2024-04-11 16:02:49 +00:00
|
|
|
// ***************************************************************
|
|
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
|
|
// SPDX-FileType: SOURCE
|
|
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
// ***************************************************************
|
|
|
|
|
2023-08-05 21:23:31 +00:00
|
|
|
#include "SPODELd.h"
|
2023-08-05 21:11:36 +00:00
|
|
|
|
|
|
|
namespace bayesnet {
|
2023-08-10 00:06:18 +00:00
|
|
|
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
2023-11-08 17:45:35 +00:00
|
|
|
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
2023-08-05 21:11:36 +00:00
|
|
|
{
|
2023-08-24 10:09:35 +00:00
|
|
|
checkInput(X_, y_);
|
2023-08-05 21:11:36 +00:00
|
|
|
Xf = X_;
|
|
|
|
y = y_;
|
2024-04-07 00:08:37 +00:00
|
|
|
return commonFit(features_, className_, states_);
|
2023-08-05 21:11:36 +00:00
|
|
|
}
|
2024-04-07 00:08:37 +00:00
|
|
|
|
2023-11-08 17:45:35 +00:00
|
|
|
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
2023-08-10 00:06:18 +00:00
|
|
|
{
|
2023-08-24 10:09:35 +00:00
|
|
|
if (!torch::is_floating_point(dataset)) {
|
|
|
|
throw std::runtime_error("Dataset must be a floating point tensor");
|
|
|
|
}
|
2023-08-10 00:06:18 +00:00
|
|
|
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
2024-04-07 00:08:37 +00:00
|
|
|
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
|
|
|
return commonFit(features_, className_, states_);
|
|
|
|
}
|
|
|
|
|
|
|
|
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
|
|
|
{
|
2023-08-10 00:06:18 +00:00
|
|
|
features = features_;
|
|
|
|
className = className_;
|
2023-11-08 17:45:35 +00:00
|
|
|
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
2023-08-12 09:49:18 +00:00
|
|
|
states = fit_local_discretization(y);
|
2023-08-10 00:06:18 +00:00
|
|
|
// We have discretized the input data
|
|
|
|
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
|
|
|
SPODE::fit(dataset, features, className, states);
|
2023-08-12 14:16:17 +00:00
|
|
|
states = localDiscretizationProposal(states, model);
|
2023-08-10 00:06:18 +00:00
|
|
|
return *this;
|
|
|
|
}
|
2023-11-08 17:45:35 +00:00
|
|
|
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
2023-08-05 21:11:36 +00:00
|
|
|
{
|
|
|
|
auto Xt = prepareX(X);
|
|
|
|
return SPODE::predict(Xt);
|
|
|
|
}
|
2023-11-08 17:45:35 +00:00
|
|
|
std::vector<std::string> SPODELd::graph(const std::string& name) const
|
2023-08-05 21:11:36 +00:00
|
|
|
{
|
|
|
|
return SPODE::graph(name);
|
|
|
|
}
|
|
|
|
}
|