2024-05-15 17:49:15 +00:00
|
|
|
|
// ***************************************************************
|
|
|
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
|
|
|
// SPDX-FileType: SOURCE
|
|
|
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
|
// ***************************************************************
|
2024-05-15 18:00:44 +00:00
|
|
|
|
#include <folding.hpp>
|
2024-05-15 17:49:15 +00:00
|
|
|
|
#include "bayesnet/feature_selection/CFS.h"
|
|
|
|
|
#include "bayesnet/feature_selection/FCBF.h"
|
|
|
|
|
#include "bayesnet/feature_selection/IWSS.h"
|
|
|
|
|
#include "Boost.h"
|
|
|
|
|
|
|
|
|
|
namespace bayesnet {
|
|
|
|
|
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
|
|
|
|
{
|
|
|
|
|
validHyperparameters = { "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
|
|
|
|
"predict_voting", "select_features", "block_update" };
|
|
|
|
|
}
|
|
|
|
|
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
|
|
|
|
{
|
|
|
|
|
auto hyperparameters = hyperparameters_;
|
|
|
|
|
if (hyperparameters.contains("order")) {
|
|
|
|
|
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
|
|
|
|
order_algorithm = hyperparameters["order"];
|
|
|
|
|
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
|
|
|
|
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
|
|
|
|
}
|
|
|
|
|
hyperparameters.erase("order");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("convergence")) {
|
|
|
|
|
convergence = hyperparameters["convergence"];
|
|
|
|
|
hyperparameters.erase("convergence");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("convergence_best")) {
|
|
|
|
|
convergence_best = hyperparameters["convergence_best"];
|
|
|
|
|
hyperparameters.erase("convergence_best");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("bisection")) {
|
|
|
|
|
bisection = hyperparameters["bisection"];
|
|
|
|
|
hyperparameters.erase("bisection");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("threshold")) {
|
|
|
|
|
threshold = hyperparameters["threshold"];
|
|
|
|
|
hyperparameters.erase("threshold");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("maxTolerance")) {
|
|
|
|
|
maxTolerance = hyperparameters["maxTolerance"];
|
|
|
|
|
if (maxTolerance < 1 || maxTolerance > 4)
|
|
|
|
|
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
|
|
|
|
hyperparameters.erase("maxTolerance");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("predict_voting")) {
|
|
|
|
|
predict_voting = hyperparameters["predict_voting"];
|
|
|
|
|
hyperparameters.erase("predict_voting");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("select_features")) {
|
|
|
|
|
auto selectedAlgorithm = hyperparameters["select_features"];
|
|
|
|
|
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
|
|
|
|
selectFeatures = true;
|
|
|
|
|
select_features_algorithm = selectedAlgorithm;
|
|
|
|
|
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
|
|
|
|
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
|
|
|
|
}
|
|
|
|
|
hyperparameters.erase("select_features");
|
|
|
|
|
}
|
|
|
|
|
if (hyperparameters.contains("block_update")) {
|
|
|
|
|
block_update = hyperparameters["block_update"];
|
|
|
|
|
hyperparameters.erase("block_update");
|
|
|
|
|
}
|
|
|
|
|
Classifier::setHyperparameters(hyperparameters);
|
|
|
|
|
}
|
2024-05-15 18:00:44 +00:00
|
|
|
|
void Boost::buildModel(const torch::Tensor& weights)
|
|
|
|
|
{
|
|
|
|
|
// Models shall be built in trainModel
|
|
|
|
|
models.clear();
|
|
|
|
|
significanceModels.clear();
|
|
|
|
|
n_models = 0;
|
|
|
|
|
// Prepare the validation dataset
|
|
|
|
|
auto y_ = dataset.index({ -1, "..." });
|
|
|
|
|
if (convergence) {
|
|
|
