BayesNet/tests/TestBoostAODE.cc

213 lines
9.2 KiB
C++
Raw Permalink Normal View History

2024-04-11 16:02:49 +00:00
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
2024-04-08 17:09:51 +00:00
#include <type_traits>
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
2024-05-16 11:46:38 +00:00
#include <catch2/matchers/catch_matchers.hpp>
2024-04-08 17:09:51 +00:00
#include "bayesnet/ensembles/BoostAODE.h"
#include "TestUtils.h"
TEST_CASE("Feature_select CFS", "[BoostAODE]")
{
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::BoostAODE();
clf.setHyperparameters({ {"select_features", "CFS"} });
2024-06-11 09:40:45 +00:00
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
2024-04-08 17:09:51 +00:00
REQUIRE(clf.getNumberOfNodes() == 90);
REQUIRE(clf.getNumberOfEdges() == 153);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
}
TEST_CASE("Feature_select IWSS", "[BoostAODE]")
{
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::BoostAODE();
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
2024-06-11 09:40:45 +00:00
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
2024-04-08 17:09:51 +00:00
REQUIRE(clf.getNumberOfNodes() == 90);
REQUIRE(clf.getNumberOfEdges() == 153);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
2024-04-08 17:09:51 +00:00
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
}
TEST_CASE("Feature_select FCBF", "[BoostAODE]")
{
auto raw = RawDatasets("glass", true);
auto clf = bayesnet::BoostAODE();
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
2024-06-11 09:40:45 +00:00
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
2024-04-08 17:09:51 +00:00
REQUIRE(clf.getNumberOfNodes() == 90);
REQUIRE(clf.getNumberOfEdges() == 153);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
2024-04-08 17:09:51 +00:00
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
}
TEST_CASE("Test used features in train note and score", "[BoostAODE]")
{
auto raw = RawDatasets("diabetes", true);
auto clf = bayesnet::BoostAODE(true);
clf.setHyperparameters({
{"order", "asc"},
{"convergence", true},
{"select_features","CFS"},
});
2024-06-11 09:40:45 +00:00
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
2024-04-08 17:09:51 +00:00
REQUIRE(clf.getNumberOfNodes() == 72);
REQUIRE(clf.getNumberOfEdges() == 120);
REQUIRE(clf.getNotes().size() == 2);
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
REQUIRE(clf.getNotes()[1] == "Number of models: 8");
auto score = clf.score(raw.Xv, raw.yv);
auto scoret = clf.score(raw.Xt, raw.yt);
REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
2024-04-08 17:09:51 +00:00
}
TEST_CASE("Voting vs proba", "[BoostAODE]")
{
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::BoostAODE(false);
2024-06-11 09:40:45 +00:00
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
2024-04-08 17:09:51 +00:00
auto score_proba = clf.score(raw.Xv, raw.yv);
auto pred_proba = clf.predict_proba(raw.Xv);
clf.setHyperparameters({
{"predict_voting",true},
});
auto score_voting = clf.score(raw.Xv, raw.yv);
auto pred_voting = clf.predict_proba(raw.Xv);
REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
REQUIRE(pred_voting[83][2] == Catch::Approx(1.0).epsilon(raw.epsilon));
REQUIRE(pred_proba[83][2] == Catch::Approx(0.86121525).epsilon(raw.epsilon));
2024-04-08 17:09:51 +00:00
REQUIRE(clf.dump_cpt() == "");
REQUIRE(clf.topological_order() == std::vector<std::string>());
}
TEST_CASE("Order asc, desc & random", "[BoostAODE]")
{
auto raw = RawDatasets("glass", true);
std::map<std::string, double> scores{
{"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
};
for (const std::string& order : { "asc", "desc", "rand" }) {
auto clf = bayesnet::BoostAODE();
clf.setHyperparameters({
{"order", order},
{"bisection", false},
{"maxTolerance", 1},
{"convergence", false},
2024-04-08 17:09:51 +00:00
});
2024-06-11 09:40:45 +00:00
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
2024-04-08 17:09:51 +00:00
auto score = clf.score(raw.Xv, raw.yv);
auto scoret = clf.score(raw.Xt, raw.yt);
2024-05-16 09:17:21 +00:00
INFO("BoostAODE order: " << order);
