023-08-12 09:49:18 +00:00
states = fit_local_discretization(y);
2023-08-07 23:53:41 +00:00
// We have discretized the input data
2024-12-10 12:35:23 +00:00
// 1st we need to fit the model to build the normal AODE structure, Ensemble::fit
// calls buildModel to initialize the base models
2024-06-11 09:40:45 +00:00
Ensemble::fit(dataset, features, className, states, smoothing);
2023-08-06 09:31:44 +00:00
return *this;
2023-08-07 23:53:41 +00:00
2023-08-06 09:31:44 +00:00
}
2023-08-15 13:04:56 +00:00
void AODELd::buildModel(const torch::Tensor& weights)
2023-08-06 09:31:44 +00:00
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
2023-08-10 00:06:18 +00:00
models.push_back(std::make_unique<SPODELd>(i));
2023-08-06 09:31:44 +00:00
}
2023-08-07 23:53:41 +00:00
n_models = models.size();
2023-11-08 17:45:35 +00:00
significanceModels = std::vector<double>(n_models, 1.0);
2023-08-06 09:31:44 +00:00
}
2024-06-11 09:40:45 +00:00
void AODELd::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
{
for (const auto& model : models) {
2024-06-11 09:40:45 +00:00
model->fit(Xf, y, features, className, states, smoothing);
}
}
2023-11-08 17:45:35 +00:00
std::vector<std::string> AODELd::graph(const std::string& name) const
2023-08-06 09:31:44 +00:00
{
return Ensemble::graph(name);
}
}