|
|
// Prepare train & validation sets from train data
|
|
|
|
|
auto fold = folding::StratifiedKFold(5, y_, 271);
|
|
|
|
|
auto [train, test] = fold.getFold(0);
|
|
|
|
|
auto train_t = torch::tensor(train);
|
|
|
|
|
auto test_t = torch::tensor(test);
|
|
|
|
|
// Get train and validation sets
|
|
|
|
|
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
|
|
|
|
y_train = dataset.index({ -1, train_t });
|
|
|
|
|
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
|
|
|
|
y_test = dataset.index({ -1, test_t });
|
|
|
|
|
dataset = X_train;
|
|
|
|
|
m = X_train.size(1);
|
|
|
|
|
auto n_classes = states.at(className).size();
|
|
|
|
|
// Build dataset with train data
|
|
|
|
|
buildDataset(y_train);
|
|
|
|
|
metrics = Metrics(dataset, features, className, n_classes);
|
|
|
|
|
} else {
|
|
|
|
|
// Use all data to train
|
|
|
|
|
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
|
|
|
|
y_train = y_;
|
|
|
|
|
}
|
|
|
|
|
}
|
2024-05-15 17:49:15 +00:00
|
|
|
|
std::vector<int> Boost::featureSelection(torch::Tensor& weights_)
|
|
|
|
|
{
|
|
|
|
|
int maxFeatures = 0;
|
|
|
|
|
if (select_features_algorithm == SelectFeatures.CFS) {
|
|
|
|
|
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
|
|
|
|
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
|
|
|
|
if (threshold < 0 || threshold >0.5) {
|
|
|
|
|
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
|
|
|
|
}
|
|
|
|
|
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
|
|
|
|
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
|
|
|
|
if (threshold < 1e-7 || threshold > 1) {
|
|
|
|
|
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
|
|
|
|
}
|
|
|
|
|
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
|
|
|
|
}
|
|
|
|
|
featureSelector->fit();
|
|
|
|
|
auto featuresUsed = featureSelector->getFeatures();
|
|
|
|
|
delete featureSelector;
|
|
|
|
|
return featuresUsed;
|
|
|
|
|
}
|
|
|
|
|
std::tuple<torch::Tensor&, double, bool> Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
|
|
|
|
{
|
|
|
|
|
bool terminate = false;
|
|
|
|
|
double alpha_t = 0;
|
|
|
|
|
auto mask_wrong = ypred != ytrain;
|
|
|
|
|
auto mask_right = ypred == ytrain;
|
|
|
|
|
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
|
|
|
|
double epsilon_t = masked_weights.sum().item<double>();
|
|
|
|
|
if (epsilon_t > 0.5) {
|
|
|
|
|
// Inverse the weights policy (plot ln(wt))
|
|
|
|
|
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
|
|
|
|
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
|
|
|
|
terminate = true;
|
|
|
|
|
} else {
|
|
|
|
|
double wt = (1 - epsilon_t) / epsilon_t;
|
|
|
|
|
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
|
|
|
|
// Step 3.2: Update weights for next classifier
|
|
|
|
|
// Step 3.2.1: Update weights of wrong samples
|
|
|
|
|
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
|
|
|
|
// Step 3.2.2: Update weights of right samples
|
|
|
|
|
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
|
|
|
|
// Step 3.3: Normalise the weights
|
|
|
|
|
double totalWeights = torch::sum(weights).item<double>();
|
|
|
|
|
weights = weights / totalWeights;
|
|
|
|
|
}
|
|
|
|
|
return { weights, alpha_t, terminate };
|
|
|
|
|
}
|
|
|
|
|
std::tuple<torch::Tensor&, double, bool> Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
|
|
|
|
{
|
|
|
|
|
/* Update Block algorithm
|
|
|
|
|
k = # of models in block
|
|
|
|
|
n_models = # of models in ensemble to make predictions
|
|
|
|
|
n_models_bak = # models saved
|
|
|
|
|
models = vector of models to make predictions
|
|
|
|
|
models_bak = models not used to make predictions
|
|
|
|
|
significances_bak = backup of significances vector
