Complete AODELd
This commit is contained in:
parent
9e94f4e140
commit
14ea51648a
4
.vscode/launch.json
vendored
4
.vscode/launch.json
vendored
@ -25,14 +25,14 @@
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"args": [
|
||||
"-m",
|
||||
"TANNew",
|
||||
"AODELd",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build/src/Platform",
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
|
5
Makefile
5
Makefile
@ -17,6 +17,11 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
|
||||
build: ## Build the main and BayesNetSample
|
||||
cmake --build build -t main -t BayesNetSample -j 32
|
||||
|
||||
clean: ## Clean the debug info
|
||||
@echo ">>> Cleaning Debug BayesNet ...";
|
||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||
@echo ">>> Done";
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet ...";
|
||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||
|
34
src/BayesNet/AODELd.cc
Normal file
34
src/BayesNet/AODELd.cc
Normal file
@ -0,0 +1,34 @@
|
||||
#include "AODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
AODELd::AODELd() : Ensemble(), Proposal(Ensemble::Xv, Ensemble::yv, features, className) {}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
states = states_;
|
||||
train();
|
||||
for (const auto& model : models) {
|
||||
model->fit(X_, y_, features_, className_, states_);
|
||||
}
|
||||
n_models = models.size();
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
void AODELd::train()
|
||||
{
|
||||
models.clear();
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
models.push_back(std::make_unique<SPODELd>(i));
|
||||
}
|
||||
}
|
||||
Tensor AODELd::predict(Tensor& X)
|
||||
{
|
||||
return Ensemble::predict(X);
|
||||
}
|
||||
vector<string> AODELd::graph(const string& name)
|
||||
{
|
||||
return Ensemble::graph(name);
|
||||
}
|
||||
}
|
20
src/BayesNet/AODELd.h
Normal file
20
src/BayesNet/AODELd.h
Normal file
@ -0,0 +1,20 @@
|
||||
#ifndef AODELD_H
|
||||
#define AODELD_H
|
||||
#include "Ensemble.h"
|
||||
#include "Proposal.h"
|
||||
#include "SPODELd.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
class AODELd : public Ensemble, public Proposal {
|
||||
public:
|
||||
AODELd();
|
||||
virtual ~AODELd() = default;
|
||||
AODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "AODE") override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void train() override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !AODELD_H
|
@ -1,5 +1,5 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc Mst.cc Proposal.cc)
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc)
|
||||
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")
|
@ -3,24 +3,24 @@
|
||||
namespace bayesnet {
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {}
|
||||
Ensemble::Ensemble() : n_models(0), metrics(Metrics()), fitted(false) {}
|
||||
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X, ytmp }, 0);
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
this->states = states;
|
||||
auto n_classes = states[className].size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
metrics = Metrics(samples, features, className, n_classes);
|
||||
// Build models
|
||||
train();
|
||||
// Train models
|
||||
n_models = models.size();
|
||||
auto Xt = torch::transpose(X, 0, 1);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
if (Xv == vector<vector<int>>()) {
|
||||
if (Xv.empty()) {
|
||||
// fit with tensors
|
||||
models[i]->fit(Xt, y, features, className, states);
|
||||
models[i]->fit(X, y, features, className, states);
|
||||
} else {
|
||||
// fit with vectors
|
||||
models[i]->fit(Xv, yv, features, className, states);
|
||||
@ -29,9 +29,16 @@ namespace bayesnet {
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
void Ensemble::generateTensorXFromVector()
|
||||
{
|
||||
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
|
||||
for (int i = 0; i < Xv.size(); ++i) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
|
||||
}
|
||||
}
|
||||
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->X = torch::transpose(X, 0, 1);
|
||||
this->X = X;
|
||||
this->y = y;
|
||||
Xv = vector<vector<int>>();
|
||||
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
||||
@ -39,11 +46,8 @@ namespace bayesnet {
|
||||
}
|
||||
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
|
||||
Xv = X;
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
|
||||
}
|
||||
generateTensorXFromVector();
|
||||
this->y = torch::tensor(y, kInt32);
|
||||
yv = y;
|
||||
return build(features, className, states);
|
||||
@ -53,10 +57,11 @@ namespace bayesnet {
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
vector<int> y_pred_final;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<float> votes(states[className].size(), 0);
|
||||
vector<float> votes(y_pred.size(1), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += 1;
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
y_pred_final.push_back(indices[0]);
|
||||
}
|
||||
@ -70,13 +75,12 @@ namespace bayesnet {
|
||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||
//Create a threadpool
|
||||
auto threads{ vector<thread>() };
|
||||
auto lock = mutex();
|
||||
mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
lock.lock();
|
||||
lock_guard<mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
lock.unlock();
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
|
@ -10,23 +10,23 @@ using namespace torch;
|
||||
namespace bayesnet {
|
||||
class Ensemble : public BaseClassifier {
|
||||
private:
|
||||
bool fitted;
|
||||
long n_models;
|
||||
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
protected:
|
||||
unsigned n_models;
|
||||
bool fitted;
|
||||
vector<unique_ptr<Classifier>> models;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Tensor X;
|
||||
vector<vector<int>> Xv;
|
||||
Tensor y;
|
||||
vector<int> yv;
|
||||
Tensor dataset;
|
||||
Tensor samples;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
void virtual train() = 0;
|
||||
vector<int> voting(Tensor& y_pred);
|
||||
void generateTensorXFromVector();
|
||||
public:
|
||||
Ensemble();
|
||||
virtual ~Ensemble() = default;
|
||||
|
@ -3,6 +3,7 @@
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
// Return the indices in descending order
|
||||
vector<int> argsort(vector<float>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
|
@ -9,6 +9,7 @@
|
||||
#include "TANLd.h"
|
||||
#include "KDBLd.h"
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
|
@ -2,16 +2,18 @@
|
||||
#define MODEL_REGISTER_H
|
||||
static platform::Registrar registrarT("TAN",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||
static platform::Registrar registrarTN("TANLd",
|
||||
static platform::Registrar registrarTLD("TANLd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
|
||||
static platform::Registrar registrarS("SPODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
||||
static platform::Registrar registrarSN("SPODELd",
|
||||
static platform::Registrar registrarSLD("SPODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
|
||||
static platform::Registrar registrarK("KDB",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
||||
static platform::Registrar registrarKN("KDBLd",
|
||||
static platform::Registrar registrarKLD("KDBLd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
|
||||
static platform::Registrar registrarA("AODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||
static platform::Registrar registrarALD("AODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user