2024-04-08 17:09:51 +00:00
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
}
}
TEST_CASE("Oddities", "[BoostAODE]")
{
2024-04-08 20:30:55 +00:00
auto clf = bayesnet::BoostAODE();
auto raw = RawDatasets("iris", true);
auto bad_hyper = nlohmann::json{
{ { "order", "duck" } },
{ { "select_features", "duck" } },
{ { "maxTolerance", 0 } },
{ { "maxTolerance", 5 } },
};
for (const auto& hyper : bad_hyper.items()) {
2024-05-16 09:17:21 +00:00
INFO("BoostAODE hyper: " << hyper.value().dump());
2024-04-08 20:30:55 +00:00
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
}
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
auto bad_hyper_fit = nlohmann::json{
{ { "select_features","IWSS" }, { "threshold", -0.01 } },
{ { "select_features","IWSS" }, { "threshold", 0.51 } },
{ { "select_features","FCBF" }, { "threshold", 1e-8 } },
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
};
for (const auto& hyper : bad_hyper_fit.items()) {
2024-05-16 09:17:21 +00:00
INFO("BoostAODE hyper: " << hyper.value().dump());
2024-04-08 20:30:55 +00:00
clf.setHyperparameters(hyper.value());
2024-06-11 09:40:45 +00:00
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
2024-04-08 20:30:55 +00:00
}
}
2024-04-08 17:09:51 +00:00
TEST_CASE("Bisection Best", "[BoostAODE]")
2024-04-08 20:30:55 +00:00
{
auto clf = bayesnet::BoostAODE();
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
2024-04-08 20:30:55 +00:00
clf.setHyperparameters({
{"bisection", true},
{"maxTolerance", 3},
{"convergence", true},
2024-04-08 21:36:05 +00:00
{"block_update", false},
{"convergence_best", false},
2024-04-08 21:36:05 +00:00
});
2024-06-11 09:40:45 +00:00
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 210);
REQUIRE(clf.getNumberOfEdges() == 378);
REQUIRE(clf.getNotes().size() == 1);
REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
auto score = clf.score(raw.X_test, raw.y_test);
auto scoret = clf.score(raw.X_test, raw.y_test);
REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
2024-04-08 21:36:05 +00:00
}
TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
{
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
auto clf = bayesnet::BoostAODE(true);
auto hyperparameters = nlohmann::json{
{"bisection", true},
{"maxTolerance", 3},
{"convergence", true},
{"convergence_best", true},
};
clf.setHyperparameters(hyperparameters);
2024-06-11 09:40:45 +00:00
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
auto score_best = clf.score(raw.X_test, raw.y_test);
REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
// Now we will set the hyperparameter to use the last accuracy
hyperparameters["convergence_best"] = false;
clf.setHyperparameters(hyperparameters);
2024-06-11 09:40:45 +00:00
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
auto score_last = clf.score(raw.X_test, raw.y_test);
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
}
2024-04-08 21:36:05 +00:00
TEST_CASE("Block Update", "[BoostAODE]")
{
auto clf = bayesnet::BoostAODE();
auto raw = RawDatasets("mfeat-factors", true, 500);
2024-04-08 21:36:05 +00:00
clf.setHyperparameters({
{"bisection", true},
{"block_update", true},
{"maxTolerance", 3},
{"convergence", true},
2024-04-08 20:30:55 +00:00
});
2024-06-11 09:40:45 +00:00
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
REQUIRE(clf.getNumberOfNodes() == 868);
REQUIRE(clf.getNumberOfEdges() == 1724);
2024-04-08 20:30:55 +00:00
REQUIRE(clf.getNotes().size() == 3);
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of 216");
REQUIRE(clf.getNotes()[2] == "Number of models: 4");
auto score = clf.score(raw.X_test, raw.y_test);
auto scoret = clf.score(raw.X_test, raw.y_test);
REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
//
// std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
// std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
// std::cout << "Notes size " << clf.getNotes().size() << std::endl;
// for (auto note : clf.getNotes()) {
// std::cout << note << std::endl;
// }
// std::cout << "Score " << score << std::endl;
2024-04-08 17:09:51 +00:00
}