|
|
|
|
|
|
|
|
|
|
Case list
|
|
|
|
|
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
|
|
|
|
B) k = 1, n_models = n + 1 => n_models = n + k
|
|
|
|
|
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
|
|
|
|
D) k > 1, n_models = k => n = 0, n_models = n + k
|
|
|
|
|
E) k > 1, n_models = k + n => n_models = n + k
|
|
|
|
|
|
|
|
|
|
A, D) n=0, k > 0, n_models == k
|
|
|
|
|
1. n_models_bak <- n_models
|
|
|
|
|
2. significances_bak <- significances
|
|
|
|
|
3. significances = vector(k, 1)
|
|
|
|
|
4. Don’t move any classifiers out of models
|
|
|
|
|
5. n_models <- k
|
|
|
|
|
6. Make prediction, compute alpha, update weights
|
|
|
|
|
7. Don’t restore any classifiers to models
|
|
|
|
|
8. significances <- significances_bak
|
|
|
|
|
9. Update last k significances
|
|
|
|
|
10. n_models <- n_models_bak
|
|
|
|
|
|
|
|
|
|
B, C, E) n > 0, k > 0, n_models == n + k
|
|
|
|
|
1. n_models_bak <- n_models
|
|
|
|
|
2. significances_bak <- significances
|
|
|
|
|
3. significances = vector(k, 1)
|
|
|
|
|
4. Move first n classifiers to models_bak
|
|
|
|
|
5. n_models <- k
|
|
|
|
|
6. Make prediction, compute alpha, update weights
|
|
|
|
|
7. Insert classifiers in models_bak to be the first n models
|
|
|
|
|
8. significances <- significances_bak
|
|
|
|
|
9. Update last k significances
|
|
|
|
|
10. n_models <- n_models_bak
|
|
|
|
|
*/
|
|
|
|
|
//
|
|
|
|
|
// Make predict with only the last k models
|
|
|
|
|
//
|
|
|
|
|
std::unique_ptr<Classifier> model;
|
|
|
|
|
std::vector<std::unique_ptr<Classifier>> models_bak;
|
|
|
|
|
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
|
|
|
|
auto significance_bak = significanceModels;
|
|
|
|
|
auto n_models_bak = n_models;
|
|
|
|
|
// 3. significances = vector(k, 1)
|
|
|
|
|
significanceModels = std::vector<double>(k, 1.0);
|
|
|
|
|
// 4. Move first n classifiers to models_bak
|
|
|
|
|
// backup the first n_models - k models (if n_models == k, don't backup any)
|
|
|
|
|
for (int i = 0; i < n_models - k; ++i) {
|
|
|
|
|
model = std::move(models[0]);
|
|
|
|
|
models.erase(models.begin());
|
|
|
|
|
models_bak.push_back(std::move(model));
|
|
|
|
|
}
|
|
|
|
|
assert(models.size() == k);
|
|
|
|
|
// 5. n_models <- k
|
|
|
|
|
n_models = k;
|
|
|
|
|
// 6. Make prediction, compute alpha, update weights
|
|
|
|
|
auto ypred = predict(X_train);
|
|
|
|
|
//
|
|
|
|
|
// Update weights
|
|
|
|
|
//
|
|
|
|
|
double alpha_t;
|
|
|
|
|
bool terminate;
|
|
|
|
|
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
|
|
|
|
//
|
|
|
|
|
// Restore the models if needed
|
|
|
|
|
//
|
|
|
|
|
// 7. Insert classifiers in models_bak to be the first n models
|
|
|
|
|
// if n_models_bak == k, don't restore any, because none of them were moved
|
|
|
|
|
if (k != n_models_bak) {
|
|
|
|
|
// Insert in the same order as they were extracted
|
|
|
|
|
int bak_size = models_bak.size();
|
|
|
|
|
for (int i = 0; i < bak_size; ++i) {
|
|
|
|
|
model = std::move(models_bak[bak_size - 1 - i]);
|
|
|
|
|
models_bak.erase(models_bak.end() - 1);
|
|
|
|
|
models.insert(models.begin(), std::move(model));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 8. significances <- significances_bak
|
|
|
|
|
significanceModels = significance_bak;
|
|
|
|
|
//
|
|
|
|
|
// Update the significance of the last k models
|
|
|
|
|
//
|
|
|
|
|
// 9. Update last k significances
|
|
|
|
|
for (int i = 0; i < k; ++i) {
|
|
|
|
|
significanceModels[n_models_bak - k + i] = alpha_t;
|
|
|
|
|
}
|
|
|
|
|
// 10. n_models <- n_models_bak
|
|
|
|
|
n_models = n_models_bak;
|
|
|
|
|
return { weights, alpha_t, terminate };
|
|
|
|
|
}
|
|
|
|
|
}
|